Eulerian integral associated with product of two multivariable Aleph-functions,

 the multivariable \bar{I}-function and a class of polynomials$$
F . Y . A Y A N T^{1}
$$

1 Teacher in High School, France

ABSTRACT

The present paper is evaluated a new Eulerian integral associated with the product of two multivariable Aleph-functions, the multivariable $\bar{I}-$ function defined by Nambisan et al [1] and a class of multivariable polynomials with general arguments. We will study the cases concerning the multivariable I-function defined by Sharma et al [2] and Srivastava-Doust polynomial [4].

Keywords: Eulerian integral, multivariable I-function, generalized Lauricella function of several variables, multivariable Aleph-function, generalized hypergeometric function, class of polynomials, Srivastava-Daoust polynomial

Classification. 33C99, 33C60, 44A202010 Mathematics Subject

1. Introduction

In this paper, we evaluate a new Eulerian integral of most general characters associated with the products of two multivariable Aleph-functions, the I-function of several variables defined by Nambisan et al [1] and a class of polynomials with general arguments.
First time, we define the multivariable I-function by :
$\bar{I}\left(z_{1}^{\prime \prime \prime}, \cdots, z_{v}^{\prime \prime \prime}\right)=\begin{gathered}I_{P}, N: M_{1}, N_{1} ; \cdots ; M_{v}, N_{v} \\ P, Q: P_{1}, Q_{1} ; \cdots ; P_{v}, Q_{v} \\ \cdot\end{gathered}\left(\begin{array}{c}\mathrm{z}_{1}^{\prime \prime \prime} \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{z}_{v}^{\prime \prime \prime}\end{array}\right) \quad\left(\mathrm{a}_{j} ; \alpha_{j}^{(1)}, \cdots, \alpha_{j}^{(v)} ; A_{j}\right)_{N+1, P}:$

$$
\begin{align*}
& \left(\mathrm{c}_{j}^{(1)}, \gamma_{j}^{(1)} ; 1\right)_{1, N_{1}},\left(c_{j}^{(1)}, \gamma_{j}^{(1)} ; C_{j}^{(1)}\right)_{N_{1}+1, P_{1}} ; \cdots ;\left(c_{j}^{(v)}, \gamma_{j}^{(v)} ; 1\right)_{1, N_{u}},\left(c_{j}^{(v)}, \gamma_{j}^{(v)} ; C_{j}^{(v)}\right)_{N_{v}+1, P_{v}} \\
& \left(\mathrm{~d}_{j}^{(1)}, \delta_{j}^{(1)} ; 1\right)_{1, M_{1}},\left(d_{j}^{(1)}, \delta_{j}^{(1)} ; D_{j}^{(1)}\right)_{M_{1}+1, Q_{1}} ; \cdots ;\left(d_{j}^{(v)}, \delta_{j}^{(v)} ; 1\right)_{1, M_{v}},\left(d_{j}^{(v)}, \delta_{j}^{(v)} ; D_{j}^{(v)}\right)_{M_{v}+1, Q_{v}} \tag{1.1}\\
& \quad=\frac{1}{(2 \pi \omega)^{v}} \int_{L_{1}} \cdots \int_{L_{v}} \phi_{1}\left(s_{1}, \cdots, s_{v}\right) \prod_{i=1}^{v} \xi_{i}^{\prime}\left(s_{i}\right) z_{i}^{\prime \prime \prime s_{i}} \mathrm{~d} s_{1} \cdots \mathrm{~d} s_{v} \tag{1.2}
\end{align*}
$$

