Eulerian integral associated with product of two multivariable I-functions, a class

 of polynomials and the multivariable \bar{I}-function defined by Nambisan IIF.Y. AY ANT ${ }^{1}$

1 Teacher in High School, France

ABSTRACT

The present paper is evaluated a new Eulerian integral associated with the product of two multivariable I-functions defined by Prasad [1] a generalized Lauricella function, a class of multivariable polynomials and Multivariable I-function defined by Nambisan [2] with general arguments . We will study the case concerning the multivariable H-function defined by Srivastava et al [7] and Srivastava-Daoust polynomial [4].

Keywords: Eulerian integral, multivariable I-function, generalized Lauricella function of several variables, multivariable H -function, generalized hypergeometric function, class of polynomials

2010 Mathematics Subject Classification. 33C60, 82C31

1. Introduction

In this paper, we evaluate a new Eulerian integral of most general characters associated with the products of two multivariable I-functions defined by Prasad [1] , a expansion serie of multivariable I-function defined by Nambisan et al [2] and a class of polynomials with general arguments.
First time, we define the multivariable \bar{I}-function by :
$I\left(z_{1}^{\prime \prime \prime}, \cdots, z_{v}^{\prime \prime \prime}\right)=\bar{I}_{P, Q: P_{1}, Q_{1} ; \cdots ; P_{v}, Q_{v}}^{0, N_{1} M_{1}, N_{1} ; \cdots ; M_{v}, N_{v}}\left(\begin{array}{c}\mathrm{z}_{1}^{\prime \prime \prime} \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{z}_{v}^{\prime \prime \prime}\end{array}\right) \quad\left(\mathrm{a}_{j} ; \alpha_{j}^{(1)}, \cdots, \alpha_{j}^{(v)} ; A_{j}\right)_{N+1, P}:$

$$
\left.\begin{array}{c}
\left(\mathrm{c}_{j}^{(1)}, \gamma_{j}^{(1)} ; 1\right)_{1, N_{1}},\left(c_{j}^{(1)}, \gamma_{j}^{(1)} ; C_{j}^{(1)}\right)_{N_{1}+1, P_{1}} ; \cdots ;\left(c_{j}^{(v)}, \gamma_{j}^{(v)} ; 1\right)_{1, N_{u}},\left(c_{j}^{(v)}, \gamma_{j}^{(v)} ; C_{j}^{(v)}\right)_{N_{v}+1, P_{v}} \\
\left(\mathrm{~d}_{j}^{(1)}, \delta_{j}^{(1)} ; 1\right)_{1, M_{1}},\left(d_{j}^{(1)}, \delta_{j}^{(1)} ; D_{j}^{(1)}\right)_{M_{1}+1, Q_{1}} ; \cdots ;\left(d_{j}^{(v)}, \delta_{j}^{(v)} ; 1\right)_{1, M_{v}},\left(d_{j}^{(v)}, \delta_{j}^{(v)} ; D_{j}^{(v)}\right)_{M_{v}+1, Q_{v}} \tag{1.1}
\end{array}\right)
$$

$$
\begin{equation*}
=\frac{1}{(2 \pi \omega)^{v}} \int_{L_{1}} \cdots \int_{L_{v}} \phi_{1}\left(s_{1}, \cdots, s_{v}\right) \prod_{i=1}^{v} \xi_{i}^{\prime}\left(s_{i}\right) z_{i}^{\prime \prime s_{i}} \mathrm{~d} s_{1} \cdots \mathrm{~d} s_{v} \tag{1.2}
\end{equation*}
$$

where $\phi_{1}\left(s_{1}, \cdots, s_{v}\right), \xi_{i}^{\prime}\left(s_{i}\right), i=1, \cdots, v$ are given by :
$\phi_{1}\left(s_{1}, \cdots, s_{v}\right)=\frac{1}{\prod_{j=N+1}^{P} \Gamma^{A_{j}}\left(a_{j}-\sum_{i=1}^{v} \alpha_{j}^{(i)} s_{j}\right) \prod_{j=M+1}^{Q} \Gamma^{B_{j}}\left(1-b_{j}+\sum_{i=1}^{v} \beta_{j}^{(i)} s_{j}\right)}$
$\xi_{i}^{\prime}\left(s_{i}\right)=\frac{\prod_{j=1}^{N_{i}} \Gamma\left(1-c_{j}^{(i)}+\gamma_{j}^{(i)} s_{i}\right) \prod_{j=1}^{M_{i}} \Gamma\left(d_{j}^{(i)}-\delta_{j}^{(i)} s_{i}\right)}{\prod_{j=N_{i}+1}^{P_{i}+1} \Gamma_{j}^{(i)}\left(c_{j}^{(i)}-\gamma_{j}^{(i)} s_{i}\right) \prod_{j=M_{i}+1}^{Q_{i}} \Gamma_{j}^{D_{j}^{(i)}}\left(1-d_{j}^{(i)}+\delta_{j}^{(i)} s_{i}\right)}$
$i=1, \cdots, v$

Serie representation

If $z_{i}^{\prime \prime \prime} \neq 0 ; i=1, \cdots, v$
$\delta_{h_{i}}^{(i)}\left(d_{j}^{(i)}+k_{i}\right) \neq \delta_{j}^{(i)}\left(\delta_{h_{i}}^{(i)}+\eta_{i}\right)$ for $j \neq h_{i}, j, h_{i}=1, \cdots, m_{i}(i=1, \cdots, v), k_{i}, \eta_{i}=0,1,2, \cdots(i=1, \cdots, v)$, then
$\bar{I}\left(z_{1}^{\prime \prime \prime}, \cdots, z_{v}^{\prime \prime \prime}\right)=\sum_{h_{1}=1}^{M_{1}} \cdots \sum_{h_{v}=1}^{M_{v}} \sum_{k_{1}=0}^{\infty} \cdots \sum_{k_{v}=0}^{\infty}\left[\phi_{1}\left(\frac{d h_{1}^{(1)}+k_{1}}{\delta h_{1}^{(1)}}, \cdots, \frac{d h_{v}^{(v)}+k_{v}}{\delta h_{v}^{(v)}}\right)\right] \prod_{j \neq h_{i}=1}^{r} \frac{(-)^{k_{i}}}{\delta h_{i}^{(i)} k_{i}!} z_{i}^{\prime \prime \prime} \frac{d h_{i}+k_{i}}{\delta h_{i}}$

This result can be proved on computing the residues at the poles :
$s_{i}=\frac{d h_{i}^{(i)}+k_{i}}{\delta h_{i}^{(i)}},\left(h_{i}=1, \cdots, m_{i}, k_{i}=0,1,2, \cdots\right)$ for $i=1, \cdots, v$
We may establish the the asymptotic expansion in the following convenient form :
$\bar{I}\left(z_{1}^{\prime \prime \prime}, \cdots, z_{v}^{\prime \prime \prime}\right)=0\left(\left|z_{1}^{\prime \prime \prime}\right|^{\alpha_{1}}, \cdots,\left|z_{v}^{\prime \prime \prime}\right|^{\alpha_{v}}\right), \max \left(\left|z_{1}^{\prime \prime \prime}\right|, \cdots,\left|z_{v}^{\prime \prime \prime}\right|\right) \rightarrow 0$
$\bar{I}\left(z_{1}^{\prime \prime \prime}, \cdots, z_{v}^{\prime \prime \prime}\right)=0\left(\left|z_{1}^{\prime \prime \prime}\right|^{\beta_{1}}, \cdots,\left|z_{v}^{\prime \prime \prime}\right|^{\beta_{u}}\right), \min \left(\left|z_{1}^{\prime \prime \prime}\right|, \cdots,\left|z_{v}^{\prime \prime \prime}\right|\right) \rightarrow \infty$
where $k=1, \cdots, v: \alpha_{k}=\min \left[\operatorname{Re}\left(d_{j}^{(k)} / \delta_{j}^{(k)}\right)\right], j=1, \cdots, m_{k}$ and

$$
\beta_{k}=\max \left[\operatorname{Re}\left(\left(c_{j}^{(k)}-1\right) / \gamma_{j}^{(k)}\right)\right], j=1, \cdots, n_{k}
$$

We will note $\eta_{h_{i}, k_{i}}=\frac{d h_{i}^{(i)}+k_{i}}{\delta h_{i}},\left(h_{i}=1, \cdots, m_{i}, k_{i}=0,1,2, \cdots\right)$ for $i=1, \cdots, v$

