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Abstract — Its origins in the theory of Lie algebras 

are introduced, and then an axiomatic definition is 

provided. Simple roots, Bases, Weyl groups, and the 

transitive action of the latter on the former are 

explained and proven, respectively. 
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INTRODUCTION 

This chapter brings the structure of the roots and 

Weyl group.Baker studied Matrix Groups: An 

Introduction to Lie Group Theory. Bourbaki studied 

Lie Groups and Lie Algebras. Erdmann and Wildon 

discussed an introduction to Lie algebras, Hall 

studied Lie Groups, Lie Algebras, and 

Representations, An Elementary Introduction. 

Humphrey studied Introduction to Lie Algebras and 

Representation Theory. Jacobson studied Lie 

Algebras. Rossmann studied Lie Groups: An 

Introduction through Linear Groups. Simon have 

studied Representations of Finite and Compact 

Groups.  

Definition:  

Let  denote a root system of rank  in a Euclidean 

space E, with weyl group . A subset   of   is 

called a base if   is a linear basis of E and each root 

of β can be written as  with 

integral coefficients.  all non-negative or all non-

positive. The roots in the base   are called simple 

roots. 

Example:  

A root having multiplicity n=1 is called simple 

root.  has a simple root at 

, but  has a root of multiplicity 2 

at , which is therefore not a simple root. 

Lemma: 

Let  be a simple root. Then  permutes the 

positive roots other than . 

Proof: 

Given  is simple. Let . 

 





 k

 

where  

. Both  are positive. 

     

  for some  

For, if   ,  then  

  because the only multiple of a root is 

. 

 But . This is contradiction. 

 there exists  such that  . 

  

The coefficient of  in  is the same as the 

coefficient of  in . 

Since  permutes the roots,  is also a root. 

But the coefficient of  in  is  which is great 

than 0. 

 all the coefficient in  must be positive 

  is a positive root. 

  .  

 . 

  permutes the positive roots other than . 

Definition:  

A subset  of all Euclidean space E is called a root 

system in E if the following axioms are satisfied 

i)  spans E, finite,  

ii) If , the only multiplies of  in  are 

 

iii) If , the reflexion  leaves  

invariance. Also if  then 

 

Definition:  

Let  be a root system in E. Let  denote the 

subgroup of (group of all invertible 

endomorphism of E) generated by the reflexion , 

. Then any  is a finite product of 

reflexion of the form  , , ----------  where 

, ,------- .  

   leaves  invariance. 

  leaves  invariance. 

  is a permutation of . 

By (i)  is a finite set, spanning E. 

Hence    is a subgroup of the symmetric group on 

. 

Hence  is finite. 

This  is called a weyl group of . 

Note: 

  is a normal subgroup of Aut (automorphism of 

). 

Any element of  is a permutation of . 
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 any element of  is an automorphism of . 

   is a subgroup of Aut . 

Let . Then  :  is an isomorphism. 

Let . 

Consider the map  defined by 

  

Then  is an isomorphism of  onto  

 . 

This true for all , 

   is a normal subgroup of Aut . 

Lemma: 

For all ,  where  is the 

length of   and  is the number os positive roots 

 for which . 

Proof: 

We prove this result using induction on . 

Suppose . Then . 

 = number of positive roots  for which 

. 

         = number of positive roots  for which 

. 

        = number of positive roots  for which . 

         =  

   when . 

 the result is true when  

Next, we assume that the lemma is true for all 

 for which  . 

Let , , ----------  be the reduced expression 

for . 

Let . 

Then we have . 

 number of positive roots  for which 

. 

              = number of positive roots  for which 

. 

Since α is simple, we have  permutes with the 

roots other than α. 

    

  

             =  =  

  =   

Now   

  =  ie . 

  

 By induction the result is true for all values of 

. 

 

 

Lemma:  

Let  be a root system in E, with weyl group . If 

, leaves  invariant, then 

      for 

. 

 

Proof: 

 leaves  invariance. 

    

   is invertible. 

ie  is 1-1. 

As β runs over ,  runs over . 

Take . By (iii)  leaves  invariant. 

If  then   

For ,  =  

                                                =  

 =  = . 

  = . 

 As β runs over ,  runs over  and 

   

 leaves  invariant.   

Consider the hyper plane . 

Suppose . Then  for some . 

 . 

 =   

                        =  

                        =  

                        =  

                        =   

                        =  

                        =  

                        =  =   

  =  

  fixes the hyper plane  point wise. 

 =  =  

  leaves  invariant, fixes  point 

wise and stands  to -  

  =  

 =  

                              =  

                              =                  (1) 

 =  

                           =        (2) 

By (1)  (2) 

 =  
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Bases and weyl chambers: 

Definition:  

Let  be a base of root system. Let β be any root. 

Let . Then the height of β relative to  

denoted by ht(β) is defined by  





 kht )(
,     

β is called a positive root if . β is called a 

negative root if . 

Lemma: 

Let α, βE we can say that βα if only if either α-β 

is the sum of positive roots or α=β. This relation  

defined above is a partial order on E. 

 

Proof: 

(i) For all α, α= α.  αα.  

       is reflexive. 

(ii) Let αβ and βα 

              αβ  either (β-α) is the sum of positive   

              roots or β=α. 

              βα  either (α -β) is the sum of positive  

              roots or α=β. 

              0=(β-α)+ (α -β) is the sum of positive  

              roots. 

