Odd Graceful Labeling of Some New Type of Graphs

Sushant Kumar Rout ${ }^{1}$, Debdas Mishra ${ }^{2}$ and Purna chandra Nayak ${ }^{3}$
${ }^{1}$ Department of Mathematics
College of Engineering and Technologies, Bhubaneswar,India 751003
${ }^{2}$ Department of Mathematics
C. V. Raman College of Engineering, Bhubaneswar,India 752054
${ }^{3}$ Department of Mathematics
Bhadrak (Autonomous) College, Bhadrak,India 756019

Abstract

In this paper some new type of odd graceful graphs are investigated. We prove that the graph obtained by joining a cycle C_{8} with some star graphs $S_{l, r}$ keeping one vertex and three vertices gap between pair of vertices of the cycle admits odd graceful labelling. We also prove that the graph obtained by joining a cycle C_{12} with some star graphs $S_{l, r}$ keeping two, three and five vertices gap between pair of vertices of the cycle admits odd graceful labelling. We observed that $C_{8} \odot S_{1, r}^{4}$ with one vertex gap, $C_{8} \odot S_{1, r}^{2}$ three vertices gap between pair of vertices of the cycle C_{8} are odd graceful, $C_{12} \odot S_{1, r}^{6}$ with one vertex gap, $C_{12} \odot S_{l, r}^{4}$ two vertices gap, $C_{12} \odot S^{3}{ }_{1, r}$ with three vertices gap and $C_{12} \odot S_{1, r}^{2}$ with five vertices gap between pair of vertices are odd graceful graphs.

Keywords: Graceful labeling, graceful graphs, odd graceful graphs, star graphs.

AMS Subject Classification (2010):05C78

1. Introduction

All graphs in this paper are finite, simple and undirected. Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ denotes a graph with n number of vertices and q number of edges. Here the terminology and notation we use are followed by Harary[1]. The symbols V and E will denote the vertex set and edge set of a graph G respectively. The cardinality of the vertex set is called the order of G denoted by p . The cardinality of the edge set is called the size of G denoted by q. A graph with p vertices and q edges is called a (p, q) graph. In

1985, Lo[2] introduced the notion of edge-graceful graphs. Sin-Min Lee, Kuo-Jye Chen and YungChin Wang[3] introduced the k-edge-graceful graphs. Here we introduce odd graceful graphs. We provide some definitions and other information which are required for the present investigations.

Definition 1.1 If all the vertices of a graph are assigned some values subject to certain conditions then it is known as graph labelling

Definition 1.2 A simple graph $G(m, n)$ with m vertices and n edges is graceful if there is a labeling l of its vertices with distinct integers from the set $\{0,1,2, \ldots, n\}$ So that the induced edge labeling e defined by $e(u v)=\mid l(u)-l(v)) \mid$ assigns each edge a different label. A graph which admits graceful labeling is called a graceful graph.

Definition 1.3 A graph $G=(V, E)$ with q edges is said to admit odd graceful labeling if $f: V \rightarrow\{0$, $1,2, \ldots \ldots, 2 q-1\}$ such that the induced function $f *$: $E \rightarrow\{1,3, \ldots, 2 q-1\}$ defined as $f *(a b)=|f(a)-f(b)|$ is bijective. A graph which admits odd graceful labeling is called an odd graceful graph.

Definition 1.4 A Star graph is a tree consisting of one vertex adjacent to all others. We denote here a star graph as $\mathbf{S}_{\mathbf{1}, \mathrm{r}}$ where r number of pendant vertices are connected to one vertex.

The study of graph labeling and graceful graphs was introduced by Rosa[4].(Gnanajothi R.B,1991)[5] introduced the concept of odd graceful graphs and she has proved many results. Kathiresan K.M.,2008[6] has discussed odd gracefulness of ladders and graphs obtained fromthem by subdividing each step exactly once. Vaidya.S.K. e-tal 2010[7]proved the odd gracefulness of joining of even cycle with path and cycle sharing a common edge. Vaidya S.K. e-tal 2013[8] proved the odd gracefulness of splitting graph and the shadow graph of bister. Barrientos Christian 2009[9] discussed the odd gracefulness of Trees of Diameter 5.For detailed survey on graph labeling and related results we refer to Gallian J.A.,2015[10]

Main results:

Theorem-1: Graph obtained by joining the cycle $\overline{\mathrm{C}_{8}}$ with $\mathbf{C}_{\mathbf{8}} \odot \mathbf{S}_{\mathbf{1 , 1}}{ }^{\mathbf{1}}$ with one vertex gap four star
graphs $S_{1, \mathrm{r}}$ keeping one vertex gap between pair of vertices of the cycle is odd graceful.