The multivariable I-function of r-variables is defined in term of multiple Mellin-Barnes type integral :
$I\left(z_{1}, \cdots, z_{r}\right)=I_{p_{2}, q_{2}, p_{3}, q_{3} ; \cdots ; p_{r}, q_{r}: p^{(1)}, q^{(1)} ; \cdots ; p^{(r)}, q^{(r)}}^{0, n_{2} ; 0, n_{3} \cdots ; 0, n_{r}: m^{(1)}, n^{(1)} ; \cdots ; m^{(r)}, n^{(r)}}\left(\begin{array}{c}\mathrm{z}_{1} \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{z}_{r}\end{array}\right)\left(\mathrm{a}_{2 j} ; \alpha_{2 j}^{\prime}, \alpha_{2 j}^{\prime \prime}\right)_{1, p_{2}} ; \cdots ;$
$\left.\begin{array}{l}\left(\mathrm{a}_{r j} ; \alpha_{r j}^{(1)}, \cdots, \alpha_{r j}^{(r)}\right)_{1, p_{r}}:\left(a_{j}^{(1)}, \alpha_{j}^{(1)}\right)_{1, p^{(1)}} ; \cdots ;\left(a_{j}^{(r)}, \alpha_{j}^{(r)}\right)_{1, p^{(r)}} \\ \left(\mathrm{b}_{r j} ; \beta_{r j}^{(1)}, \cdots, \beta_{r j}^{(r)}\right)_{1, q_{r}}:\left(b_{j}^{(1)}, \beta_{j}^{(1)}\right)_{1, q^{(1)}} ; \cdots ;\left(b_{j}^{(r)}, \beta_{j}^{(r)}\right)_{1, q^{(r)}}\end{array}\right)$

$$
\begin{equation*}
=\frac{1}{(2 \pi \omega)^{r}} \int_{L_{1}} \cdots \int_{L_{r}} \phi\left(s_{1}, \cdots, s_{r}\right) \prod_{i=1}^{r} \theta_{i}\left(s_{i}\right) z_{i}^{s_{i}} \mathrm{~d} s_{1} \cdots \mathrm{~d} s_{r} \tag{1.9}
\end{equation*}
$$

The defined integral of the above function, the existence and convergence conditions, see Y,N Prasad [1]. Throughout the present document, we assume that the existence and convergence conditions of the multivariable I-function.

The condition for absolute convergence of multiple Mellin-Barnes type contour (1.9) can be obtained by extension of the corresponding conditions for multivariable H -function given by as :
$\left|\arg z_{i}\right|<\frac{1}{2} \Omega_{i} \pi$, where

$$
\begin{align*}
& \Omega_{i}=\sum_{k=1}^{n^{(i)}} \alpha_{k}^{(i)}-\sum_{k=n^{(i)}+1}^{p^{(i)}} \alpha_{k}^{(i)}+\sum_{k=1}^{m^{(i)}} \beta_{k}^{(i)}-\sum_{k=m^{(i)}+1}^{q^{(i)}} \beta_{k}^{(i)}+\left(\sum_{k=1}^{n_{2}} \alpha_{2 k}^{(i)}-\sum_{k=n_{2}+1}^{p_{2}} \alpha_{2 k}^{(i)}\right)+\cdots+ \\
& \left(\sum_{k=1}^{n_{s}} \alpha_{s k}^{(i)}-\sum_{k=n_{s}+1}^{p_{s}} \alpha_{s k}^{(i)}\right)-\left(\sum_{k=1}^{q_{2}} \beta_{2 k}^{(i)}+\sum_{k=1}^{q_{3}} \beta_{3 k}^{(i)}+\cdots+\sum_{k=1}^{q_{s}} \beta_{s k}^{(i)}\right) \tag{1.10}
\end{align*}
$$

where $i=1, \cdots, r$
The complex numbers z_{i} are not zero.Throughout this document, we assume the existence and absolute convergence conditions of the multivariable I-function.

We may establish the the asymptotic expansion in the following convenient form :
$I\left(z_{1}, \cdots, z_{r}\right)=0\left(\left|z_{1}\right|^{\alpha_{1}}, \cdots,\left|z_{r}\right|^{\alpha_{r}}\right), \max \left(\left|z_{1}\right|, \cdots,\left|z_{r}\right|\right) \rightarrow 0$
$I\left(z_{1}, \cdots, z_{r}\right)=0\left(\left|z_{1}\right|^{\beta_{1}}, \cdots,\left|z_{r}\right|^{\beta_{r}}\right), \min \left(\left|z_{1}\right|, \cdots,\left|z_{r}\right|\right) \rightarrow \infty$
where $k=1, \cdots, r: \alpha_{k}^{\prime}=\min \left[\operatorname{Re}\left(b_{j}^{(k)} / \beta_{j}^{(k)}\right)\right], j=1, \cdots, m_{k}$ and

$$
\beta_{k}^{\prime}=\max \left[\operatorname{Re}\left(\left(a_{j}^{(k)}-1\right) / \alpha_{j}^{(k)}\right)\right], j=1, \cdots, n_{k}
$$

Condider a second multivariable I-function defined by Prasad [1]

$$
\left.\begin{array}{l}
\left(\mathrm{a}_{s j}^{\prime} ; \alpha_{s j}^{\prime(1)}, \cdots, \alpha_{s j}^{\prime}(s)\right)_{1, p_{s}^{\prime}}:\left(a_{j}^{\prime(1)}, \alpha_{j}^{\prime(1)}\right)_{1, p^{\prime(1)}} ; \cdots ;\left(a_{j}^{\prime(s)}, \alpha_{j}^{\prime(s)}\right)_{1, p^{\prime(s)}} \tag{1.11}\\
\left(\mathrm{b}_{s j}^{\prime} ; \beta_{s j}^{\prime(1)}, \cdots, \beta_{s j}^{\prime(s)}\right)_{1, q_{s}^{\prime}}:\left(b_{j}^{\prime(1)}, \beta_{j}^{\prime(1)}\right)_{1, q^{\prime(1)}} ; \cdots ;\left(b_{j}^{\prime(s)}, \beta_{j}^{\prime(s)}\right)_{1, q^{\prime(s)}}
\end{array}\right)
$$

$$
\begin{equation*}
=\frac{1}{(2 \pi \omega)^{s}} \int_{L_{1}} \cdots \int_{L_{s}} \psi\left(t_{1}, \cdots, t_{s}\right) \prod_{i=1}^{s} \xi_{i}\left(t_{i}\right) z_{i}^{t_{i}} \mathrm{~d} t_{1} \cdots \mathrm{~d} t_{s} \tag{1.12}
\end{equation*}
$$

The defined integral of the above function, the existence and convergence conditions, see Y,N Prasad [1]. Throughout the present document, we assume that the existence and convergence conditions of the multivariable I-function.

The condition for absolute convergence of multiple Mellin-Barnes type contour (1.9) can be obtained by extension of the corresponding conditions for multivariable H -function given by as :
where $\left|\arg z_{i}^{\prime}\right|<\frac{1}{2} \Omega_{i}^{\prime} \pi$,

$$
\Omega_{i}^{\prime}=\sum_{k=1}^{n^{\prime(i)}} \alpha_{k}^{\prime(i)}-\sum_{k=n^{\prime(i)}+1}^{p^{\prime(i)}} \alpha_{k}^{\prime(i)}+\sum_{k=1}^{m^{\prime(i)}} \beta_{k}^{\prime(i)}-\sum_{k=m^{(i)}+1}^{q^{\prime(i)}} \beta_{k}^{\prime(i)}+\left(\sum_{k=1}^{n_{2}^{\prime}} \alpha_{2 k}^{\prime}{ }^{(i)}-\sum_{k=n_{2}+1}^{p_{2}^{\prime}} \alpha_{2 k}^{\prime}{ }^{(i)}\right)
$$

where $i=1, \cdots, s$
The complex numbers z_{i} are not zero.Throughout this document, we assume the existence and absolute convergence conditions of the multivariable I-function.

