Some Study of Na-Continuous Functions

Ramesh P Bhat¹

¹Assistant professor Department of Mathematics, G.C. College Ankola, Karnataka –India

Abstract: The purpose of this paper is to introduce a new class of continuous functions like NA continuous functions and study some of their properties.

Keywords: NA-continuity, δ -continuity, strongly continuous, β -continuous.

I. INTRODUCTION

The concept of na-continuous functions was first introduced and studied by Gyu Ihn Chae, T. Noiri and Dowon Lee in their paper [4] in the year 1986. In the year 1982, B. M. Munshi and D. S. Bassan [5] introduced and studied the new class of functions called super-continuous and S. P. Arya and R. Gupta [1] introduced and studied the strongly continuous functions. Gyu Ihn Chae, T. Noiri and Dowon Lee [4] showed that na-continuous functions are weaker than the class of strongly continuous functions and stronger than super-continuous.

In this paper, we study the concept of nacontinuous functions defined by Gyu Ihn Chae, T. Noiri and Dowon Lee [3]. Here we concentrate on basic properties similar to the properties of continuous functions.

II PRILIMINARIES

Throughout this paper ,We denote the family of all regular open sets δ -open sets and feebly-open sets in a topological space (X, \Im) by RO (X, \Im), DO (X, \Im) and FO (X, \Im). [Simply we denote by RO (X), DO (X) and FO (X)] and A is any subset of space X, then Cl(A) and Int(A) denote the closure of A and the interior of A in X respectively.

Definition 2.1 [9] : A subset A is said to be regular open if A=int(cl(A)) and regular closed if A = cl (int (A)).

Definition 2.2 [6] : A subset A is said to be α -open if A \subseteq int(cl(int(A))).

Definition 2.3 [4]: A subset A is said to be feebly open if there exists an open set O such that $O \subseteq A \subseteq$ scl(O), where scl(O) denoted the semi-closure of O.

Definition 2.4 : A subset G is said to be δ -open if for each $x \in G$ there exists a regular open set H such that $x \in H \subseteq G$. Or equivalently, if G is expressible as an arbitrary union of regularly open sets.

III NA-CONTINUOUS FUNCTIONS

Definition 3.1: A function $g : X \to Y$ is said to be

NA-continuous if for each feebly open set V in Y

 $g^{-1}(V)$ is δ -open set in X.

Theorem 3.2 : For a function $g : X \rightarrow Y$, the following are equivalent.

- (i) g is NA-continuous.
- (ii) For each $x \in X$ and each $V \in FO(X)$ (that is, V is feebly open set in Y) containing g (x), there exists an δ -open set U in X containing x such that $g(U) \subset V$.
- (iii) For each $x \in X$ and each feebly open set V in Y containing g (x), there exists a regular open set U in X containing x such that g(U) \subset V.
- (iv) For each feebly closed set F of Y, $g^{-1}(F)$ is δ -closed.
- (v) $g(\delta cl(A)) \subset fcl(g(A))$ for each subset A of X.
- $(vi) \qquad \delta cl \ (g \ ^{-1}(B \) \) \ \subset \ g \ ^{-1} \ (fcl \ (B) \) \ for \ each subset B \ of Y.$

Proof: (i) \Rightarrow (ii): Let for each $x \in X$ and let V be an feebly open set in Y containing g(x), that is, $g(x) \in V$. Since g is NA-continuous, then $g^{-1}(V)$ is feebly open set in X containing x. So $x \in g^{-1}(V)$. Take U = $g^{-1}(V)$. Then we have, $g(U) \subset V$. Hence (ii) holds.

(ii) \Rightarrow (iii): Let $x \in X$ and let V be any feebly open set in Y containing g(x). Then there exists an δ -open set U_0 of X containing x such that $g(U_0) \in Y$. Since a δ -open set is the union of regular open sets, there exists an $U \in RO(X)$ such that $x \in U \subset U_0$. Therefore we have $g(U) \subset V$.

(iii) \Rightarrow (iv): Let F be a feebly closed set of Y. Then Y – F is feebly open set in Y. For each $x \in g^{-1}(Y - F)$, there exists an regular open set U_x of X such that $x \in U_x \subset g^{-1}(Y - F)$. Therefore we have $g^{-1}(F) = \cap \{X - U_x : x \in g^{-1}(Y - F)\}$. This means that $g^{-1}(F)$ is δ -closed set in X.