Proof: Let $a_{1}, a_{2}, \ldots . . a_{8}$ be the vertices of the cycle C_{8} and a_{i}^{j} are pendant vertices of the star graph $\mathrm{S}_{1, \mathrm{r}}$ adjacent to a_{i}, for $\mathrm{j}=1,2, \ldots$. We define the vertex labelling as
$f: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1,2, \ldots, 2 \mathrm{q}-1$, where q is the total number of edges $\}$ as follows

Case-1: If ' i ' is odd, we define $f(x)=\left\{i-1\right.$, if $\left.x=a_{i}\right\}$

Let r-pendant vertices of the star graph $S_{1, r}$ are connected to each a_{i} keeping one vertex gap between pair of vertices of the cycle C_{8}.

Case-2: If ' i ' is even,We define $f\left(a_{i}\right)=2 q-i(r+1)+1$, if $i<8 \quad$ and
$f\left(a_{8}\right)=1$
$f\left(a_{i}^{(j)}\right)=(2 q-1)-(r+1)(i-1)-2(j-1)$
except $i=7, j=r$ for $f\left(a_{7}^{r}\right)=3$. The vertex function defined induces a bijective edge function $f^{*}: E(G) \rightarrow\{1,3,5, \ldots .2 q-1\}$ Thus f is an edge graceful labeling of $G=\mathbf{C}_{\mathbf{8}} \odot \mathbf{S}_{\mathbf{1 , r}}$. Hence $\mathbf{C}_{\mathbf{8}}$ $\boldsymbol{\Theta} \mathbf{S}_{1, \mathrm{r}}^{4}$ is an odd graceful graph . Example:

$\mathbf{C}_{8} \odot \mathbf{S}^{4}{ }_{1,1}$ with one vertex gap

$\mathbf{C}_{\mathbf{8}} \odot \mathbf{S}_{1,2}^{4}$ with one vertex gap is odd graceful

$\mathbf{C}_{8} \boldsymbol{\Theta} \mathbf{S}_{\mathbf{1 , r}}^{\mathbf{r}}$ with one vertex gap

$\mathbf{C}_{12} \mathbf{\odot} \mathbf{S}_{1,6}^{4}$ with one vertex gap is odd graceful

Theorem-2:

Graph obtained by joining the cycle C_{8} with three star graphs $S_{1, r}$ keeping three vertices gap between pair of vertices of the cycle is odd graceful.

Proof: Let $a_{1}, a_{2}, \ldots . . a_{8}$ be the vertices of the cycle $\mathrm{C}_{8} . a_{i}^{j}$ are pendant vertices of the star graph $\mathrm{S}_{1, \mathrm{r}}$ adjacent to a_{i},for $\mathrm{j}=1,2, \ldots \mathrm{r}$. We define the vertex labeling as
$f: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1,2, \ldots, 2 \mathrm{q}-1$, where q is the total number of edges $\}$ as follows

Case-1: If ' i ' is odd
We define $f(x)=\left\{i-1\right.$, if $\left.x=a_{i}\right\}$
Let r-pendant vertices of the star graph $S_{1, \mathrm{r}}$ are connected to each a_{i} keeping three vertices gap between pair of vertices of the cycle

Case-2: If ' i ' is even
We define $f\left(a_{i}\right)=2 q-i r-2 i+3, i \neq 8$ and $f\left(a_{8}\right)=1$
$f\left(a_{i}^{(j)}\right)= \begin{cases}(2 q-1)-(r+1)(i-1)-2(j-1) \text { if } i=1 & \text { Thus } f \text { is an edge graceful labeling of } \mathbf{G}=\mathbf{C}_{8} \mathbf{\Theta} \\ (q-1)-2(j-1) \text { if } i=5, j \neq r & \mathbf{S}_{\mathbf{1}, \mathrm{r}} . \text { Hence } \mathbf{C}_{\mathbf{8}} \boldsymbol{\odot} \mathbf{S}_{\mathbf{1}, \mathrm{r}} \text { is an odd graceful graph. } \\ 7 \text { if } i=5, j=r & \text { Example: }\end{cases}$