We may establish the the asymptotic expansion in the following convenient form :
$I\left(z_{1}^{\prime}, \cdots, z_{s}^{\prime}\right)=0\left(\left|z_{1}^{\prime}\right|^{\alpha_{1}^{\prime}}, \cdots,\left|z_{s}^{\prime}\right|^{\alpha_{s}^{\prime}}\right), \max \left(\left|z_{1}^{\prime}\right|, \cdots,\left|z_{s}^{\prime}\right|\right) \rightarrow 0$
$I\left(z_{1}^{\prime}, \cdots, z_{s}^{\prime}\right)=0\left(\left|z_{1}^{\prime}\right|^{\beta_{1}^{\prime}}, \cdots,\left|z_{s}^{\prime}\right|^{\beta_{s}^{\prime}}\right), \min \left(\left|z_{1}^{\prime}\right|, \cdots,\left|z_{s}^{\prime}\right|\right) \rightarrow \infty$
where $k=1, \cdots, z: \alpha_{k}^{\prime \prime}=\min \left[\operatorname{Re}\left(b_{j}^{\prime(k)} / \beta_{j}^{(k)}\right)\right], j=1, \cdots, m_{k}^{\prime}$ and

$$
\beta_{k}^{\prime \prime}=\max \left[\operatorname{Re}\left(\left(a_{j}^{\prime(k)}-1\right) / \alpha_{j}^{\prime(k)}\right)\right], j=1, \cdots, n_{k}^{\prime}
$$

where $k=1, \cdots, z: \alpha_{k}^{\prime \prime}=\min \left[\operatorname{Re}\left(b_{j}^{\prime(k)} / \beta_{j}^{(k)}\right)\right], j=1, \cdots, m_{k}^{\prime}$ and

$$
\beta_{k}^{\prime \prime}=\max \left[\operatorname{Re}\left(\left(a_{j}^{\prime(k)}-1\right) / \alpha_{j}^{\prime(k)}\right)\right], j=1, \cdots, n_{k}^{\prime}
$$

Srivastava and Garg [5] introduced and defined a general class of multivariable polynomials as follows

$$
\begin{equation*}
S_{L}^{h_{1}, \cdots, h_{u}}\left[z_{1}, \cdots, z_{u}\right]=\sum_{R_{1}, \cdots, R_{u}=0}^{h_{1} R_{1}+\cdots h_{u} R_{u} \leqslant L}(-L)_{h_{1} R_{1}+\cdots+h_{u} R_{u}} B\left(E ; R_{1}, \cdots, R_{u}\right) \frac{z_{1}^{R_{1}} \cdots z_{u}^{R_{u}}}{R_{1}!\cdots R_{u}!} \tag{1.14}
\end{equation*}
$$

The coefficients are $B\left[E ; R_{1}, \ldots, R_{v}\right]$ arbitrary constants, real or complex.

2. Integral representation of generalized Lauricella function of several variables

The following generalized hypergeometric function in terms of multiple contour integrals is also required [6 ,page 39 eq .30]
$\frac{\prod_{j=1}^{P} \Gamma\left(A_{j}\right)}{\prod_{j=1}^{Q} \Gamma\left(B_{j}\right)}{ }^{2} F_{Q}\left[\left(A_{P}\right) ;\left(B_{Q}\right) ;-\left(x_{1}+\cdots+x_{r}\right)\right]$
$=\frac{1}{(2 \pi \omega)^{r}} \int_{L_{1}} \cdots \int_{L_{r}} \frac{\prod_{j=1}^{P} \Gamma\left(A_{j}+s_{1}+\cdots+s_{r}\right)}{\prod_{j=1}^{Q} \Gamma\left(B_{j}+s_{1}+\cdots+s_{r}\right)} \Gamma\left(-s_{1}\right) \cdots \Gamma\left(-s_{r}\right) x_{1}^{s_{1}} \cdots x_{r}^{s_{r}} \mathrm{~d} s_{1} \cdots \mathrm{~d} s_{r}$
where the contours are of Barnes type with indentations, if necessary, to ensure that the poles of $\Gamma\left(A_{j}+s_{1}+\cdots+s_{r}\right)$ are separated from those of $\Gamma\left(-s_{j}\right), j=1, \cdots, r$. The above result (1.23) can be easily established by an appeal to the calculus of residues by calculating the residues at the poles of $\Gamma\left(-s_{j}\right), j=1, \cdots, r$

In order to evaluate a number of integrals of multivariable I-function, we first establish the formula
$\int_{a}^{b}(t-a)^{\alpha-1}(b-t)^{\beta-1} \prod_{j=1}^{l}\left[1-\tau_{j}(t-a)^{h_{i}}\right]^{-\lambda_{j}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{\sigma_{j}} \mathrm{~d} t=(b-a)^{\alpha+\beta-1} B(\alpha, \beta) \prod_{j=1}^{k}\left(a f_{j}+g_{j}\right)^{\sigma_{j}}$

$\left.; \tau_{1}(b-a)^{h_{1}}, \cdots, \tau_{l}(b-a)^{h_{l}},-\frac{(b-a) f_{1}}{a f_{1}+g_{1}}, \cdots,-\frac{(b-a) f_{k}}{a f_{k}+g_{k}}\right)$
where $a, b \in \mathbb{R}(a<b), \alpha, \beta, f_{i}, g_{i}, \sigma_{i}, \tau_{j}, h_{j} \in \mathbb{C}, \lambda_{j} \in \mathbb{R}^{+}(i=1, \cdots, k ; j=1, \cdots, l)$
$\min (\operatorname{Re}(\alpha), \operatorname{Re}(\beta))>0, \max _{1 \leqslant j \leqslant l}\left\{\left|\tau_{j}(b-a)^{h_{j}}\right|\right\}<1, \max _{1 \leqslant j \leqslant k}\left\{\left|\frac{(b-a) f_{i}}{a f_{i}+g_{i}}\right|\right\}<1$,
and $F_{1: 0, \cdots, 0 ; 0, \cdots, 0}^{1: 1, \cdots, 1 ; 1 \cdots, 1}$ is a particular case of the generalized Lauricella function introduced by Srivastava-Daoust[3,page 454] given by :

$\left.; \tau_{1}(b-a)^{h_{1}}, \cdots, \tau_{l}(b-a)^{h_{l}},-\frac{(b-a) f_{1}}{a f_{1}+g_{1}}, \cdots,-\frac{(b-a) f_{k}}{a f_{k}+g_{k}}\right)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \prod_{j=1}^{l} \Gamma\left(\lambda_{j}\right) \prod_{j=1}^{k} \Gamma\left(-\sigma_{j}\right)}$
$\frac{1}{(2 \pi \omega)^{l+k}} \int_{L_{1}} \cdots \int_{L_{l+k}} \frac{\Gamma\left(\alpha+\sum_{j=1}^{l} h_{j} s_{j}+\sum_{j=1}^{k} s_{l+j}\right)}{\Gamma\left(\alpha+\beta+\sum_{j=1}^{l} h_{j} s_{j}+\sum_{j=1}^{k} s_{l+j}\right)} \prod_{j=1}^{l} \Gamma\left(\lambda_{j}+s_{j}\right) \prod_{j=1}^{k} \Gamma\left(-\sigma_{j}+s_{l+j}\right)$
$\prod_{j=1}^{l+k} \Gamma\left(-s_{j}\right) z_{1}^{s_{1}} \cdots z_{l}^{s_{l}} z_{l+1}^{s_{l+1}} \cdots, z_{l+k}^{s_{l+k}} \mathrm{~d} s_{1} \cdots \mathrm{~d} s_{l+k}$
Here the contour $L_{j}^{\prime} s$ are defined by $L_{j}=L_{w \zeta_{j} \infty}\left(\operatorname{Re}\left(\zeta_{j}\right)=v_{j}^{\prime \prime}\right)$ starting at the point $v_{j}^{\prime \prime}-\omega \infty$ and terminating at the point $v_{j}^{\prime \prime}+\omega \infty$ with $v_{j}^{\prime \prime} \in \mathbb{R}(j=1, \cdots, l)$ and each of the remaining contour L_{l+1}, \cdots, L_{l+k} run from $-\omega \infty$ to $\omega \infty$
(2.2) can be easily established by expanding $\prod_{j=1}^{l}\left[1-\tau_{j}(t-a)^{h_{i}}\right]^{-\lambda_{j}}$ by means of the formula :
$(1-z)^{-\alpha}=\sum_{r=0}^{\infty} \frac{(\alpha)_{r}}{r!} z^{r}(|z|<1)$
integrating term by term with the help of the integral given by Saigo and Saxena [3, page 93, eq.(3.2)] and applying the definition of the generalized Lauricella function [5, page 454].