(iv) ⇒ (v): For each subset A of X, f cl(g(x)) is the smallest feebly closed set of Y containing g(A) [by the theorem in feebly closure, that is, fcl (H) is the smallest feebly closed set containing A]. Thus, A ⊂ $g^{-1}(fcl(g(A)))$ and hence δ-cl (A) ⊂ $g^{-1}(fcl(g(A)))$, by (d). Therefore we have g((δ-cl (A)) ⊂ fcl (g(A)). Hence (v) holds.

(v) ⇒ (vi): For each subset B of Y, we have g (δ -cl $(g^{-l}(B))) \subset fcl(g(g^{-l}(B))) \subset fcl(B)$ and hence δ -cl $(g^{-l}(B)) \subset g^{-l}$ (fcl (B)). Hence (vi) holds. (vi) ⇒ (i): Let V be any feebly open set in Y. Then Y – V is feebly closed set in Y. Then from (f), δ -cl $(g^{-1}(Y - V)) \subset g^{-1}$ (fcl $(Y - V)) = g^{-1}(Y - V)$. Thus $g^{-1}(Y - V)$ is δ -closed set in X. Therefore $g^{-1}(Y - V) = X - g^{-1}(V)$ is δ -closed set in X. So $g^{-1}(V)$ is δ -open in X. Hence g is NA-continuous.

Definition 3.3: A function $g : X \to Y$ is said to be super-continuous if for each $x \in X$ and each neighbourhood V of g(x), there exists a neighborhood U of x such that g (int (cl (U))) \subset V.

It was shown in [3] that the family of feebly open set in X is a topology on a space X, that is, (X, FO(X)) is a topological space. The family of regular open sets in X, that is, RO(X) is a basis for a topology which is called the semi-regularization of T for a space (X, \mathfrak{I}) and is denoted by \mathfrak{I}_{s} .

Theorem 3.4 : For a function $g : (X, \mathfrak{I}) \to (Y, \mathfrak{I}')$, the following are equivalent:

- (i) g is na-continuous.
- (ii) $g_0 : (X, \mathfrak{I}) \to (Y, FO(Y))$ is supercontinuous, where $g_0(x) = g(x)$ for each $x \in X$.
- (iii) $g_* : (X, \Im_s) \rightarrow (Y, FO(Y))$ is continuous, where $g_* (x) = g (x)$ for each $x \in X$.

Proof : (i) \Rightarrow (ii) : Let V be an open set of (Y, FO(Y)). Then V is feebly open set in (Y, \Im). From (a), $g^{-1}(V)$ is δ -open set in (X, \Im). It follows from the Theorem that g is super-continuous.

(ii) \Rightarrow (iii) : For each open set V of (Y, FO(Y)), $g_0^{-1}(V)$ is δ -open set in (X, \Im) and $g_*^{-1}(V)$ is open in (X, \Im_s). Therefore g_* is continuous.

(iii) \Rightarrow (i) : Let V be any feebly open set in (Y, \Im'). Then V is open in (Y, FO(Y)) and hence $g_*^{-1}(V)$ is open in (X, \Im_s). Therefore $g^{-1}(V)$ is δ -open set in (X, \Im). Hence g is NA-continuous.

Definition 3.5 : A filter base $\beta = \{ B_{\lambda} \}$ on a space X is said to be δ -convergence to a point x in X, if for each $V \in RO(X)$ (resp. $V \in FO(X)$) there exists a $B_{\lambda} \in \beta$ such that $B_{\lambda} \subset V$.

A net $\{x_{\lambda}\}_{\lambda\in D}$ in X is said to be δ -convergence (resp. sf-convergence) to $x \in X$ if the net is eventually in each regular open set containing x (resp. each feebly open set).

Theorem 3.6 : For a function $g : (X, \mathfrak{I}) \rightarrow (Y, \mathfrak{I}')$, the following are equivalent:

(i) g is NA-continuous.

- (ii) For each $x \in X$ and each set $\{x_{\lambda}\}_{\lambda \in D} \delta$ convergence to x, g (β) converges to g (x) in (Y, FO(Y)).
- (iii) For each $x \in X$ and each set $\{x_{\lambda}\}_{\lambda \in D} \delta$ convergence to x, the set $\{g(x_{\lambda})\}_{\lambda \in D}$ converges to g(x) in (Y, FO(Y)).
- (iv) For each $x \in X$ and each filterbase β δ converges to x, g (β) sf-converges to g (x)
 in (Y, \Im').
- (v) For each $x \in X$ and each net $\{x_{\lambda}\}_{\lambda \in D} \delta$ convergence to x, the set $\{g(x_{\lambda})\}_{\lambda \in D}$ sfconverges to g(x) in (Y, \mathfrak{I}') .