where $\phi_{1}\left(s_{1}, \cdots, s_{v}\right), \xi_{i}^{\prime}\left(s_{i}\right), i=1, \cdots, v$ are given by :
$\phi_{1}\left(s_{1}, \cdots, s_{v}\right)=\frac{1}{\prod_{j=N+1}^{P} \Gamma^{A_{j}}\left(a_{j}-\sum_{i=1}^{v} \alpha_{j}^{(i)} s_{j}\right) \prod_{j=M+1}^{Q} \Gamma^{B_{j}}\left(1-b_{j}+\sum_{i=1}^{v} \beta_{j}^{(i)} s_{j}\right)}$
$\xi_{i}^{\prime}\left(s_{i}\right)=\frac{\prod_{j=1}^{N_{i}} \Gamma\left(1-c_{j}^{(i)}+\gamma_{j}^{(i)} s_{i}\right) \prod_{j=1}^{M_{i}} \Gamma\left(d_{j}^{(i)}-\delta_{j}^{(i)} s_{i}\right)}{\prod_{j=N_{i}+1}^{P_{i}} \Gamma_{j}^{C_{j}^{(i)}}\left(c_{j}^{(i)}-\gamma_{j}^{(i)} s_{i}\right) \prod_{j=M_{i}+1}^{Q_{i}} \Gamma_{j}^{D_{j}^{(i)}}\left(1-d_{j}^{(i)}+\delta_{j}^{(i)} s_{i}\right)}$
$i=1, \cdots, v$
Serie representation
If $z_{i}^{\prime \prime \prime} \neq 0 ; i=1, \cdots, v$
$\delta_{h_{i}}^{(i)}\left(d_{j}^{(i)}+k_{i}\right) \neq \delta_{j}^{(i)}\left(\delta_{h_{i}}^{(i)}+\eta_{i}\right)$ for $j \neq h_{i}, j, h_{i}=1, \cdots, m_{i}(i=1, \cdots, v), k_{i}, \eta_{i}=0,1,2, \cdots(i=1, \cdots, v)$, then
$\bar{I}\left(z_{1}^{\prime \prime \prime}, \cdots, z_{v}^{\prime \prime \prime}\right)=\sum_{h_{1}=1}^{M_{1}} \cdots \sum_{h_{v}=1}^{M_{v}} \sum_{k_{1}=0}^{\infty} \cdots \sum_{k_{v}=0}^{\infty}\left[\phi_{1}\left(\frac{d h_{1}^{(1)}+k_{1}}{\delta h_{1}^{(1)}}, \cdots, \frac{d h_{v}^{(v)}+k_{v}}{\delta h_{v}^{(v)}}\right)\right] \prod_{j \neq h_{i} i=1}^{r} \frac{(-)^{k_{i}}}{\delta h_{i}^{(i)} k_{i}!} z_{i}^{\prime \prime \prime} \frac{d h_{i}+k_{i}}{\delta h_{i}}$

This result can be proved on computing the residues at the poles :
$s_{i}=\frac{d h_{i}^{(i)}+k_{i}}{\delta h_{i}^{(i)}},\left(h_{i}=1, \cdots, m_{i}, k_{i}=0,1,2, \cdots\right)$ for $i=1, \cdots, v$
We may establish the the asymptotic expansion in the following convenient form :
$\bar{I}\left(z_{1}^{\prime \prime \prime}, \cdots, z_{v}^{\prime \prime \prime}\right)=0\left(\left|z_{1}^{\prime \prime \prime}\right|^{\alpha_{1}}, \cdots,\left|z_{v}^{\prime \prime \prime}\right|^{\alpha_{v}}\right), \max \left(\left|z_{1}^{\prime \prime \prime}\right|, \cdots,\left|z_{v}^{\prime \prime \prime}\right|\right) \rightarrow 0$
$\bar{I}\left(z_{1}^{\prime \prime \prime}, \cdots, z_{v}^{\prime \prime \prime}\right)=0\left(\left|z_{1}^{\prime \prime \prime}\right|^{\beta_{1}}, \cdots,\left|z_{v}^{\prime \prime \prime}\right|^{\beta_{u}}\right), \min \left(\left|z_{1}^{\prime \prime \prime}\right|, \cdots,\left|z_{v}^{\prime \prime \prime}\right|\right) \rightarrow \infty$
where $k=1, \cdots, v: \alpha_{k}=\min \left[\operatorname{Re}\left(d_{j}^{(k)} / \delta_{j}^{(k)}\right)\right], j=1, \cdots, m_{k}$ and

$$
\beta_{k}=\max \left[\operatorname{Re}\left(\left(c_{j}^{(k)}-1\right) / \gamma_{j}^{(k)}\right)\right], j=1, \cdots, n_{k}
$$

We will note $\eta_{h_{i}, k_{i}}=\frac{d h_{i}^{(i)}+k_{i}}{\delta h_{i}},\left(h_{i}=1, \cdots, m_{i}, k_{i}=0,1,2, \cdots\right)$ for $i=1, \cdots, v$
The Aleph-function of several variables generalize the multivariable I-function defined by Sharma and Ahmad [2], itself is an a generalisation of G and H -functions of several variables defined by Srivastava et al [7]. The multiple Mellin-Barnes integral occuring in this paper will be referred to as the multivariables Aleph-function throughout our present study and will be defined and represented as follows.