3. Eulerian integral

In this section, we note :

$$
\begin{aligned}
& \theta_{i}=\prod_{j=1}^{l}\left[1-\tau_{j}(t-a)^{h_{i}}\right]^{-\zeta_{j}^{(i)}}, \zeta_{j}^{(i)}>0(i=1, \cdots, r) ; \theta_{i}^{\prime}=\prod_{j=1}^{l}\left[1-\tau_{j}(t-a)^{h_{i}}\right]^{-\zeta_{j}^{\prime(i)}}, \zeta_{j}^{\prime(i)}>0(i=1, \cdots, s) \\
& \theta_{i}^{\prime \prime}=\prod_{j=1}^{l}\left[1-\tau_{j}(t-a)^{h_{i}}\right]^{-\zeta_{j}^{\prime \prime(}()}, \zeta_{j}^{\prime \prime(i)}>0(i=1, \cdots, u) \\
& \theta_{i}^{\prime \prime \prime}=\prod_{j=1}^{l}\left[1-\tau_{j}(t-a)^{h_{i}}\right]^{-\zeta_{j}^{\prime \prime \prime}(i)}, \zeta_{j}^{\prime \prime \prime(i)}>0(i=1, \cdots, v)
\end{aligned}
$$

$$
\begin{equation*}
U=p_{2}, q_{2} ; p_{3}, q_{3} ; \cdots ; p_{r-1}, q_{r-1} ; p_{2}^{\prime}, q_{2}^{\prime} ; p_{3}^{\prime}, q_{3}^{\prime} ; \cdots ; p_{s-1}^{\prime}, q_{s-1}^{\prime} ; 0,0 ; \cdots ; 0,0 ; 0,0 ; \cdots ; 0,0 \tag{3.2}
\end{equation*}
$$

$V=0, n_{2} ; 0, n_{3} ; \cdots ; 0, n_{r-1} ; 0, n_{2}^{\prime} ; 0, n_{3}^{\prime} ; \cdots ; 0, n_{s-1}^{\prime} ; 0,0 ; \cdots ; 0,0 ; 0,0 ; \cdots ; 0,0$
$X=m^{(1)}, n^{(1)} ; \cdots ; m^{(r)}, n^{(r)} ; m^{\prime(1)}, n^{\prime(1)} ; \cdots ; m^{\prime(s)}, n^{\prime(s)} ; 1,0 ; \cdots ; 1,0 ; 1,0 ; \cdots ; 1,0$
$Y=p^{(1)}, q^{(1)} ; \cdots ; p^{(r)}, q^{(r)} ; p^{\prime(1)}, q^{\prime(1)} ; \cdots ; p^{(s)}, q^{(s)} ; 0,1 ; \cdots ; 0,1 ; 0,1 ; \cdots ; 0,1$
$A=\left(a_{2 k} ; \alpha_{2 k}^{(1)}, \alpha_{2 k}^{(2)}\right) ; \cdots ;\left(a_{(r-1) k} ; \alpha_{(r-1) k}^{(1)}, \alpha_{(r-1) k}^{(2)}, \cdots, \alpha_{(r-1) k}^{(r-1)}\right) ;\left(a_{2 k}^{\prime} ; \alpha_{2 k}^{\prime(1)}, \alpha_{2 k}^{\prime(2)}\right) ; \cdots ;$
$\left(a_{(s-1) k}^{\prime} ; \alpha_{(s-1) k}^{\prime(1)}, \alpha_{(s-1) k}^{\prime(2)}, \cdots, \alpha_{(s-1) k}^{\prime(s-1)}\right)$
$;\left(b_{2 k}^{\prime} ; \beta_{2 k}^{\prime(1)}, \beta_{2 k}^{\prime(2)}\right) ; \cdots ; B=\left(b_{2 k} ; \beta_{2 k}^{(1)}, \beta_{2 k}^{(2)}\right) ; \cdots ;\left(b_{(r-1) k} ; \beta_{(r-1) k}^{(1)}, \beta_{(r-1) k}^{(2)}, \cdots, \beta_{(r-1) k}^{(r-1)}\right)$
$\left(b_{(s-1) k}^{\prime} ; \beta_{(s-1) k}^{(1)}, \beta_{(s-1) k}^{(2)}, \cdots, \beta_{(s-1) k}^{(s-1)}\right)$
$A=\left(a_{r k} ; \alpha_{r k}^{(1)}, \alpha_{r k}^{(2)}, \cdots, \alpha_{r k}^{(r)}, 0, \cdots, 0,0 \cdots, 0,0, \cdots, 0\right)$
$A^{\prime}=\left(a_{s k}^{\prime} ; 0, \cdots, 0, \alpha_{s k}^{\prime(1)}, \alpha_{s k}^{\prime(2)}, \cdots, \alpha_{s k}^{\prime(s)}, 0, \cdots, 0,0, \cdots, 0\right)$
$B=\left(b_{r k} ; \beta_{r k}^{(1)}, \beta_{r k}^{(2)}, \cdots, \beta_{r k}^{(r)}, 0, \cdots, 0,0, \cdots, 0,0, \cdots, 0\right)$
$B^{\prime}=\left(b_{s k}^{\prime} ; 0, \cdots, 0, \beta_{s k}^{(1)}, \beta_{s k}^{(2)}, \cdots, \beta_{s k}^{(s)}, 0, \cdots, 0,0, \cdots, 0\right)$
$A^{\prime}=\left(a_{k}^{(1)}, \alpha_{k}^{(1)}\right)_{1, p^{(1)}} ; \cdots ;\left(a_{k}^{(r)}, \alpha_{k}^{(r)}\right)_{1, p^{(r)} ;\left(a_{k}^{\prime(1)}, \alpha_{k}^{(1)}\right)_{1, p^{(1)}} ; \cdots ;\left(a_{k}^{\prime(s)}, \alpha_{k}^{(s)}\right)_{1, p^{\prime(s)}} ; ~}^{\text {; }}$
$(1,0) ; \cdots ;(1,0) ;(1.0) ; \cdots ;(1.0)$
$B^{\prime}=\left(b_{k}^{(1)}, \beta_{k}^{(1)}\right)_{1, q^{(1)}} ; \cdots ;\left(b_{k}^{(r)}, \beta_{k}^{(r)}\right)_{1, q^{(r)}} ;\left(b_{k}^{(1)}, \beta_{k}^{\prime(1)}\right)_{1, q^{\prime(1)}} ; \cdots ;\left(b_{k}^{(s)}, \beta_{k}^{(s)}\right)_{1, q^{\prime(s)}} ;$
$(0,1) ; \cdots ;(0,1) ;(0,1) ; \cdots ;(0,1)$
$K_{1}=\left(1-\alpha-\sum_{i=1}^{u} R_{i} a_{i}-\sum_{i=1}^{v} \eta_{G_{i}, g_{i}} a_{i}^{\prime} ; \mu_{1}, \cdots, \mu_{r}, \mu_{1}^{\prime}, \cdots, \mu_{s}^{\prime}, h_{1}, \cdots, h_{l}, 1, \cdots, 1\right)$
$K_{2}=\left(1-\beta-\sum_{i=1}^{u} R_{i} b_{i}-\sum_{i=1}^{v} \eta_{G_{i}, g_{i}} b_{i}^{\prime} ; \rho_{1}, \cdots, \rho_{r}, \rho_{1}^{\prime}, \cdots, \rho_{s}^{\prime}, 0, \cdots, 0,0 \cdots, 0\right)$
$\left.0, \cdots,{ }_{\mathrm{j}}, \cdots, 0,0 \cdots, 0\right]_{1, l}$
$K_{j}^{\prime}=\left[1+\sigma_{j}-\sum_{i=1}^{u} R_{i} \lambda_{j}^{\prime \prime(i)}-\sum_{i=1}^{v} \eta_{G_{i}, g_{i}} \lambda_{j}^{\prime \prime \prime(i)} ; \lambda_{j}^{(1)}, \cdots, \lambda_{j}^{(r)}, \lambda_{j}^{\prime(1)} \cdots, \lambda_{j}^{\prime(s)}\right.$,
$0, \cdots, 0,0 \cdots, 1, \cdots, 0]_{1, k}$
$L_{1}=\left(1-\alpha-\beta-\sum_{i=1}^{u} R_{i}\left(a_{i}+b_{i}\right)-\sum_{i=1}^{v}\left(a_{i}^{\prime}+b_{i}^{\prime}\right) \eta_{G_{i}, g_{i}} ; \mu_{1}+\rho_{1}, \cdots, \mu_{r}+\rho_{r}, \mu_{1}^{\prime}+\rho_{1}^{\prime}, \cdots, \mu_{r}^{\prime}+\rho_{r}^{\prime}\right.$,
$\left.h_{1}, \cdots, h_{l}, 1, \cdots, 1\right)$
$L_{j}=\left[1-\lambda_{j}-\sum_{i=1}^{u} R_{i} \zeta_{j}^{\prime \prime(i)}-\sum_{i=1}^{s} \zeta_{j}^{\prime \prime \prime(i)} \eta_{G_{i}, g_{i}} ; \zeta_{j}^{(1)}, \cdots, \zeta_{j}^{(r)}, \zeta_{j}^{(1)} \cdots, \zeta_{j}^{\prime(s)}, 0, \cdots, 0,0 \cdots, 0\right]_{1, l}$
$L_{j}^{\prime}=\left[1+\sigma_{j}-\sum_{i=1}^{u} R_{i} \lambda_{j}^{\prime \prime(i)}-\sum_{i=1}^{v} \lambda_{j}^{\prime \prime \prime(i)} \eta_{G_{i}, g_{i}} ; \lambda_{j}^{(1)}, \cdots, \lambda_{j}^{(r)}, \lambda_{j}^{\prime(1)} \cdots, \lambda_{j}^{\prime(s)}, 0, \cdots, 0,0, \cdots, 0\right]_{1, k}(3.20)$
$P_{1}=(b-a)^{\alpha+\beta-1}\left\{\prod_{j=1}^{h}\left(a f_{j}+g_{j}\right)^{\sigma_{j}}\right\}$
$B_{u, v}=(b-a)^{\sum_{i=1}^{v}\left(a_{i}^{\prime}+b_{i}^{\prime}\right) \eta_{G_{i}, g_{i}}+\sum_{i=1}^{u}\left(a_{i}+b_{i}\right) R_{i}}\left\{\prod_{j=1}^{h}\left(a f_{j}+g_{j}\right)^{-\sum_{i=1}^{v} \lambda_{i}^{\prime \prime \prime} \eta_{g_{i}, h_{i}}-\sum_{i=1}^{u} \lambda_{i}^{\prime \prime} R_{i}}\right\}$
$B_{u}=\frac{(-L)_{h_{1} R_{1}+\cdots+h_{u} R_{u}} B\left(E ; R_{1}, \cdots, R_{u}\right)}{R_{1}!\cdots R_{u}!}$
$\mathfrak{A}=A, A^{\prime} ; \mathfrak{B}=B, B^{\prime}$
We have the general Eulerian integral.