The vertex function defined induces a bijective edge function $f^{*}: E(G) \rightarrow\{1,3,5, \ldots . .2 q-1\}$ Thus f is an edge graceful labeling of $\mathrm{G}=\mathbf{C}_{\mathbf{8}} \boldsymbol{\Theta}$ $\mathbf{S}_{\mathbf{1 , r}}^{\mathbf{2}}$. Hence $\mathbf{C}_{\mathbf{8}} \odot \mathbf{S}_{\mathbf{1 , r}}^{\mathbf{r}}$ is an odd graceful graph.

Example:

$\mathbf{C}_{8} \boldsymbol{\Theta} \mathbf{S}_{\mathbf{1 , 6}}$ with three vertices gap is odd graceful

Theorem-3:

Graph obtained by joining the cycle_ C_{8} with a star graph $\mathrm{S}_{1, \mathrm{r}}$ is odd graceful.

Proof: Let $a_{1}, a_{2}, \ldots . . a_{8}$ be the vertices of the cycle $\mathrm{C}_{8} . a_{1}^{j}$ are pendant vertices of the star graph $\mathrm{S}_{1, \mathrm{r}}$ adjacent to a_{1},for $\mathrm{j}=1,2, \ldots \mathrm{r}$. We define the vertex labeling as
$f: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1,2, \ldots, 2 \mathrm{q}-1$, where q is the total number of edges $\}$ as follows

Case-1: If ' i ' is odd
We define $f(x)=\left\{i-1\right.$, if $\left.x=a_{i}\right\}$
Let r-pendant vertices of the star $\mathrm{S}_{1, \mathrm{r}}$ are connected to a_{1}

Case-2: If ' i ' is even
We define $f\left(a_{i}\right)=2 q-i+1, i \neq 8 \quad$ and $f\left(a_{8}\right)=1$
$f\left(a_{1}^{j}\right)=2 j+1, j \neq 2$ and $1 \leq j \leq r+1$
The vertex function defined induces a bijective edge function $f^{*}: E(G) \rightarrow\{1,3,5, \ldots . .2 q-1\}$

$\mathbf{C}_{\mathbf{8}} \odot \mathrm{S}_{\mathbf{1 , 6}}$ is odd graceful.

Theorem-4

$C_{12} \odot S_{1, r}^{6} \quad($ where $r>4)$ with one vertex gap between pair of vertices of the cycle C_{12} is an odd graceful graph.

Proof: Let $a_{1}, a_{2}, \ldots . . a_{12}$ be the vertices of the cycle $\mathrm{C}_{12} . a_{i}^{j}$ are pendant vertices of the star graph $\mathrm{S}_{1, \mathrm{r}}$ adjacent to a_{i},for $\mathrm{j}=1,2, \ldots \mathrm{r}$. We define the vertex labelling as
$f: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1,2, \ldots ., 2 \mathrm{q}-1$, where q is the total number of edges $\}$ as follows

Case-1: If ' i ' is odd,
We define $f\left(a_{i}\right)=i-1$
Case-2: If i is even

We define $f\left(a_{i}\right)=2 q-i(r+1)+1$ and
$f\left(a_{2 n+1}^{j}\right)=10+2 j+1, j \neq 4$ and $1 \leq j \leq r+1, n=4$
The vertex function defined induces a bijective edge function $f^{*}: E(G) \rightarrow\{1,3,5, \ldots . .2 q-1\}$

Thus f is a graceful labeling of $\mathrm{G}=\mathbf{C}_{\mathbf{1 2}} \boldsymbol{\odot} \mathbf{S}^{\mathbf{6}}{ }_{1, \mathrm{r}}$.Hence $\mathbf{C}_{\mathbf{1 2}} \boldsymbol{O} \mathbf{S}_{\mathbf{1 , r}}^{\mathbf{r}}$ is an odd graceful graph.