$\left[\begin{array}{cl}{\left[\left(\mathrm{a}_{j} ; \alpha_{j}^{(1)}, \cdots, \alpha_{j}^{(r)}\right)_{1, \mathfrak{n}}\right]} & ,\left[\tau_{i}\left(a_{j i} ; \alpha_{j i}^{(1)}, \cdots, \alpha_{j i}^{(r)}\right)_{\mathfrak{n}+1, p_{i}}\right]: \\ \ldots \ldots \cdots \cdots \cdots \cdots \cdots \cdots \cdots & ,\left[\tau_{i}\left(b_{j i} ; \beta_{j i}^{(1)}, \cdots, \beta_{j i}^{(r)}\right)_{m+1, q_{i}}\right]:\end{array}\right.$
$\left.\left.\left[\left(\mathrm{c}_{j}^{(1)}\right), \gamma_{j}^{(1)}\right)_{1, n_{1}}\right],\left[\tau_{i^{(1)}}\left(c_{j i(1)}^{(1)}, \gamma_{j i^{(1)}}^{(1)}\right)_{n_{1}+1, p_{i}^{(1)}}\right] ; \cdots ; \quad ;\left[\left(\mathrm{c}_{j}^{(r)}\right), \gamma_{j}^{(r)}\right)_{1, n_{r}}\right],\left[\tau_{i(r)}\left(c_{j i(r)}^{(r)}, \gamma_{j i(r)}^{(r)}\right)_{n_{r}+1, p_{i}^{(r)}}\right]$
$\left.\left.\left.\left[\left(\mathrm{d}_{j}^{(1)}\right), \delta_{j}^{\prime(1)}\right)_{1, m_{1}}\right],\left[\tau_{i^{(1)}}\left(d_{j i(1)}^{(1)}, \delta_{j i(1)}^{(1)}\right)_{m_{1}+1, q_{i}^{(1)}}\right] ; \cdots ;\left[\left(\mathrm{d}_{j}^{\prime(r)}\right), \delta_{j}^{\prime(r)}\right)_{1, m_{r}}\right],\left[\tau_{i^{(r)}}\left(d_{j i(r)}^{(r)}, \delta_{j i(r)}^{(r)}\right)_{m_{r}+1, q_{i}^{(r)}}\right]\right)$
$=\frac{1}{(2 \pi \omega)^{r}} \int_{L_{1}^{\prime}} \cdots \int_{L_{r}^{\prime}} \psi\left(s_{1}, \cdots, s_{r}\right) \prod_{k=1}^{r} \theta_{k}\left(s_{k}\right) z_{k}^{s_{k}} \mathrm{~d} s_{1} \cdots \mathrm{~d} s_{r}$
with $\omega=\sqrt{-1}$
$\psi\left(s_{1}, \cdots, s_{r}\right)=\frac{\prod_{j=1}^{\mathfrak{n}} \Gamma\left(1-a_{j}+\sum_{k=1}^{r} \alpha_{j}^{(k)} s_{k}\right)}{\sum_{i=1}^{R}\left[\tau_{i} \prod_{j=\mathfrak{n}+1}^{p_{i}} \Gamma\left(a_{j i}-\sum_{k=1}^{r} \alpha_{j i}^{(k)} s_{k}\right) \prod_{j=1}^{q_{i}} \Gamma\left(1-b_{j i}+\sum_{k=1}^{r} \beta_{j i}^{(k)} s_{k}\right)\right]}$

Suppose, as usual , that the parameters
$a_{j}, j=1, \cdots, p ; b_{j}, j=1, \cdots, q ;$
$c_{j}^{(k)}, j=1, \cdots, n_{k} ; c_{j i^{(k)}}^{(k)}, j=n_{k}+1, \cdots, p_{i^{(k)}} ;$
$d_{j}^{(k)}, j=1, \cdots, m_{k} ; d_{j i(k)}^{(k)}, j=m_{k}+1, \cdots, q_{i(k)} ;$
with $k=1 \cdots, r, i=1, \cdots, R, i^{(k)}=1, \cdots, R^{(k)}$
are complex numbers, and the $\alpha^{\prime} s, \beta^{\prime} s, \gamma^{\prime} s$ and $\delta^{\prime} s$ are assumed to be positive real numbers for standardization purpose such that

