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Abstract- The purpose of this paper is to 

introduce a novel numerical method  called a 

legedre-collocation method to solve the Volterra 

integral equations of second kind. We also provide 

error analysis for the proposed method, which 

indicates that the numerical errors decay 

exponentially provided that the kernel function and 

the source function are sufficiently smooth. 

Numerical results confirm theoretical prediction of 

the exponential rate of convergence. 
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I. Introduction- Consider Volterra integral 

equations of  the second kind 

                   

         
0

,  t ,   0,  
x

y x f x K x y t dt t T  
                                                    -------- (1.1) 

where the source function f  and the kernel 

function K  are given and y  is an unknown 

function.  There are many numerical approximation 

methods available to solve Volterra integral 

equations of type (1.1) such as product integration 

method, Runge-Kutta method etc. But the  problem 

is that the solution obtained by Numerical 

approximation method may not be as close to the 

theoretical solution as expected.  

In 1995, H.C.Tain [6] applied spectral 

approximation method for Volterra integral 

equations. However no theoretical analysis is 

provided to justify the high accuracy of the solution 

obtained.  In 1996, G.N.Elnagar and M.Kazemi [4] 

have applied Chebyshev spectral method to solve 

non-linear Volterra-Hammerstein integral equations. 

In 2006, H. Fujiwara [7] applied a spectral 

approximation method to solve Fredholm integral 

equations of the first kind under multiple precision 

arithmetic.    

 Our interest in this chapter is to apply spectral 

approximation methods to obtain highly accurate 

solutions of equations of type (1.1).  

 Fredholm integral equations behave more or less 

like boundary value problems. Spectral 

approximation methods can give highly accurate 

solutions for boundary value problems. Hence to 

solve Fredholm integral equations one can  directly 

apply spectral approximation methods to obtain 

highly accurate solutions. Whereas Volterra integral 

equations  of the second kind  behave like  initial 

value problems. Therefore it was not popular to 

apply spectral approximation methods to initial 

value problems. The main reason for this is that the 

functions involved in Volterra integral equations are 

local functions. Whereas the spectral methods use 

global basis functions.  

The spectral methods for Volterra integral equations 

may be different from  those for the standard initial 

value problems in the sense that the former requires 

storage of all values at grid points while the latter 

requires information only at a fixed number of 

previous grid points .   

One of the main difficulties is  how to implement the 

spectral methods to Volterra integral equations so 

that an accurate solution can be eventually obtained.  

The storage requirement for equation (1.1) also 

makes use of global basis functions of  spectral 

methods more acceptable. 

In this paper we apply Legendre collocation method, 

which is a spectral method, to solve equation (1.1). 

We also make rigorous error analysis. The error 

indicates 

that the solution obtained by Legendre collocation 

method decreases exponentially provided that the 

source function and the kernel function are 

sufficiently smooth. 

 

 II.  Legendre-Collocation Method 

 

Consider Volterra integral equations of the second 

kind 

         
0

,  ,   t 0,  T .
t

u t g t R t s u s ds  
                                                                     --  (2.1) 

where the source function g  and the kernel function 

R  are given and u  is an unknown function . For 

ease of analysis we will transform the problem 

 2.1  to an equivalent problem defined in  1,1 . 

More specifically we use the change of variable 

                       
 1 2

 ,  1,
2

T x t
t x

T


    

to rewrite the Volterra equation (2.1) as follows  

        
 1

2
20

1 ,  ,

T x
Ty x f x R x s y s ds



  
        1,1x 

                                     
-----   (2.2) 
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and 

         2 2
1 ,    f 1 .T Ty x u x x g x   

Furthermore, to transfer the  interval 
 1

0,
2

T x 
 
 

 to 

the interval  1,  ,x  we make a linear 

transformation 
 1

,
2

T t
s


    t 1,  .x   

Then, Equation (2.2)  becomes 

         
1

,  t ,    1,  1 ,
x

y x f x K x y t dt x


   
                                                       --    (2.3) 

where 

     ,  t 1 ,  1 .
2 2 2

T T T
K x R x t

 
   

   
To solve equation (2.3) we apply Legendre 

collocation method. For this we choose Legendre  

Gauss  or  Gauss-Radau or  Gauss-Lobatto points 

 
0

N
i i

x


  as collocation points. Assume that 

equation (2.3) holds at each ix , then 

       
1

,  t ,   0 .
ix

i i iy x f x K x y t dt i N


                                                                                                                                         