$$
\begin{aligned}
& \int_{a}^{b}(t-a)^{\alpha-1}(b-t)^{\beta-1} \prod_{j=1}^{l}\left[1-\tau_{j}(t-a)^{h_{i}}\right]^{-\lambda_{j}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{\sigma_{j}} \\
& S_{L}^{h_{1}, \cdots, h_{u}}\left(\begin{array}{c}
\mathrm{z}_{1}^{\prime \prime} \theta_{1}^{\prime \prime}(t-a)^{a_{1}}(b-t)^{b_{1}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime \prime(1)}} \\
\cdot \\
\cdot \\
\cdot \\
\mathrm{z}_{u}^{\prime \prime} \theta_{u}^{\prime \prime}(t-a)^{a_{u}}(b-t)^{b_{u}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime \prime(}(u)}
\end{array}\right)
\end{aligned}
$$

$$
\bar{I}\left(\begin{array}{c}
\mathrm{z}_{1}^{\prime \prime \prime} \theta_{1}^{\prime \prime \prime}(t-a)^{a_{1}^{\prime}}(b-t)^{b_{1}^{\prime}} \\
\cdot \\
j=1 \\
\cdot \\
\cdot \\
\mathrm{z}_{v}^{\prime \prime \prime} \theta_{v}^{\prime \prime \prime}(t-a)^{a_{v}^{\prime}}(b-t)^{b_{v}^{\prime}} \prod^{-\lambda_{j}^{\prime \prime \prime(1)}} \\
\prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime \prime \prime}(v)}
\end{array}\right)
$$

$$
I\left(\begin{array}{c}
\mathrm{z}_{1} \theta_{1}(t-a)^{\mu_{1}}(b-t)^{\rho_{1}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{(1)}} \\
\cdot \\
\cdot \\
\cdot \\
\mathrm{z}_{r} \theta_{r}(t-a)^{\mu_{r}}(b-t)^{\rho_{r}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{(r)}}
\end{array}\right)
$$

$$
I\left(\begin{array}{c}
\mathrm{z}_{1}^{\prime} \theta_{1}^{\prime}(t-a)^{\mu_{1}^{\prime}}(b-t)^{\rho_{1}^{\prime}} \\
\cdot \\
\cdot \\
\cdot \\
\left.\mathrm{z}_{s}^{\prime} \theta_{s}^{\prime}(t-a)^{\mu_{s}^{\prime}}(b-t)^{\rho_{s}^{\prime}} t+g_{j}\right)^{-\lambda_{j}^{\prime(1)}} \\
j=1
\end{array}\right) \mathrm{d} t
$$

$$
=P_{1} \sum_{h_{1}=1}^{M_{1}} \cdots \sum_{h_{v}=1}^{M_{v}} \sum_{k_{1}=0}^{\infty} \cdots \sum_{k_{v}=0}^{\infty} \sum_{R_{1}, \cdots, R_{u}=0}^{h_{1} R_{1}+\cdots h_{u} R_{u} \leqslant L} \prod_{i=1}^{v} \frac{(-)^{k_{i}}}{\delta h_{i}^{(i)} k_{i}!} z_{i}^{\prime \prime \prime} \eta_{h_{i}, k_{i}} \prod_{k=1}^{u} z^{\prime \prime R_{k}} B_{u} B_{u, v}\left[\phi_{1}\left(\eta_{h_{1}, k_{1}}, \cdots, \eta_{h_{r}, k_{r}}\right)\right]_{j \neq h_{i}}
$$

$I_{U: p_{r}+p_{s}^{\prime}+l+k+2, q_{r}+q_{s}^{\prime}+l+k+1 ; Y}^{V ; 0, n^{+}+n^{\prime}+l+k+2 ;}$	$\left(\begin{array}{c} \frac{z_{1}(b-a)^{\mu_{1}+\rho_{1}}}{\prod_{j=1}^{k}\left(a f_{j}+g_{j}\right)^{\lambda_{j}^{(1)}}} \tag{3.25}\\ \cdots \\ \cdots \\ \frac{z_{r}(b-a)^{\mu_{r}+\rho_{r}}}{\prod_{j=1}^{k}\left(a f_{j}+g_{j}\right)^{\lambda_{j}^{(r)}}} \\ \frac{z_{1}^{\prime}(b-a)^{\mu_{1}^{\prime}+\rho_{1}^{\prime}}}{\prod_{j=1}^{k}\left(a f_{j}+g_{j}\right)^{\lambda_{j}^{\prime(1)}}} \\ \cdots \cdot \\ \cdots \\ \frac{z_{s}^{\prime}(b-a)^{\mu_{s}^{\prime}+\rho_{s}^{\prime}}}{\prod_{j=1}^{k}\left(a f_{j}+g_{j}\right)^{\lambda_{j}^{\prime}(s)}} \\ \tau_{1}(b-a)^{h_{1}} \\ \cdots \cdot \\ \cdots \\ \tau_{l}(b-a)^{h_{l}} \\ \frac{(b-a) f_{1}}{a f_{1}+g_{1}} \\ \cdot \cdot \\ \cdots \cdot \\ \frac{(b-a) f_{k}}{a f_{k}+g_{k}} \end{array}\right.$	$\begin{aligned} & \mathrm{A} ; \mathrm{K}_{1}, K_{2}, K_{j}, K_{j}^{\prime}, \mathfrak{A}: A^{\prime} \\ & \cdot \cdot \\ & \mathrm{B} ; \mathrm{L}_{1}, L_{j}, L_{j}^{\prime}: D_{1}, \mathfrak{B}: B^{\prime} \end{aligned}$

We obtain the I-function of $r+s+k+l$ variables. The quantities $U, V, X, Y, A, B, K_{1}, K_{2}, K_{j}, K_{j}^{\prime}, \mathfrak{A}, \mathfrak{A}^{\prime}, \mathfrak{A}_{1}, L_{1}, L_{j}, L_{j}^{\prime}$, $\mathfrak{B}, \mathfrak{B}^{\prime}, P_{1}, B_{u}, B_{u, v}$ and \mathfrak{B}_{1} are defined above.