Proof : (i) \Leftrightarrow (ii) \Leftrightarrow (iii) proof follows from the Theorem 3.2 and (i) \Leftrightarrow (iv) follows from Theorem 3.2.

IV Properties of NA-Continuous Functions

Theorem 4.1 : If $g : X \to Y$ is NA-continuous and A is open, then the restriction $g_{/A} : A \to Y$ is nacontinuous.

Proof: Let V be any feebly open set in Y. Since g is na-continuous, $g^{-1}(V)$ is δ -open set in X. Since the δ -open set $g^{-1}(V)$ is the union of regular open sets V_i of X. Since A is open in X, $V_i \cap A$ is regular open in the subspace A [7]. Therefore $(g_{/A})^{-1}(V)$ is the union of $g^{-1}(V_i) \cap A$ and hence $(g_{/A})^{-1}(V)$ is δ -open set in A. Hence $g_{/A}$ is NA-continuous.

Theorem 4.2 : Composition of two NA-continuous functions is NA-continuous.

Proof: Let $g : X \to Y$ and $f : Y \to Z$ are nacontinuous. Let V be any feebly open set in Z. Since f is NA-continuous, $f^{-1}(V) \delta$ -open set in Y. Since every δ -open set is feebly open, so $f^{-1}(V)$ is feebly open in Y. Again since g is NA-continuous, g $^{-1}(f^{-1}(V)$ is δ -open set in X. So $(g \circ f)^{-1}(V)$ is feebly open set in X. Hence g of) is NA-continuous.

Lemma 4.3 : Let { $X_{\lambda} : \lambda \in D$ } be a family of spaces and $U_{\lambda i}$ be a subset of $X_{\lambda i}$ for each i = 1,

2,,n. Then U = $\prod_{i=1}^{n} U_{\lambda i} \times \prod_{\lambda \neq \lambda i} X_{\lambda}$ is δ -open (resp. feebly open) in $\prod_{\lambda \in D} X_{\lambda}$ if and only if $U_{\lambda i} \in D$

DO($X_{\lambda i}$) (resp. $U_{\lambda i} \in FO(X_{\lambda i})$), that is, $U_{\lambda i}$ is δ -open in $X_{\lambda i}$ (resp. $U_{\lambda i}$ is feebly open in $X_{\lambda i}$) for each $i = 1, 2, \dots, n$.

Proof :we know that $(\prod X_{\lambda})_{i} = \prod (X_{\lambda})_{i}$. Thus U is δ -open set in $(\prod X_{\lambda})_{i}$ if and only if U is open in $(\prod X_{\lambda})_{i}$, where $(X_{\lambda})_{i}$ is the semiregularization of X_{λ} . Therefore U is δ -open in $\prod X_{\lambda}$ if and only if $U_{\lambda i}$ is open in $(X_{\lambda})_{i}$, that is, $U_{\lambda i}$ is δ -open in $(X_{\lambda})_{i}$, for each i = 1, 2, ..., n.

Next, assume that U be an feebly open set in $\prod X_{\lambda}$. Then we have, U \subset int (cl (int (U))) \subset { $\prod_{i=1}^{n} \operatorname{int}(cl(\operatorname{int}(U_{\lambda i})))$ }× $\prod_{\lambda \neq \lambda i} X_{\lambda}$. Therefore, we

obtain $U_{\lambda i} \subset \text{int} (\text{cl (int (} U_{\lambda i} \text{) for each } i = 1, 2, ..., n.$ Thus, $U_{\lambda i}$ is feebly open set in $X_{\lambda i}$ for each i = 1, 2, ..., n.2, ..., n.

Conversely, assume that $U_{\lambda i}$ is feebly open set in $X_{\lambda i}$ for each i = 1, 2, ..., n. Then, $U \subset$ { $\prod_{i=1}^{n} \operatorname{int}(cl(\operatorname{int}(U_{\lambda i})))$ } $\times \prod_{\lambda \neq \lambda i} X_{\lambda} \subset \operatorname{int}$ (cl (int (U))). Hence the proof.