                                                         -----(2.4) 

To  obtaining high order accuracy for small values 

of ,ix  there is little information available for 

 .y x   To overcome this difficulty, we will 

transfer the integral interval  1,  ix  to the fixed 

interval  1,  1  and then make use of some 

appropriate quadrature rule. More precisely, we first 

make a simple linear transformation: 

                    

 
1 1

,  , 1 1.
2 2

x x
t x   

 
                                                                                                                                                                                                                                                      

                                                        -----(2.5) 

Then (2.4) becomes  

         
1

1

1
,  t ,  ,  ,  

2

i
i i i i i

x
y x f x K x x y t x d  




  

 

 0 .i N                                      -- (2.6)

 Using   1N  - point Gauss quadrature formula 

relative to the Legendre weights  k  gives  

         
0

1
,  t ,  ,  ,   0 ,

2

N
i

i i i i j i j j
j

x
y x f x K x x y t x i N  




   

                                                                    --  (2.7)
 

where the set  
0

N

j j



 coincide with the 

collocation points  
0

.
N

i i
x


 

We now need to represent   ,  i jy t x   using   

iy , 0 ,i N    the values at all the grid points.  

To this end, we expand y using Lagrange 

interpolation  polynomials, 

 i.e,    
0

,
N

k k
k

y y F 


                    -- (2.8) 

where kF  is the -thk  Lagrange basis function.  

Combining (2.8) and (2.7) yields  

       
0 0

1
,  t , , , 

2

N N
i

i i j i i p j i p p

j p

x
y f x y K x x F t x  

 

 
  
 
 

 

  

0 .i N 

                                       

----   (2.9) 

 

Remark 2.1  

 It is seen from the numerical scheme (2.9) 

that to compute the approximation to  ,iy x  we 

require the entire solution information of 

  
0

N
i i

y x


 and the semi-local information of 

   
0

,  t , .
i

i i j
j

K x x 


 Here 

 1 ,  .i j it x x     This is different with the 

collocation methods or product integration methods 

which use the semi-local information of both the 

solution and K, namely   
0

N
i i

y x


   and   

  ,  i jK x  ,   where 1 j ix    are some 

collocation points.  It is because of this difference 

that we will be able to obtain, as to be demonstrated 

in the next section, a spectral rate of accuracy 

instead of an algebraic order of accuracy for the 

proposed scheme (2.9). 

 

Implementation  of the spectral collocation 

algorithm  

 Writing     0 1,  y ,  ...,  y
T

N NY y    and   

     0 1,  ,  ...,  .
T

N Nf f x f x f x     

 We can obtain an equation of the matrix form: 

       .N N NY AY f         -- (2.10) 

where the entries in the matrix A is given by  
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     , 

0

1
,  t ,  ,  .

2

N
i

i j i i p j i p p
p

x
A K x x F t x  




         

We now discuss an efficient computation of 

  ,  .j i pF t x   The idea is to express  jF t  

in terms of the Legendre functions: 

              , 

0

 ,
N

j p j p
p

F t L t


                                                                      

                                               ----(2.11) 

where , p j  is called the discrete polynomial 

coefficients of .jF   

The inverse relation is (see, e.g., [4]): 

      ,  

0

1 N

p j j i p i i
p i

F x L x 




 
 

 p j j

p

L x 


                        -- (2.12) 

where 

           
12 1

2
0

,
p

N

p i i
i

L x p 




     for            

p N                                         --   (2.13) 

and 

1
1

2
N N


 

  
 

 for the Gauss and Gauss-

Radau formulas, and 
2

N
N

   for the Gauss-

Lobatto formula.  It follows from (2.11) and (2.12) 

that  

 
   

0

 N
p j p j

j
pp

L x L t
F t






      which, 

together with the known recurrence formulas for 

 pL t  can be used to evaluate   ,  j i pF t x   

in an efficient way.  

 

 III. Some Useful Lemmas  
In this section, a convergence analysis for the 

numerical schemes for the Volterra equation (2.3) 

will be provided. The goal is to show that the rate of 

convergence is exponential, i.e., the spectral 

accuracy can be obtained for the proposed spectral 

approximations. 