Provided that
(A) $a, b \in \mathbb{R}(a<b) ; \mu_{i}, \mu_{u}^{\prime}, \rho_{i}, \rho_{u}^{\prime}, \lambda_{j}^{(i)}, \lambda_{j}^{\prime(u)}, h_{v} \in \mathbb{R}^{+}, f_{i}, g_{j}, \tau_{v}, \sigma_{j}, \lambda_{v} \in \mathbb{C}(i=1, \cdots, r ; j=1, \cdots ; k$;
$u=1, \cdots, s ; v=1, \cdots, l), a_{i}, b_{i}, \lambda_{j}^{\prime \prime(i)}, \zeta_{j}^{\prime \prime(i)} \in \mathbb{R}^{+},(i=1, \cdots, u ; j=1, \cdots, k)$
$a_{i}^{\prime}, b_{i}^{\prime}, \lambda_{j}^{\prime \prime \prime(i)}, \zeta_{j}^{\prime \prime \prime}(i) \in \mathbb{R}^{+},(i=1, \cdots, v ; j=1, \cdots, k)$
(B) $a_{i j}, b_{i k}, \in \mathbb{C}\left(i=1, \cdots, r ; j=1, \cdots, p_{i} ; k=1, \cdots, q_{i}\right) ; a_{j}^{(i)}, b_{j}^{(k)} \in \mathbb{C}$
$\left(i=1, \cdots, r ; j=1, \cdots, p^{(i)} ; k=1, \cdots, q^{(i)}\right)$
$a_{i j}^{\prime}, b_{i k}^{\prime}, \in \mathbb{C}\left(i=1, \cdots, s ; j=1, \cdots, p_{i}^{\prime} ; k=1, \cdots, q_{i}^{\prime}\right) ; a_{j}^{\prime(i)}, b_{j}^{\prime(k)}, \in \mathbb{C}$
$\left(i=1, \cdots, r ; j=1, \cdots, p^{\prime i} ; k=1, \cdots, q^{(i)}\right)$
$\alpha_{i j}^{(k)}, \beta_{i j}^{(k)} \in \mathbb{R}^{+}\left(\left(i=1, \cdots, r, j=1, \cdots, p_{i}, k=1, \cdots, r\right) ; \alpha_{j}^{(i)}, \beta_{i}^{(i)} \in \mathbb{R}^{+}\left(i=1, \cdots, r ; j=1, \cdots, p_{i}\right)\right.$
$\alpha_{i j}^{\prime}{ }^{(k)}, \beta_{i j}^{\prime}{ }^{(k)} \in \mathbb{R}^{+}\left(\left(i=1, \cdots, s, j=1, \cdots, p_{i}^{\prime}, k=1, \cdots, s\right) ; \alpha_{j}^{\prime(i)}, \beta_{i}^{\prime(i)} \in \mathbb{R}^{+}\left(i=1, \cdots, s ; j=1, \cdots, p_{i}^{\prime}\right)\right.$
(C) $\max _{1 \leqslant j \leqslant k}\left\{\left|\frac{(b-a) f_{i}}{a f_{i}+g_{i}}\right|\right\}<1, \max _{1 \leqslant j \leqslant l}\left\{\left|\tau_{j}(b-a)^{h_{j}}\right|\right\}<1$
(D) $\operatorname{Re}\left[\alpha+\sum_{j=1}^{v} a_{j}^{\prime} \min _{1 \leqslant k \leqslant M_{i}} \frac{d_{k}^{(j)}}{\delta_{k}^{(j)}}+\sum_{j=1}^{r} \mu_{j} \min _{1 \leqslant k \leqslant m^{(i)}} \frac{b_{k}^{(j)}}{\beta_{k}^{(j)}}+\sum_{j=1}^{s} \mu_{i}^{\prime} \min _{1 \leqslant k \leqslant m^{\prime(i)}} \frac{b_{k}^{\prime(j)}}{\beta_{k}^{(j)}}\right]>0$
$\operatorname{Re}\left[\beta+\sum_{j=1}^{v} b_{j}^{\prime} \min _{1 \leqslant k \leqslant M_{i}} \frac{d_{k}^{(j)}}{\delta_{k}^{(j)}}+\sum_{j=1}^{r} \rho_{j} \min _{1 \leqslant k \leqslant m^{(i)}} \frac{b_{k}^{(j)}}{\beta_{k}^{(j)}}+\sum_{j=1}^{s} \rho_{j}^{\prime} \min _{1 \leqslant k \leqslant m^{\prime(i)}} \frac{b_{k}^{(j)}}{\beta_{k}^{\prime(j)}}\right]>0$
(E) $R e\left(\alpha+\sum_{i=1}^{v} \eta_{G_{i}, g_{i}} a_{i}^{\prime}+\sum_{i=1}^{u} R_{i} a_{i}+\sum_{i=1}^{r} \mu_{i} s_{i}+\sum_{i=1}^{s} t_{i} \mu_{i}^{\prime}\right)>0$

$$
\begin{aligned}
& \operatorname{Re}\left(\beta+\sum_{i=1}^{v} \eta_{G_{i}, g_{i}} b_{i}^{\prime}+\sum_{i=1}^{u} R_{i} b_{i}+\sum_{i=1}^{r} v_{i} s_{i}+\sum_{i=1}^{s} t_{i} \rho_{i}^{\prime}\right)>0 \\
& \operatorname{Re}\left(\lambda_{j}+\sum_{i=1}^{v} \eta_{G_{i}, g_{i}} \lambda_{j}^{\prime \prime \prime}(i)+\sum_{i=1}^{u} R_{i} \lambda_{j}^{\prime \prime(i)}+\sum_{i=1}^{r} s_{i} \zeta_{j}^{(i)}+\sum_{i=1}^{s} t_{i} \zeta_{j}^{\prime(i)}\right)>0(j=1, \cdots, l) ; \\
& \operatorname{Re}\left(-\sigma_{j}+\sum_{i=1}^{v} \eta_{G_{i}, g_{i}} \lambda^{\prime \prime \prime(i)}+\sum_{i=1}^{u} R_{i} \lambda_{j}^{\prime \prime(i)}+\sum_{i=1}^{r} s_{i} \lambda_{j}^{(i)}+\sum_{i=1}^{s} t_{i} \lambda_{j}^{\prime(i)}\right)>0(j=1, \cdots, k) ;
\end{aligned}
$$

(F) $\Omega_{i}=\sum_{k=1}^{n^{(i)}} \alpha_{k}^{(i)}-\sum_{k=n^{(i)}+1}^{p^{(i)}} \alpha_{k}^{(i)}+\sum_{k=1}^{m^{(i)}} \beta_{k}^{(i)}-\sum_{k=m^{(i)}+1}^{q^{(i)}} \beta_{k}^{(i)}+\left(\sum_{k=1}^{n_{2}} \alpha_{2 k}^{(i)}-\sum_{k=n_{2}+1}^{p_{2}} \alpha_{2 k}^{(i)}\right)+\cdots+$

$$
\left(\sum_{k=1}^{n_{s}} \alpha_{s k}^{(i)}-\sum_{k=n_{s}+1}^{p_{s}} \alpha_{s k}^{(i)}\right)-\left(\sum_{k=1}^{q_{2}} \beta_{2 k}^{(i)}+\sum_{k=1}^{q_{3}} \beta_{3 k}^{(i)}+\cdots+\sum_{k=1}^{q_{s}} \beta_{s k}^{(i)}\right)-\mu_{i}-\rho_{i}
$$

$$
-\sum_{l=1}^{k} \lambda_{j}^{(i)}-\sum_{l=1}^{l} \zeta_{j}^{(i)}>0 \quad(i=1, \cdots, r)
$$