Example:

$\mathbf{C}_{\mathbf{1 2}} \boldsymbol{\odot} \mathbf{S}_{1,5}^{\mathbf{6}}$ is odd graceful.
Theorem-5: $\mathrm{C}_{12} \odot \mathrm{~S}_{1, \mathrm{r}}^{4}$ with two vertices gap between pair of vertices of the cycle C_{12} is an odd graceful graph.

Proof: Let $a_{1}, a_{2}, \ldots . . a_{12}$ be the vertices of the cycle $\mathrm{C}_{12} . a_{i}^{j}$ are pendant vertices of the star graph $\mathrm{S}_{1, \mathrm{r}}$ adjacent to a_{i},for $\mathrm{j}=1,2, \ldots \mathrm{r}$. We define the vertex labeling as
$f: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1,2, \ldots ., 2 \mathrm{q}-1$, where q is the total number of edges $\}$ as follows

Case-1: If ' i ' is odd
We define $f\left(a_{i}\right)=i-1$

If ' i ' is even
We define $f\left(a_{i}\right)=2 q-2 i+1, i \neq 12$ and $f\left(a_{12}\right)=1$
$f\left(a_{2 n+1}^{j}\right)=2 q-2 n(r+1)-2 j+1$, except $n=4$

For $r=1$ i.e. if only one pendant vertex is attached to each vertex of the cyclic graph C_{12} keeping two vertices gap in between pair of vertices.

We define

$$
f\left(a_{i}^{(j)}=\left\{\begin{array}{cl}
2 q-1, & \text { for } i=1 \\
2 q-3 i, & \text { for } i=4,7 \\
q+2, & \text { for } i=10
\end{array}\right.\right.
$$

For $\mathbf{r}=\mathbf{2}$ i.e. if only two pendant vertices are attached to each vertex of the cyclic graph \mathbf{C}_{12}
keeping two vertices gap in between pair of vertices.

We define

$$
f\left(a_{i}^{(j)}\right)=\left\{\begin{array}{l}
2 q-2 j+1, \text { for } i=1 \\
q+2 j-4, \text { for } i=4 \\
q-4 j+1, \text { for } i=7 \\
q+2 j \quad, \text { for } i=10
\end{array}\right.
$$

For $\mathbf{r}>2$ i.e. if more than two pendant vertices are attached to each vertex of the cyclic graph C_{12} keeping two vertices gap in between pair of ${ }^{\text {vertices }}{ }_{W e}$
define

$$
f\left(a_{i}^{(j)}\right)= \begin{cases}2 q-2 j+1, & \text { for } i=1 \\ 4 i+2 j, & \text { for } i=4 \\ 2 r+2 j+9, & \text { for } i=7 \\ i+4 r+2 j, & \text { for } i=10\end{cases}
$$

The vertex function defined induces a bijective edge function $f^{*}: E(G) \rightarrow\{1,3,5, \ldots . .2 q-1\}$

Thus f is an edge graceful labeling of $\mathrm{G}=\mathbf{C}_{\mathbf{1 2}} \boldsymbol{\Theta}$ $\mathbf{S}_{\mathbf{1 , r}}^{\mathbf{r}}$. Hence $\mathbf{C}_{\mathbf{1 2}} \mathbf{\rho} \mathbf{S}_{\mathbf{1 , r}}^{\mathbf{r}}$ is an odd graceful graph.

Examples:

$\mathbf{C}_{\mathbf{1 2}} \boldsymbol{\Theta} \mathbf{S}_{\mathbf{1 , 1}}$ with two vertices gap is odd graceful

$\mathbf{C}_{\mathbf{1 2}} \bigcirc \mathbf{S}_{\mathbf{1 , 2}}^{\mathbf{2}}$ with two vertices gap is odd graceful

$\mathbf{C}_{\mathbf{1 2}} \odot \mathbf{S}_{\mathbf{1 , r}}^{\mathbf{r}}$ with two vertices gap is odd graceful

$\mathbf{C}_{12} \odot \mathbf{S}_{\mathbf{1 , 6}}$ with two vertices gap is odd graceful

Theorem-6

$\mathrm{C}_{12} \odot \mathrm{~S}_{1, \mathrm{r}}^{3}$ with three vertices gap between pair of vertices of the cycle C_{12} is an odd graceful graph.