 

 Lemma  3.1 ([2], p.290. Integration Error from 

Gauss Quadrature).  Assume that a  1 -N  point 

Gauss, or Gauss-Radau, or Gauss-Lobatto 

quadrature formula relative to the Legendre 

weight is used to integrate the product ,y  

where  my H I  with  : 1,  1I    for 

some 1m   and .NP   Then there exists a 

constant C independent of N such that  

         2
1

, 1
,  ,m

Hm N I L IN
y x x dx y CN y  


 

                                   

                    --   (3.1) 

where     

 
 

   2

1

2
2

, 
min , 1

,

L I

m
j

Hm N I
j m N

y y

 

 
 
 
 
 



                                                             --  (3.2) 

                  
0

,  ,
i

N

i iN
j

y y x x  


                                                                                

                                             ---(3.3) 
Lemma 3.2  ([2], p.289, Estimates for the 

Interpolation Error).  Let  my H I  and 

demote NI y  its interpolation polynomial 

associated with the  1 -N  point Gauss, or 

Gauss-Radau, or Gauss Lobatto Points  
0

,
N

i i
x


 

namely   

    
0

.
N

N i i
i

I y y x F x



                                                                  

                                                            ---(3.4) 

Then the following estimates hold 

 
   2 , 

,m
N Hm N IL I

y I y CN y                                                            

                                                                    ----(3.5)  

   

1
2

2
, 

,  1 .l

l m

N Hm N IH I
y I y CN y l m

 
   

                                                                   --   (3.6) 

Lemma 3.3 ([3] Lebesgue Constant for the 

Legendre Series).   Let  jF x  is the -thN  

Lagrange interpolation polynomials associated with 

the Gauss, or  Gauss-Radau, or Gauss Lobatto points.   

Then  

 
 

3
1 1

2
2 2

0
1, 1 0

2
max 1 ,

N

j
x j

F x N B O N




  

 
    
 
 



                                                              --  (3.7) 
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where 0B  is a bounded constant. 

Lemma 3.4 (Gronwall Inequality).  If a non-

negative integrable function  E t  satisfies  

     1 1
,    1 1,

s
E s C E t ds G s s


                                                  

                                                          -----(3.8) 

where  G s  is an integrable function, then  

      
,   1.

p pL I L I
E C G p                                                           

                                                            -----(3.9) 

 

IV.  Convergence Analysis 
In this section, we will carry our convergence 

analysis in both 
2L  and L spaces. 

4.1  Error Analysis in 
2

L  Space 

Theorem 4.1 Let  y be the exact solution of the 

Volterra integral equation (2.3) and assume that 

    
0

,
N

N
j j

j

Y x y F x



        --   (4.1) 

where jy  is given by (2.9) and  jF x  is the 

-thj  Lagrange basis function associated with the 

Gauss-points  
0

.
N

i i
x


  If  ,my H I  then for 

1,m 
 

 L I
y Y 

  
   2

1

2
, 1 1

max ,  t ,  
m

L IHm N Ix
CN K x x y



  


 

 , 
,m

Hm N I
CN y      -- (4.2) 

provided that N is sufficiently large, where 

 ,  it x 
 
is defined by (2.5) and C is a constant 

independent of  N. 

Proof :  
 Following the notations of (3.3), we 

consider 

          , t
0

,  t ,  ,  t ,  ,  
N

j j jN
j

K x t K x x t x    



 
       

                        

                                                                  ---(4.3) 

Then  the numerical scheme (2.9) can be written as  

              

      
, t

1
,  t ,  Y ,

2

Ni
i i i

N

x
y f x K x t


 

                                                                       ----(4.4) 

   

                                                                                                                                     

which gives  

 

       
1

1

1
,  t ,  ,  

2

Ni
i i i i i

x
y f x K x x Y t x d  




  

 

      1 ,   1 .i if x J x i N             --   (4.5) 

where  

       
1

1 1

1
,  t ,  ,  

2

Nx
J x K x x Y t x d  




 

    
, t

1
,  t ,  Y .