               (β-α)=0  (α -β)=0 is the sum of positive   

              roots. 

              ie β=α  α=-β. 

               is antisymmetric. 

(iii) Let Let αβ and β. 

        αβ  either (β-α) is the sum of positive   

        roots or β=α. 

               β  either ( -β) is the sum of positive   

               roots or =β. 

case (i): Suppose β-α  -β are sum of positive roots 

             Then (β-α)+ (-β) is also a sum of positive  

             roots. 

             ie - α is a sum of positive root. α . 

case(ii): Suppose β-α is a sum of positive root and  

             =β, then  - α is a sum of positive root. 

            α . 

case(iii):Suppose β=α  -β are sum of positive root, 

              then - α is a sum of positive root. α . 

case(iv): Suppose β=α  =β, then = α. α . 

               is transitive.   is a partial order of E. 

Note: 

Any positive root is a linear combination of simple 

roots with nonnegative coefficient. Hence sum 

positive roots are also sum of simple roots with 

nonnegative coefficient. Therefore the above 

definition of partial order can be replaced by the 

following definition. 

Definition: 

For any two elements α, βE we can say that βα if 

only if either α-β is the sum of simple root or α=β. 

Lemma II: 

Let  be a base of. 

Let α, β be such that αβ. 

Then (i) (α -β)0 and (ii) (α -β) is not a root.  

Proof: 

Suppose (α -β)0. Then  is a base of  and α, β.  

 α β are linearly independent. 

 α-β. 

 α β are non-proportional roots with (α -β)0. 

 (α -β) is a root. 

 α +(-1)β is a root. Which is contradiction to each 

root of β can be written as with 

integral coefficients. 

 our assumption that (α -β)0 is wrong. 

ie  (α -β)0 and (α -β) is not a root. 

Definition: 

For each vector E, we define 

. The set of all roots 

lying in the positive side of the hyper plane 

orthogonal to . 

Theorem: 

Let E be regular then the set of all 

indecomposable roots in   is a base of  and 

every base is obtained in this way. 

Proof: 

Let  be regular and  be the set of all 

indecomposable roots in . 

Step I: 

We claim that each root in   is a non negative 

-linear combination of elements of   

Suppose not 

Then there exists an  , which cannot be 

written as a non negative -linear combination of 

elements of   

Choose an α such that  is as small as possible. 

Suppose . Then α=1.α is a non negative  

linear combination of elements of   

This is a contradiction.   

  is decomposable. 

Let  where  

  

 implies  

Also  and  

 by the choice of  ,  must be non-negative 

-linear combination of elements of   

  is a non-negative -linear combination 

of elements of   ie   is a non-negative -linear 

combination of elements of  . 

This is a contradiction. 

 each root of  is a non-negative -linear 

combination of elements of  . 

Hence our claim. 

Step II: 

If  then   unless . 
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Suppose , .  

Suppose . Then Let  be non-

proportional roots. If  (ie if the angle 

between  is acute) then  is a root. If 

  then  is a root.)  is a root. 

Suppose  . 

 Then  .  

Which is contradiction to .  

 .  

 either  or  is in . 

case (i) Suppose   .  

           Then . 

            is decomposable.  

          . This is contradiction. 

case(ii) Suppose   .  

            Then . 

             is decomposable.  .  

           This is contradiction. 

            

         Thus if  then   unless  

         . 

Step III: 

 is linearly independent. 

Suppose  where    

Separate the indices  for which  and those 

for which . 

Then we can write this as  where 

  .  

The set of   and  are distinct. 

    

Let  

  

           (by 

stepII) 

  

 . 

  

   =  

               (3)  

.    α 

Also  for each α. 

           (4) 

By (3) and (4) we get . This is contradiction. 

Similarly   β 

  is linearly independent. 

Step IV: 

 is a base of  

Now  is regular. 

  

. Then     or  

but not both, 

Suppose  

Them by step I,    where  ,  

,  >0. 

Suppose  

Then   and so by step I,  

where ,  , . 

  where   , . 

Thus in either case, we have  where  

  such that  are all non- negative 

or non-positive. 

Each   is a linear combination of 

elements of . 

  spans  

 spans E. 

 every element of E is a linear combination of 

elements of  . 

Let . Then 


r  

   












  trx  

   

   












  tr  

 

  
 













  tr  

= a linear combination of elements of   

  spans E 

  spans  

  spans E 

  is a linear combination of elements of E 

  is a base of  

So,  has a basis  

Step V: 

Each base of  is of the form  

Let  be a base of  

Then  be the projection of  on the sub space  

spanned by all basis vectors except  

  

Each  is a hyper plane of E containing . 

Let ,  

  

  

Hence   such that  

Let . Then i

n

i

ik  



1

,    
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           =


n

i

ik
1

 if the ’s are positive  

                                     if the ’s are negative 

 .     

    

  is regular. 

Let . Then  is a positive root. 

Let i

n

i

ik  



1

 where   ,       

                                        

  

   

  

  

Let . Then . 

Let  where  are all non- negative or 

non-positive. 

  

Suppose all the   are non- positive 

Then  

 . This is contradiction for 

 

 all the  are non- negative. 

  

  

  

Hence  

Let . Then   for some i. 

=  

   for the coefficient are all non-negative. 

   

  

Let us suppose that   α is decomposable. 

Then ,  

Let ,    

Then  ,   

 any element α of  is a linear combination of 

other elements of   which is a contradiction for    

is a linearly independent. 

 α is indecomposable 

  

    

But Card  = n = Card  
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