Theorem 4.4 : Let $g_{\lambda} : X_{\lambda} \to Y_{\lambda}$ be a function for each $\lambda \in D$ and $g : \prod X_{\lambda} \to \prod Y_{\lambda}$ be a function defined by $g(\{X_{\lambda}\}) = \{g_{\lambda}(X_{\lambda})\}$ for each $\{X_{\lambda}\}$ $\in \prod X_{\lambda}$. If g is NA-continuous, then g_{λ} is NAcontinuous for each $\lambda \in D$.

Proof: Let $\beta \in D$ and V_{β} be any feebly open set in Y_{β} . Then by Lemma 3.3.3, $V = V_{\beta} \times \prod_{\lambda \neq \beta} Y_{\lambda}$ is feebly open in $\prod Y_{\lambda}$. Since g is NA-continuous, $g^{-1}(V) = g_{\beta}^{-1}(V_{\beta}) \times \prod_{\lambda \neq \beta} X_{\lambda}$ is δ -open in $\prod X_{\lambda}$.

Then from Lemma 4.3, $g_{\beta}^{-1}(V_{\beta})$ is δ -open in X. Therefore g_{β} is NA-continuous, that is, g_{λ} is nacontinuous.

Theorem 4.5 : Let $g : X \to Y$ be a function and $G : X \to X \times Y$ be a graph function of g defined by G(x) = (x, g(x)) for each $x \in X$. If G is NA-continuous then g is NA -continuous.

Proof: Let $x \in X$ and V be feebly open set in Y containing g (x). Then by Lemma 4.3, $X \times V$ is feebly open set in $X \times Y$ containing g (x). Since G is NA -continuous by Theorem 3.2, there exists an δ -open set U in X containing x such that G (U) $\subset X \times Y$. Hence g (U) $\subset Y$.

Remark 4.6 : The converse of the theorem 4.5 may not be true in general. It was known that an feebly open set V in $X \times Y$ may not, generally, be a union of sets of the form $A \times B$ in the product space $X \times Y$, where A and B are feebly open sets in X and Y respectively.

Definition 4.7 : A function $g : X \to Y$ is said to be strongly continuous (briefly STC) if $g(cl(A)) \subseteq g$ (A) for each subset A of X.

Definition 4.8 : A function $g : X \rightarrow Y$ is said to be completely continuous (briefly CC) [1] (resp. β continuous (briefly β C) [3]) if the inverse image of each open (resp. regular open) set V of Y is regular open in X. D. Carnahan [2] called β C-functions as R-maps.

Definition 4.9 : A function $g : X \to Y$ is said to be strongly θ -continuous (written ST θ), if for each $x \in X$ and each open neighborhood V of g (x), there exists an open neighborhood U of x such that g (cl (U)) \subset V.

Definition 4.10 : A function $g : X \to Y$ is said to be δ -continuous (briefly δC) [2], if for each $x \in X$ and each open neighborhood V of g (x), there exists an open neighborhood U of x such that g (int (cl (U))) \subset int (cl (V)).

Definition 4.11 : A function $g : X \to Y$ is said to be almost continuous (briefly AC) [8], if for each $x \in X$ and each open neighbourhood V of g(x), there exists an open neighbourhood U of x such that $g(U) \subset int (cl(V))$.

Theorem 4.12 : Every strongly continuity is NA-continuity

Proof: Let $g: X \to Y$ be a strongly continuity. Let V be a feebly open subset of Y. Since g is strongly continuous, then from the Remark g^{-1} (V) is both open and closed in X. Since every open set is δ -open, g^{-1} (V) is δ -open in X. Hence g is NA-continuous.

However the converse of the above theorem need not be true as seen from the following example.

Example 4.13 : Let $X = \{a, b, c\}$ be a space with $\Im = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$. Let $g : X \to X$ be a function defined by g(a) = a g(b) = a and g (c) = c. Now FO(X) = X, ϕ , $\{a\}, \{b\}, \{a, b\}$. DO(X) = P(X).Then g is NA -continuous but not ST θ -continuous and hence not strongly continuous.

Example 4.14 : Let R be the usual space of reals and i : $R \rightarrow R$ be the identity function. Since R is regular, i is strongly θ -continuous. However, since there exists a feebly open set which is not open in R [3], i is not NA -continuous. Therefore a supercontinuous function need not be NA-continuous.