2

N

N

x
K x t


                                                                           

                                                                  --   (4.6) 

Using Lemma 3.1 gives  

      

    
   21 , 

,  t ,  .m N

Hm N I L I
J x CN K x x Y

                                                                  --   (4.7) 

It follows from (4.5), (2.4) and (2.6) that  

   

   
1

,  t
ix N

i iy K x Y t dt


 
   1 ,   1 .i if x J x i N            --   (4.8) 

Multiplying  jF x  on both sides of (4.8) and 

summing up from 0 to N yield  

     
1

,  t
xN

NY x I K x y t dt


 
  

 

   
1

,  t
x

NI K x e t dt


 
  

   

     1 ,N NI f I J                --   (4.9) 

where 
NY  is defined by (4.1), the interpolation 

operator NI  is defined by (3.4),  

e  denotes the error function, 

 i.e.          

       ,    1,  1 .Ne x Y x y x x                                                               

--   (4.10) 

It follows from (4.9) and (2.3) that  

       
1

,  t
xN

N NY x I f y I K x e t dt


 
    

 

   1 ,N NI f I J   

which gives  

          11
,  t .

x

N N Ne x y I y x I K x e t dt I J


 
    

 
                                                   --   (4.11) 

Consequently, 

     
1

,  t
x

e x K x e t dt


 
     1 2 3 ,NI J J x J x        --   (4.12) 
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where  

    2 ,NJ I y x y x   

       3 1 1
,  t ,  t .

x x

NJ K x e t dt I K x e t dt
 

 
   

  
                                                                    --      (4.13) 

It follows from the Gronwall inequality (see Lemma 

3.4) with 2p   that  

   
     2 2 221 2 3 .NL I L I L IL I

e C I J J J    
 

                                                          --    (4.14) 

Using (4.7) and Lemma 3.3 gives  

 
 

  
   

 2 21 , 
0

max ,  t ,  max
N

m N
N jL I Hm N I L Ix I x I j

I J CN K x x Y F x

  

 

  
   2

1

2
, 

max ,  t ,  
m

N

Hm N I L Ix I
CN K x x Y






  
      2 2

1

2
, 

max ,  t ,  .
m

L I L IHm N Ix I
CN K x x e y




 

                                                                  

-- -   (4.15) 

Using the 
2 -L error bounds for the interpolation 

polynomials (i.e., Lemma 3.2) gives  

         
   22 , 

,m
L I Hm N I

J CN y                                                                                                                                                           

                                                          -----(4.16) 

and, by letting 1m   in (3.5), yields 

         
 

2
2

1
3 1

,  ,  t
x

xL I
L I

J CN K x x e x K x e t dt


  

 

        
 2

1 .
L I

CN e                           ----(4.17) 

The above estimates, together with (4.14), yield 

    
 

2

1

2
, 

max ,  t ,  
m

L I Hm N Ix I
e CN K x x






    2 2L I L I
e y  

            

   2
1

, 
,m

Hm N I L I
CN y CN e                  

                                                         ----(4.18) 

which leads to (4.2) provided that N is sufficiently 

large.  This completes the proof of this theorem. 

4.2  Error Analysis in L


 Space 

 Below we will extend the 
2L  space error estimate 

in the last subsection to the L space.   The key 

technique is to use an extrapolation between 
2L  

space and 
1H  space. 

Theorem 4.2 Let y  be the exact solution of the 

Volterra integral equation (2.3) and 
NY  be defined 

by (4.1).  If  ,my H I
then for   

1,m 
 

 
N

L I
y Y 

  
   2

1

2

,
max , ,.

m

L IHm N Ix I
CN K x t x y






 

1

2
, 

,
m

Hm N I
CN y


                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            

                                                   ---(4.19)
 

provided that N is sufficiently large, where 

 ,  it x   is defined by (2.5) and C is a constant 

independent of  N. 
Proof :   Following the same procedure as in the 

proof of Theorem 4.1 we have  

           1 2 31
,  t ,

x

Ne x K x e t dt I J J x J x


                   

                                                        -----(4.20) 

where  1 2,   NI J J  and 3J
 
are defined by (4.6) 

and (4.13), respectively.  It follows from the 

Gronwall inequality (see Lemma 3.4) that  

   
     1 2 3 .NL I L I L IL I

e C I J J J  
    
           

 

                                               ----(4.21) 

Using (4.7) and Lemma 3.3 gives  

 
 1N L I

I J 

 

  
   

 2, 
0

max ,  t ,  max
N

m N
jHm N I L Ix I x I j

CN K x x Y F x

  

 

  
   2

1

2
, 

max ,  t ,  
m

N

Hm N I L Ix I
CN K x x Y






  
      2

1

2
, 

max ,  t ,  .
m

L I L IHm N Ix I
CN K x x e y




 