$$
\begin{align*}
& U_{i}^{(k)}=\sum_{j=1}^{\mathfrak{n}} \alpha_{j}^{(k)}+\tau_{i} \sum_{j=\mathfrak{n}+1}^{p_{i}} \alpha_{j i}^{(k)}+\sum_{j=1}^{n_{k}} \gamma_{j}^{(k)}+\tau_{i^{(k)}} \sum_{j=n_{k}+1}^{p_{i(k)}} \gamma_{j i}^{(k)}-\tau_{i} \sum_{j=1}^{q_{i}} \beta_{j i}^{(k)}-\sum_{j=1}^{m_{k}} \delta_{j}^{\prime(k)} \\
& -\tau_{i^{(k)}} \sum_{j=m_{k}+1}^{q_{i}(k)} \delta_{j i(k)}^{(k)} \leqslant 0 \tag{1.11}
\end{align*}
$$

The reals numbers τ_{i} are positives for $i=1$ to $R, \tau_{i(k)}$ are positives for $i^{(k)}=1$ to $R^{(k)}$
The contour L_{k} is in the s_{k}-p lane and run from $\sigma-i \infty$ to $\sigma+i \infty$ where σ is a real number with loop, if necessary ,ensure that the poles of $\Gamma\left(d_{j}^{\prime}(k)-\delta_{j}^{\prime(k)} s_{k}\right)$ with $j=1$ to m_{k} are separated from those of $\Gamma\left(1-a_{j}+\sum_{i=1}^{r} \alpha_{j}^{(k)} s_{k}\right)$ with $j=1$ to n and $\Gamma\left(1-c_{j}^{(k)}+\gamma_{j}^{(k)} s_{k}\right)$ with $j=1$ to n_{k} to the left of the contour L_{k}. The condition for absolute convergence of multiple Mellin-Barnes type contour (1.9) can be obtained by extension of the corresponding conditions for multivariable H -function given by as :
$\left|\arg z_{k}\right|<\frac{1}{2} A_{i}^{(k)} \pi$, where
$A_{i}^{(k)}=\sum_{j=1}^{\mathfrak{n}} \alpha_{j}^{(k)}-\tau_{i} \sum_{j=\mathfrak{n}+1}^{p_{i}} \alpha_{j i}^{(k)}-\tau_{i} \sum_{j=1}^{q_{i}} \beta_{j i}^{(k)}+\sum_{j=1}^{n_{k}} \gamma_{j}^{(k)}-\tau_{i^{(k)}} \sum_{j=n_{k}+1}^{p_{i}(k)} \gamma_{j i^{(k)}}^{(k)}$
$+\sum_{j=1}^{m_{k}} \delta_{j}^{\prime(k)}-\tau_{i^{(k)}} \sum_{j=m_{k}+1}^{q_{i}(k)} \delta_{j i(k)}^{(k)}>0, \quad$ with $k=1 \cdots, r, i=1, \cdots, R, i^{(k)}=1, \cdots, R^{(k)}$
The complex numbers z_{i} are not zero.Throughout this document, we assume the existence and absolute convergence conditions of the multivariable Aleph-function.

We may establish the the asymptotic expansion in the following convenient form :
$\aleph\left(z_{1}, \cdots, z_{r}\right)=0\left(\left|z_{1}\right|^{\alpha_{1}}, \cdots,\left|z_{r}\right|^{\alpha_{r}}\right), \max \left(\left|z_{1}\right|, \cdots,\left|z_{r}\right|\right) \rightarrow 0$
$\aleph\left(z_{1}, \cdots, z_{r}\right)=0\left(\left|z_{1}\right|^{\beta_{1}}, \cdots,\left|z_{r}\right|^{\beta_{r}}\right), \min \left(\left|z_{1}\right|, \cdots,\left|z_{r}\right|\right) \rightarrow \infty$
where $k=1, \cdots, r: \alpha_{k}=\min \left[\operatorname{Re}\left(d_{j}^{(k)} / \delta_{j}^{(k)}\right)\right], j=1, \cdots, m_{k}$ and

$$
\beta_{k}=\max \left[\operatorname{Re}\left(\left(c_{j}^{(k)}-1\right) / \gamma_{j}^{(k)}\right)\right], j=1, \cdots, n_{k}
$$