$$
\Omega_{i}^{\prime}=\sum_{k=1}^{n^{\prime(i)}} \alpha_{k}^{\prime(i)}-\sum_{k=n^{\prime(i)}+1}^{p^{\prime(i)}} \alpha_{k}^{\prime(i)}+\sum_{k=1}^{m^{\prime(i)}} \beta_{k}^{\prime(i)}-\sum_{k=m^{(i)}+1}^{q^{\prime(i)}} \beta_{k}^{\prime(i)}+\left(\sum_{k=1}^{n_{2}^{\prime}} \alpha_{2 k}^{\prime}{ }^{(i)}-\sum_{k=n_{2}+1}^{p_{2}^{\prime}} \alpha_{2 k}^{\prime}{ }^{(i)}\right)+
$$

$$
\cdots+\left(\sum_{k=1}^{n_{s}^{\prime}} \alpha_{s k}^{\prime}{ }^{(i)}-\sum_{k=n_{s}^{\prime}+1}^{p_{s}^{\prime}} \alpha_{s k}^{\prime}{ }^{(i)}\right)-\left(\sum_{k=1}^{q_{2}^{\prime}}{\left.\beta_{2 k}^{\prime}{ }^{(i)}+\sum_{k=1}^{q_{3}^{\prime}} \beta_{3 k}^{\prime}{ }^{(i)}+\cdots+\sum_{k=1}^{q_{s}^{\prime}} \beta_{s k}^{\prime}{ }^{(i)}\right)-\mu_{i}^{\prime}-\rho_{i}^{\prime} .}_{(}\right.
$$

$$
-\sum_{l=1}^{k} \lambda_{j}^{\prime(i)}-\sum_{l=1}^{l} \zeta_{j}^{\prime(i)}>0 \quad(i=1, \cdots, s)
$$

(G) $\left|\arg \left(z_{i} \prod_{j=1}^{l}\left[1-\tau_{j}(t-a)^{h_{i}}\right]^{-\zeta_{j}^{(i)}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{(i)}}\right)\right|<\frac{1}{2} \Omega_{i} \pi \quad(a \leqslant t \leqslant b ; i=1, \cdots, r)$
$\left|\arg \left(z_{i}^{\prime} \prod_{j=1}^{l}\left[1-\tau_{j}^{\prime}(t-a)^{h_{i}^{\prime}}\right]^{-\zeta_{j}^{\prime(i)}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime(i)}}\right)\right|<\frac{1}{2} \Omega_{i}^{\prime} \pi \quad(a \leqslant t \leqslant b ; i=1, \cdots, s)$
(H) (I) The multiple series occuring on the right-hand side of (3.25) is absolutely and uniformly convergent.

Proof

To prove (3.24), first, we express in serie the multivariable I-function defined by Nambisan et al [2] with the help of (1.5), a class of multivariable polynomials defined by Srivastava $S_{L}^{h_{1}, \cdots, h_{u}}[$.$] in serie with the help of (1.14), the I-$ functions of r-variables and s-variables defined by Prasad [1] in terms of Mellin-Barnes type contour integral with the help of (1.8) and (1.11) respectively. Now collect the power of $\left[1-\tau_{j}(t-a)^{h_{i}}\right]$ with $(i=1, \cdots, r ; j=1, \cdots, l)$ and collect the power of $\left(f_{j} t+g_{j}\right)$ with $j=1, \cdots, k$. Use the equations (2.2) and (2.3) and express the result in Mellin-Barnes contour integral. Interpreting the ($r+s+k+l$) dimensional MellinBarnes integral in multivariable I-function defined by Prasad [1], we obtain the equation (3.24).

Remarks

If a) $\rho_{1}=\cdots, \rho_{r}=\rho_{1}^{\prime}=\cdots, \rho_{s}^{\prime}=0$; b) $\mu_{1}=\cdots, \mu_{r}=\mu_{1}^{\prime}=\cdots, \mu_{s}^{\prime}=0$, we obtain the similar formulas that (3.25) with the corresponding simplifications.

4. Particular cases

a) If $U=V=A=B=0$, the multivariable I-function defined by Prasad reduces to multivariable \mathbf{H}-function defined by Srivastava et al [7] and we obtain :
$\int_{a}^{b}(t-a)^{\alpha-1}(b-t)^{\beta-1} \prod_{j=1}^{l}\left[1-\tau_{j}(t-a)^{h_{i}}\right]^{-\lambda_{j}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{\sigma_{j}}$
$S_{L}^{h_{1}, \cdots, h_{u}}\left(\begin{array}{c}\mathrm{z}_{1}^{\prime \prime} \theta_{1}^{\prime \prime}(t-a)^{a_{1}}(b-t)^{b_{1}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime \prime(1)}} \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{z}_{u}^{\prime \prime} \theta_{u}^{\prime \prime}(t-a)^{a_{u}}(b-t)^{b_{u}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime \prime(}(u)}\end{array}\right)$
$\bar{I}\left(\begin{array}{c}\mathrm{z}_{1}^{\prime \prime \prime} \theta_{1}^{\prime \prime \prime}(t-a)^{a_{1}^{\prime}}(b-t)^{b_{1}^{\prime}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime \prime \prime(1)}} \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{z}_{v}^{\prime \prime \prime} \theta_{v}^{\prime \prime \prime}(t-a)^{a_{v}^{\prime}}(b-t)^{b_{v}^{\prime}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime \prime \prime(v)}}\end{array}\right)$
$H\left(\begin{array}{c}\mathrm{z}_{1} \theta_{1}(t-a)^{\mu_{1}}(b-t)^{\rho_{1}} \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{z}_{r} \theta_{r}(t-a)^{\mu_{r}}(b-t)^{\rho_{r}} \\ \left.\prod_{j} t+g_{j}\right)^{-\lambda_{j}^{(1)}} \\ j=1\end{array}\right)$
$H\left(\begin{array}{c}\mathrm{z}_{1}^{\prime} \theta_{1}^{\prime}(t-a)^{\mu_{1}^{\prime}}(b-t)^{\rho_{1}^{\prime}} \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \left.\mathrm{z}_{s}^{\prime} \theta_{s}^{\prime}(t-a)^{\mu_{s}^{\prime}}(b-t)^{\rho_{s}^{\prime}} t+g_{j}\right)^{-\lambda_{j}^{\prime(1)}} \\ \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime(s)}}\end{array}\right) \mathrm{d} t$
$=P_{1} \sum_{h_{1}=1}^{M_{1}} \cdots \sum_{h_{v}=1}^{M_{v}} \sum_{k_{1}=0}^{\infty} \cdots \sum_{k_{v}=0}^{\infty} \sum_{K_{1}=0}^{\left[N_{1} / M_{1}\right]} \cdots \sum_{K_{u}=0}^{\left[N_{u} / M_{u}\right]} \prod_{i=1}^{v} \frac{(-)^{k_{i}}}{\delta h_{i}^{(i)} k_{i}!} z_{i}^{\prime \prime \prime} \eta_{h_{i}, k_{i}} \prod_{k=1}^{u} z^{\prime \prime R_{k}} B_{u} B_{u, v}\left[\phi_{1}\left(\eta_{h_{1}, k_{1}}, \cdots, \eta_{h_{r}, k_{r}}\right)\right]_{j \neq h_{i}}$

$H_{p_{r}+p_{s}^{\prime}+l+k+2, q_{r}+q_{s}^{\prime}+l+k+1 ; Y}^{0, n_{r}+n^{\prime}+l+k+2 ; X}$	$\left(\begin{array}{c} \frac{z_{1}(b-a)^{\mu_{1}+\rho_{1}}}{\prod_{j=1}^{k}\left(a f_{j}+g_{j}\right)^{\lambda_{j}^{(1)}}} \tag{4.1}\\ \cdots \cdot \\ \cdots \cdot \\ \frac{z_{r}(b-a)^{\mu_{r}+\rho_{r}}}{\prod_{j=1}^{k}\left(a f_{j}+g_{j}\right)^{\lambda_{j}^{(r)}}} \\ \frac{z_{1}^{\prime}(b-a)^{\mu_{1}^{\prime}+\rho_{1}^{\prime}}}{\prod_{j=1}^{k}\left(a f_{j}+g_{j}\right)^{\lambda_{j}^{\prime(1)}}} \\ \cdots \cdot \\ \cdots \\ \frac{z_{s}^{\prime}(b-a)^{\mu_{s}^{\prime}+\rho_{s}^{\prime}}}{\prod_{j=1}^{k}\left(a f_{j}+g_{j}\right)^{\lambda_{j}^{\prime}(s)}} \\ \tau_{1}(b-a)^{h_{1}} \\ \cdots \cdot \\ \cdots \cdot \\ \tau_{l}(b-a)^{h_{l}} \\ \frac{(b-a) f_{1}}{a f_{1}+g_{1}} \\ \cdots \cdot \\ \cdots \cdot \\ \frac{(b-a) f_{k}}{a f_{k}+g_{k}} \end{array}\right.$	