    

                                                                  ---(4.22) 

Using the inequality in the Sobolev Space ([4], p.496)  

     

1
2

2 1

1 1

2 2
, , , 

1
2 ,   

L a b L a b H a bb a
  

 
  

 

 1 ,  .u H a b       --  (4.23) 

and Lemma 3.2, we have 
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   2 NL I L I
J y I y    

   2

1 1

2 2

H IL I
N NC y I y y I y


  

 

3

4
, 

.
m

Hm N I
CN y


          --   (4.24) 

It follows again from Lemma 3.2 and (4.17) that 

   22
1

3 L IL I
J CN e

 
1 ,

L I
CN e 

              --   (4.25) 

and 

         
 

1
2

1

2
3 1

,  ,  t
x

xH I
L I

J CN K x x e x K x e t dt


  

  
   2

1 1

2 2 .
L I L I

CN e CN e       ----(4.26) 

Using the Sobolev inequality (4.23) gives 

  
   

1

4
3 .

L IL I
J CN e 



  ---(4.27) 

The desired estimate (4.19) follows from the above 

estimates and (4.21). 

 

 V. Numerical Experiments 

 

Without lose of generality, we will only use the 

Legendre-Gauss-Lobatto points (i.e., the zeros of 

   21 Nx L x )  as the collocation points.  Our 

numerical evidences show that the other two kinds 

of Legendre-Gauss points produce results with 

similar accuracy.  For the Legendre-Gauss-Lobatto 

points, the corresponding weights are         

   
22

2
,   0 .

1
H

j

j N j

j N

x L x

   
 
 

  

 

Example 5.1  

Our first example is concerned with an one-

dimensional Volterra integral equation of the second 

kind. More precisely, consider the Volterra integral 

equation (2.3) with           

 ,  t ,xtK x e

      4 44 1
 f .

4

x x xxx e e e
x

  
  

     
The corresponding exact solution is given by 

  4 .xy x e  

Table 5.1:  Example 5.1:  The maximum point-wise 

error 

 

N 

Error 

6 

3.66e-

01 

8 

1.88e-

02 

10 

6.57e-

04 

12 

1.65e-

05 

14 

3.11e-

07 

N 

Error 

16 

4.57e-

09 

18 

5.37e-

11 

20 

5.19e-

13 

22 

5.68e-

14 

24 

4.26e-

14 

 

 
 

Fig.  5.1  Example 5.1:  maximum error for the 

1 D linear Volterra integral     equation 

We use the numerical scheme(2.9) Numerical errors 

with several values of N are displayed in Table (5.1) 

and Fig (5.1).  These results indicate that the desired 

spectral accuracy is obtained. 

In practice, many Volterra integral equations are 

usually nonlinear.  However, the nonlinearity adds 

rather little to the difficulty of obtaining a numerical 

solution. The methods described above remain 

applicable.  Although in this work our convergence 

theory does not cover the non linear case, it should 

be quite straightforward to establish a convergence 

result similar to Theorem 4.1 provided that the 

kernel k in (5.1) is Lipschitz continuous with its 

third argument.  A similar technique for the 

collocation methods to the nonlinear Volterra 

integral equations was used by Brunner and Tang [9].  

Below we will provide a numerical example using 

the spectral technique proposed in this work. 

For the nonlinear Volterra integral equations of the 

second kind in the form 

         
1

,  t,  y ,    1,  1 ,
x

y x f x K x t dt x


                                                  

                                                          ----(5.1) 

we can design a spectral collocation method similar 

to the linear case.  More precisely, we assume that 

(2.10) holds at the Legendre collocation points and 

transform the interval  1,  x  and  1,  1 .   This 

gives  

 

         
1

1

1
,  t ,  ,  ,  

2

i
i i i i i

x
y x f x K x x y t x d  




  

0 .i N                              
  

-- (5.2) 
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Similar to (2.9) we obtain  

      
0 0

1
,  t ,  , ,  ,

2

N N
i

i i i i j p p i j j

j p

x
y f x k x x y F t x  

 

 
  
 
 

                                                                               

  0 .i N            --     (5.3) 

This is a nonlinear problem. On the other hand, the 

numerical scheme (5.3) leads to a nonlinear system 

for  
1

,
N

i i
y


and a proper solver for the nonlinear 

system  (e.g., Newton method)  should be used.  In 

our computations, we just use a simple Jacobi type 

iteration method to solve the nonlinear system, 

which takes about 5 to 6 iterations. The numerical 

results can be seen from table 5.2 and Fig 5.2. Again 

the exponential rate of convergence is observed for 

the nonlinear problem. 