Proof: Let $a_{1}, a_{2}, \ldots . . a_{8}$ be the vertices of the cycle $\mathrm{C}_{8} . a_{i}^{j}$ are pendant vertices of the star graph $\mathrm{S}_{1, \mathrm{r}}$ adjacent to a_{i},for $\mathrm{j}=1,2, \ldots \mathrm{r}$. We define the vertex labeling as
$f^{*}: V(G) \rightarrow\{0,1,2, \ldots .2 q-1\}$, where q is the total number of edges, as follows

If ' i ' is odd, we define $f\left(a_{i}\right)=i-1$
If ' i ' is even, we define
$f\left(a_{i}\right)=\left[\begin{array}{c}2 q-2 r-i+1, i \leq 4 \\ 2 q-4 r-i+1,4 \leq i \leq 8\end{array}\right.$
$f\left(a_{10}\right)=15$ and $f\left(a_{12}\right)=1$
and

$$
f\left(a_{i}^{(j)}\right)=\left\{\begin{array}{lr}
2 q-2 j+1, & \text { for } i=1 \text { and } 1 \leq j \leq r \\
2 q-2 r-2 j-3, & \text { for } i=5 \text { and } 1 \leq j \leq r \\
2 q-4 r-2 j-7, & \text { for } i=9 \text { and } 1 \leq j<r \\
11, & \text { for } i=9 \text { and } j=r
\end{array}\right.
$$

The vertex function defined induces a bijective edge function $f^{*}: E(G) \rightarrow\{1,3,5, \ldots .2 q-1\}$

Thus f is an edge graceful labeling of $\mathrm{G}=\mathrm{C}_{8} \mathrm{UP}_{\mathrm{r}}$.Hence $\mathrm{C}_{8} U \mathrm{P}_{\mathrm{r}}$ is an odd graceful graph.

$\mathbf{C}_{12} \odot \mathbf{S}_{1, \mathrm{r}}^{4}$ with three vertices gap

$\mathbf{C}_{12} \odot \mathbf{S}_{1,5}^{4}$ with three vertices gap is odd graceful

Theorem-7

$\mathrm{C}_{12} \odot \mathrm{~S}_{1, \mathrm{r}}^{4}$ with five vertices gap between pair of vertices of the cycle C_{12} is an odd graceful graph.

Proof: Let $a_{1}, a_{2}, \ldots . . a_{12}$ be the vertices of the cycle C_{12} and a_{i}^{j} are pendant vertices adjacent to a_{i}, for $\mathrm{j}=1,2, \ldots \mathrm{r}$. If q is the total number of edges of the graph G, we define the vertex labeling as
$f: V(G) \rightarrow\{0,1,2, \ldots \ldots .2 q-1\}$ as follows

We
define $f\left(a_{i}\right)=\left\{\begin{array}{c}i-1, \quad \text { if } i \text { is odd } \\ 2 q-i+1, \text { if } i \text { is even and } i<12\end{array}\right.$

Case-1: For r=1 (only one pendant vertex is attached to each vertex of the cyclic graph C_{12} keeping five vertices gap in between pair of vertices).

We define $f\left(a_{12}\right)=3$

$$
f\left(a_{1}^{1}\right)=1
$$

$$
f\left(a_{7}^{1}\right)=11
$$

Case-2 : For $\mathbf{r}=2$ (two pendant vertices are attached to each vertex of the cyclic graph C_{12} keeping five vertices gap in between pair of vertices).

We define $f\left(a_{12}\right)=1$
$f\left(a_{1}^{j}\right)=2 j+1$, for $1 \leq j \leq 2$,
$f\left(a_{7}^{j}\right)=\left\{\begin{array}{l}13 \text { for } j=1 \\ 17 \text { for } j=2\end{array}\right.$
Case-3: For $\mathbf{r}>2$ (if more than two pendant vertices are attached to each vertex of the cyclic graph C_{12} keeping five vertices gap in between pair of vertices)

We define $f\left(a_{12}\right)=1$

$$
f\left(a_{1}^{j}\right)=\left\{\begin{array}{cc}
2 j+1, & \text { for } j<4 \\
2 j+3, & \text { for } j \geq 4
\end{array}\right.
$$

$f\left(a_{7}^{j}\right)=q+2 j-3$, for $1 \leq j \leq r$
The vertex function defined above induces a bijective edge function

$$
f^{*}: E(G) \rightarrow\{1,3,5, \ldots . .2 q-1\}
$$

Thus f is an edge graceful labeling of $\mathrm{G}=\mathbf{C}_{\mathbf{1 2}} \mathbf{\Theta}$ $\mathbf{S}_{\mathbf{1 , r}}^{\mathbf{r}}$.Hence $\mathbf{C}_{\mathbf{1 2}} \boldsymbol{\odot} \mathbf{S}_{\mathbf{1 , r}}^{\mathbf{r}}$ is an odd edge graceful graph.