Remark 4.15 : NA-continuity and β -continuity are independent of each other as seen from the following examples.

Example 4.16 : Let $X = \{a, b, c\}$ be a space with $\Im = \{X, \phi, \{a\}\}$. Then (X, \Im) be a topological space. Then the identity map $i : X \to X$ is β -continuous but not na-continuous.

 \Im -open sets : X, ϕ , {a}

Closed sets : X, ϕ , {b, c}

Feebly open sets : X, ϕ , {a}, {a, b}, {a, c}

Regular open sets : X, ϕ

δ-open sets : X, ϕ

Since for each regular open set V of Y,

i⁻¹(V) is regular open in X. Hence i is β - continuous. But i is not na-continuous., as, A = {a} is feebly open set in X, i⁻¹{a} = {a} which is not δ -open in X.

Example 4.17 : Let R be the usual space of reals and Y = {a, b, c, d} be a space with $\Im = {Y, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$. Define a function $g : \mathbb{R} \to Y$ by g(x) = a if x < p; g(x) = b is p < x < q; g(x) = c if q < x < r; g(x) = d if x = p, qand $r \le x$, where p, q and r are distinct reals. Then g is NA-continuous but not β -continuous and not completely continuous.

Remark 4.18 : Completely continuity and NA-continuity are independent as seen from the following examples.

Example 4.19 : In the Example 4.18, g is NA - continuous but not completely continuous.

Example 4.20 : Let $X = \{a, b, c, d\}$ and $\mathfrak{I} = \{X, \phi, \{c\}, \{a, b\}, \{a, b, c\}\}$. Let $Y = \{x, y, z\}$ and $\mu = \{Y, \phi, \{x\}\}$. Then $(X, \mathfrak{I}\}$ and (Y, μ) are topological spaces. Define a map $g : X \to Y$ by g(a) = g(b) = x, g(c) = y and g(d) = z. Then g is completely continuous but not NA -continuous. \mathfrak{I} -open sets : $X, \phi, \{c\}, \{a, b\}, \{a, b, c\}$

 $\Im\text{-closed set}:X,\phi,\{d\},\{c,d\},\{a,b,d\}$

- \Im -regular open sets : X, ϕ , {c}, {a, b}
- \Im δ -open sets : X, ϕ , {c}, {a, b}
- μ -open sets : Y, ϕ , {x}
- μ -closed sets : Y, ϕ , {y, z}
- μ feebly open sets : Y, ϕ , {x}, {x, y}, {x, z}, Y

Then every open set in Y, its inverse image is regular open in X.

Let $A = \{x\}$ is open in Y, $g^{-l}(\{x\}) = \{a, b\}$ is regular open in X. Hence g is completely continuous. But g is not NA -continuous. Since $A = \{x, z\}$ is feebly open in Y, then $g^{-l}(\{x, z\}) = \{a, b, d\}$ is not δ -open in X. Therefore g is not NAcontinuous.

Remark 4.21 : From the above observations we have the following implications.

REFERENCES:

- S. P. Arya and R Gupta, On strongly continuous mappings, Kyungpook Math., Jl.14 (1974)131-143.
 D.Carnahan, Some properties related to compactness in
- D.Carnahan, Some properties related to compactness in topological spaces, Ph.D. Thesis, Univ.of.Arkansas, 1974.
- Gyu Ihn Chae, T. Noiri and Do Won Lee, On NAcontinuous functions, Kyungpook Math j. Vol.26, No.1(1986)73-79.
- Gyu Ihn Chae and Do Won Lee, Feebly open sets and feebly continuity in topological spaces, Ulsan Inst. Tech. Rep.15(1984),367-371.
- 5. B. M. Munshi and D. S. Bassan, Super continuous mappings, Indian. J. Pure appl. Math., 13 (1982), 229-236.
- A. S. Mash hour, M. E. Abd El-Monsef and S. N. EL-Deeb, On pre-continuous and weak pre-continuous mappings, Proc. Math and Phys. Soc. Egypt, 53 (1982), 47-53.
- 7. O. Njastad, on some classes of nearly open sets, Pacific. J. Math., 15(1965), 961-970.
- M. K. Singal and S. P. Arya, On almost regular spaces. Math. Vesni 6 (12), (1969)1.
- M. K. Singal and A.R. Singal, Almost continuous mapping. Yokohama Math.L, 16(1968), 63-73.