 

Example 5.2  
Our second example is about a nonlinear problem in 

one-dimension. Consider the Volterra integral 

equation (5.1) with  

  

 
 

 2

2

1
36 cos6

2 1 36

x x xf x e e e x 


  
  



 

26 sin6 36 sin3 ,x x xe x e e e x       

    3 2,  t,  y .x tK x t e y t  

The exact solution is   sin3 .xy x e x  

Table 5.2:  Example 5.2:  The maximum point-wise 

error. 

N 

Error 

6 

2.33e-

02 

8 

7.22e-

04 

10 

1.82e-

05 

12 

3.15e-

07 

14 

4.06e-

09 

N 

Error 

16 

3.98e-

11 

18 

3.05e-

13 

20 

3.86e-

15 

22 

3.33e-

15 

24 

3.98e-

15 

 

   
 

Fig  -  5.2  Example 5.2:  maximum error for the 

1 D  nonlinear Volterra integral equation.  

 

5.3  Two - Dimensional Extension 

Consider a nonlinear Volterra integral equation of 

the second kind in 2D :
 

      
1 1

,  , ,  ,  t,  s,  y ,  s ,    
x z

y x z f x z K x y t dtds
 

   

   
2

,  z 1,  1 .x                  --  (5.4) 

Letting the above equation hold at the Legendre 

point pairs  , ,i jx z  and then using the linear 

transformation and tricks used in 1D  case yields    

 , ,

11

2 2

ji
i j i j

xx
y f x z


 

         
0 0

,  z ,  t ,  ,  t ,  ,  y ,  ,  t ,  
N N

i j i p i l i p i l p l
p l

k x x x t x x     

 

 

                                                           ----(5.5) 

The values of     ,  ,  t ,  i p i ly t x x   can 

also be approximated by , i jy  with the use of the 

relationship between the Lagrange interpolation 

polynomials associate with the Legendre collocation 

points, as demonstrated in the one-dimensional case.  

It is expected that the analysis techniques proposed 

in this work can be used to extend Theorem 4.1 to 

obtain a spectral convergence rate for (5.5). 

 

Example 5.3 

The third example is concerned with a 2D -  

nonlinear Volterra integral equation with second 

kind.  Consider the equation (5.4) with 

     
1

, sin 4 2 sin 2 4
16

x zf x z e x z z
   

    sin 4 2 sin6 sin 2 .x x z       

      ,  z,  t,  s,  y ,  s cos 2 ,  s ,x zK x t e t s y t   

This problem has a unique solution 

   ,  z sin 2 .y x x z   

Table 5.3:  Example 5.3:The maximum point-wise 

error for the 2D - nonlinear  problem. 

 

 

N 

Error 

5 

6.21e-

04 

6 

2.02e-

04 

7 

8.16e-

06 

8 

1.78e-

06 

9 

7.77e-

08 

N 

Error 

 

12 

1.73e-

10 

14 

2.89e-

13 

16 

1.30e-

14 

18 

2.94e-

15 

20 

1.67e-

15 
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 Fig-5.3.  Example 5.3: Maximum error for the 2D - 

non - linear Volterra integral equation. 

Table 5.3 and Fig 5.3  present the maximum point 

wise errors with difference values of  N.  

Again, it is observed clearly that the errors decay 

exponentially. 

 

VI. Conclusions  
 

This paper proposes a numerical method for the 

Volterra type integral equations based on spectral 

methods. 

 The most important contribution of this work is that 

we are able to demonstrate rigorously that the errors 

of the spectral approximations decay exponentially.  

More precisely it is proved that if the kernel function 

and solutions of the underlying Volterra integral 

equations are smooth, then errors obtained by the 

proposed spectral method decay exponentially which 

is a desired feature for a spectral method. 

This work seems to be the first successful numerical 

method for the Volterra integral equations having 

exponential rate of convergence, which can be 

demonstrated theoretically and numerically.  The 

tools used in establishing the error estimates include 

the standard estimates for the quadrature rule and the 

2 -L  error bounds for the interpolation function. 
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