$\mathbf{C}_{12} \odot \mathbf{S}_{1, \mathrm{r}}^{4}$ with five vertices gap

$\mathbf{C}_{12} \odot \mathbf{S}_{1,5}^{4}$ with five vertices gap is odd graceful
Theorem-8: Graph obtained by joining the cycle C_{12} with a star graph $\mathrm{S}_{1, \mathrm{r}}$ is odd graceful.

Proof: Let $a_{1}, a_{2}, \ldots . . a_{8}$ be the vertices of the cycle C_{12} and a_{1}^{j} are pendant vertices of the star graph $\mathrm{S}_{1, \mathrm{r}}$ adjacent to a_{1},for $\mathrm{j}=1,2, \ldots \mathrm{r}$. We define the vertex labeling as
$f: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1,2, \ldots, 2 \mathrm{q}-1$, where q is the total number of edges $\}$ as follows

Case-1: If ' i ' is odd
We define $f\left(a_{i}\right)=i-1$
Let r-pendant vertices of the star $\mathrm{S}_{1, \mathrm{r}}$ are connected to each a_{1}

Case-2: If ' i ' is even
We define $f\left(a_{i}\right)=2 q-i+1, i \neq 12$ and $f\left(a_{12}\right)=1$
$f\left(a_{1}^{j}\right)=2 j+1, j \neq 4$ and $1 \leq j \leq r+1$
The vertex function defined induces a bijective edge function $f^{*}: E(G) \rightarrow\{1,3,5, \ldots .2 q-1\}$
.Thus f is an edge graceful labeling of $\mathrm{G}=\mathbf{C}_{\mathbf{1 2}} \mathbf{\odot}$ $\mathbf{S}_{\mathbf{1 , r}}$. Hence $\mathbf{C}_{\mathbf{1 2}} \odot \mathbf{S}_{\mathbf{1}, \mathrm{r}}$ is an odd graceful graph.

Examples:

$\mathbf{C}_{12} \odot S_{1,6}$ is odd graceful.
Application: Graph labeling has wide application in coding theory, communication networks, optimal circuits layouts and graph decomposition problems.

References:

[1]. F. Harary, "Graph Theory" - Addison Wesley, Reading Mass (1972).
[2]. S. Lo, On edge-graceful labelings of graphs, Congr. Numer., 50 (1985), pp. 231-241.
[3]. Sin-Min Lee, Kuo-Jye Chen and Yung-Chin Wang, On the edge-graceful spectra of cycles with one chord and dumbbell graphs .
[4] Rosa. A., 1967,"On certain valuation of the vertices of a graph theory of graphs". Gordon and Breach.N.Y and Dunod Paris, pp. 349-355.
[5] R.B .Gnanajothi, Topics in graph theory,Ph.D Thesis,Madurai Kamraj University,Madurai,(1991).
[6] K.M. Kathiresan,Some classes of odd graceful graphs, ANJAC Journal of Sciences, 7(1)(2008).5-10
[7] S K Vaidya, Lekha Bijukumar, "Odd Graceful Labeling of Some New Graphs" Published by Canadian Center of Science and Education, Vol. 4, No. 10; October 2010, pp. 65-70.
[8] S K Vaidya, N H Shah., "Graceful and odd Graceful Labeling of Some graphs" Published byInternational Journal of Mathematics and Soft Computing, Vol. 3, No.1, 2013, pp. 61-68.
[9] CHRISTIAN BARRIENTOS.,"ODD-GRACEFUL LABELINGS OF TREES OF DIAMETER 5" AKCE J.Graphs.Combin.,6,No 2 (2009),pp. 307-313
[10]. J.A. Gallian, A dynamic survey of graph labeling, The electronic journal of Combinatorics, 16 (2015).