under the same notations and conditions that (3.25) with $U=V=A=B=0$
b) If $B\left(L ; R_{1}, \cdots, R_{u}\right)=\frac{\prod_{j=1}^{\bar{A}}\left(a_{j}\right)_{R_{1} \theta_{j}^{\prime}+\cdots+R_{u} \theta_{j}^{(u)}} \prod_{j=1}^{B^{\prime}}\left(b_{j}^{\prime}\right)_{R_{1} \phi_{j}^{\prime}} \cdots \prod_{j=1}^{B^{(u)}}\left(b_{j}^{(u)}\right)_{R_{u} \phi_{j}^{(u)}}}{\prod_{j=1}^{\bar{C}}\left(c_{j}\right)_{m_{1} \psi_{j}^{\prime}+\cdots+m_{u} \psi_{j}^{(u)}} \prod_{j=1}^{D^{\prime}}\left(d_{j}^{\prime}\right)_{R_{1} \delta_{j}^{\prime}} \cdots \prod_{j=1}^{D^{(u)}}\left(d_{j}^{(u)}\right)_{R_{u} \delta_{j}^{(u)}}}$
then the general class of multivariable polynomial $S_{L}^{h_{1}, \cdots, h_{u}}\left[z_{1}, \cdots, z_{u}\right]$ reduces to generalized Lauricella function defined by Srivastava et al [4]. We have

$$
\begin{aligned}
& \int_{a}^{b}(t-a)^{\alpha-1}(b-t)^{\beta-1} \prod_{j=1}^{l}\left[1-\tau_{j}(t-a)^{h_{i}}\right]^{-\lambda_{j}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{\sigma_{j}} \\
& F_{\bar{C}: D^{\prime} ; \cdots ; D^{(u)}}^{1+\bar{A} ; B^{\prime} ; \cdots ; B^{(u)}}\left(\left.\begin{array}{c}
\mathrm{z}_{1}^{\prime \prime} \theta_{1}^{\prime \prime}(t-a)^{a_{1}}(b-t)^{b_{1}} \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
\left.\mathrm{z}_{u}^{\prime \prime} \theta_{u}^{\prime \prime}(t-a)^{a_{u}}(b-t)^{b_{u}} \prod_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime \prime(1)}} \\
{ }_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime \prime(u)}}
\end{array} \right\rvert\,\right. \\
& \left.\left[(-\mathrm{L}) ; \mathrm{R}_{1}, \cdots, R_{u}\right]\left[(a) ; \theta^{\prime}, \cdots, \theta^{(u)}\right]:\left[\left(b^{\prime}\right) ; \phi^{\prime}\right] ; \cdots ;\left[\left(b^{(u)}\right) ; \phi^{(u)}\right]\right) \\
& {\left[(c) ; \psi^{\prime}, \cdots, \psi^{(u)}\right]:\left[\left(d^{\prime}\right) ; \delta^{\prime}\right] ; \cdots ;\left[\left(d^{(u)}\right) ; \delta^{(u)}\right]} \\
& \bar{I}\left(\begin{array}{c}
\mathrm{z}_{1}^{\prime \prime \prime} \theta_{1}^{\prime \prime \prime}(t-a)^{a_{1}^{\prime}}(b-t)^{b_{1}^{\prime}} \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
\mathrm{z}_{v}^{\prime \prime \prime} \theta_{v}^{\prime \prime \prime}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime \prime \prime}(1)} \\
)^{a_{v}^{\prime}}(b-t)^{b_{v}^{\prime}}
\end{array} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime \prime \prime(v)}}\right) \\
& I\left(\begin{array}{c}
\mathrm{z}_{1} \theta_{1}(t-a)^{\mu_{1}}(b-t)^{\rho_{1}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{(1)}} \\
\cdot \\
\cdot \\
\cdot \\
\mathrm{z}_{r} \theta_{r}(t-a)^{\mu_{r}}(b-t)^{\rho_{r}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{(r)}}
\end{array}\right) \\
& I\left(\begin{array}{c}
\mathrm{z}_{1}^{\prime} \theta_{1}^{\prime}(t-a)^{\mu_{1}^{\prime}}(b-t)^{\rho_{1}^{\prime}} \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
\left.\mathrm{z}_{s}^{\prime} \theta_{s}^{\prime}(t-a)^{\mu_{s}^{\prime}}(b-t)_{j}^{\rho_{s}^{\prime}} t+g_{j}\right)^{-\lambda_{j}^{\prime(1)}} \\
\prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime(s)}}
\end{array}\right) \mathrm{d} t \\
& =P_{1} \sum_{h_{1}=1}^{M_{1}} \cdots \sum_{h_{v}=1}^{M_{v}} \sum_{k_{1}=0}^{\infty} \cdots \sum_{k_{v}=0}^{\infty} \sum_{R_{1}, \cdots, R_{u}=0}^{h_{1} R_{1}+\cdots h_{u} R_{u} \leqslant L} \prod_{i=1}^{v} \frac{(-)^{k_{i}}}{\delta h_{i}^{(i)} k_{i}!} z_{i}^{\prime \prime \prime} \eta_{h_{i}, k_{i}} \prod_{k=1}^{u} z^{\prime \prime R_{k}} B_{u}^{\prime} B_{u, v}\left[\phi_{1}\left(\eta_{h_{1}, k_{1}}, \cdots, \eta_{h_{r}, k_{r}}\right)\right]_{j \neq h_{i}}
\end{aligned}
$$

under the same conditions and notations that (3.25)
where $B_{u}^{\prime}=\frac{(-L)_{h_{1} R_{1}+\cdots+h_{u} R_{u} B\left(E ; R_{1}, \cdots, R_{u}\right)}^{R_{1}!\cdots R_{u}!}, B\left[E ; R_{1}, \ldots, R_{v}\right] \text { is defined by }}{}$

Remark:

By the following similar procedure, the results of this document can be extented to product of any finite number of multivariable I-functions defined by Prasad [1] and a class of multivariable polynomials defined by Srivastava et al [5].

5. Conclusion

In this paper we have evaluated a generalized Eulerian integral involving the product of two multivariable I-functions defined by Prasad [1],a expansion of multivariable I-function defined by Nambisan et al [2] and a class of multivariable polynomials defined by Srivastava et al [4] with general arguments. The formulae established in this paper is very general nature. Thus, the results established in this research work would serve as a key formula from which, upon specializing the parameters, as many as desired results involving the special functions of one and several variables can be obtained.

REFERENCES

[1] Y.N. Prasad , Multivariable I-function, Vijnana Parishad Anusandhan Patrika 29 (1986) , page 231-237.
[2] Prathima J. Nambisan V. and Kurumujji S.K. A Study of I-function of Several Complex Variables, International Journalof Engineering Mathematics $\operatorname{Vol}(2014)$, 2014 page 1-12
[3] Saigo M. and Saxena R.K. Unified fractional integral formulas for the multivariable H-function I. J.Fractional Calculus 15 (1999), page 91-107.
[4] Srivastava H.M. and Daoust M.C. Certain generalized Neumann expansions associated with Kampé de Fériet function. Nederl. Akad. Wetensch. Proc. Ser A72 = Indag Math 31(1969) page 449-457.
[5] Srivastava H.M. And Garg M. Some integral involving a general class of polynomials and multivariable H-function. Rev. Roumaine Phys. 32(1987), page 685-692.
[6] Srivastava H.M. and Karlsson P.W. Multiple Gaussian Hypergeometric series. Ellis.Horwood. Limited. New-York, Chichester. Brisbane. Toronto , 1985.
[7] H.M. Srivastava and R.Panda. Some expansion theorems and generating relations for the H -function of several complex variables. Comment. Math. Univ. St. Paul. 24(1975), p.119-137.

Personal adress : 411 Avenue Joseph Raynaud
Le parc Fleuri , Bat B
83140 , Six-Fours les plages
Tel : 06-83-12-49-68
Department : VAR
Country: FRANCE