We will use these following notations in this paper
$U=p_{i}, q_{i}, \tau_{i} ; R ; V=m_{1}, n_{1} ; \cdots ; m_{r}, n_{r}$
$\mathrm{W}=p_{i^{(1)}}, q_{i^{(1)}}, \tau_{i^{(1)}} ; R^{(1)}, \cdots, p_{i^{(r)}}, q_{i^{(r)}}, \tau_{i(r)} ; R^{(r)}$
$A=\left\{\left(a_{j} ; \alpha_{j}^{(1)}, \cdots, \alpha_{j}^{(r)}\right)_{1, n}\right\},\left\{\tau_{i}\left(a_{j i} ; \alpha_{j i}^{(1)}, \cdots, \alpha_{j i}^{(r)}\right)_{n+1, p_{i}}\right\}$
$B=\left\{\tau_{i}\left(b_{j i} ; \beta_{j i}^{(1)}, \cdots, \beta_{j i}^{(r)}\right)_{m+1, q_{i}}\right\}$
$\left.\left.C=\left\{\left(c_{j}^{(1)} ; \gamma_{j}^{(1)}\right)_{1, n_{1}}\right\}, \tau_{i(1)}\left(c_{j i^{(1)}}^{(1)} ; \gamma_{j i^{(1)}}^{(1)}\right)_{n_{1}+1, p_{i(1)}}\right\}, \cdots,\left\{\left(c_{j}^{(r)} ; \gamma_{j}^{(r)}\right)_{1, n_{r}}\right\}, \tau_{i(r)}\left(c_{j i(r)}^{(r)} ; \gamma_{j i(r)}^{(r)}\right)_{n_{r}+1, p_{i}(r)}\right\}$
$\left.\left.D=\left\{\left(d_{j}^{\prime}(1) ; \delta_{j}^{\prime(1)}\right)_{1, m_{1}}\right\}, \tau_{i(1)}\left(d_{j i^{(1)}}^{(1)} ; \delta_{j i^{(1)}}^{(1)}\right)_{m_{1}+1, q_{i}(1)}\right\}, \cdots,\left\{\left(d_{j}^{\prime}(r) ; \delta_{j}^{\prime(r)}\right)_{1, m_{r}}\right\}, \tau_{i^{(r)}}\left(d_{j i}^{(r)} ; \delta_{j i(r)}^{(r)}\right)_{m_{r}+1, q_{i(r)}}\right\}(1$
The multivariable Aleph-function write :
$\aleph\left(z_{1}, \cdots, z_{r}\right)=\aleph_{U: W}^{0, \mathfrak{n}: V}\left(\begin{array}{c|c}\mathrm{z}_{1} & \mathrm{~A}: \mathrm{C} \\ \cdot & \mathrm{C} \\ \cdot & \cdot \\ \cdot & \cdot \\ \mathrm{z}_{r} & \mathrm{~B}: \mathrm{D}\end{array}\right)$

Consider the Aleph-function of s variables
$\aleph\left(z_{1}, \cdots, z_{s}\right)=\aleph_{p_{i}^{\prime}, q_{i}^{\prime}, \iota_{i} ; r^{\prime} ; p_{i(1)}^{\prime}, q_{i(1)}^{\prime}, \iota_{i(1)} ; r^{(1)} ; \cdots ; p_{i(s)}^{\prime}, q_{i(s)}^{\prime} ; \iota_{i}(s) ; r^{\prime}(s)}^{0, m^{\prime}, n^{\prime}, \cdots, m^{\prime}, n^{\prime}}\left(\begin{array}{c}\mathrm{z}_{1} \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{Z}_{s}\end{array}\right)$

$$
\left[\begin{array}{cl}
{\left[\left(u_{j} ; \mu_{j}^{(1)}, \cdots, \mu_{j}^{\left(r^{\prime}\right)}\right)_{1, n^{\prime}}\right]} & ,\left[\iota_{i}\left(u_{j i} ; \mu_{j i}^{(1)}, \cdots, \mu_{j i}^{\left(r^{\prime}\right)}\right)_{n^{\prime}+1, p_{i}^{\prime}}\right]: \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots \cdots & ,\left[\iota_{i}\left(v_{j i} ; v_{j i}^{(1)}, \cdots, v_{j i}^{\left(r^{\prime}\right)}\right)_{m^{\prime}+1, q_{i}^{\prime}}\right]:
\end{array}\right.
$$

$$
\begin{aligned}
& \left.\left.\left[\left(\mathrm{a}_{j}^{(1)}\right) ; \alpha_{j}^{(1)}\right)_{1, n_{1}^{\prime}}\right],\left[\iota_{i(1)}\left(a_{j i(1)}^{(1)} ; \alpha_{j i(1)}^{(1)}\right)_{n_{1}^{\prime}+1, p_{i}^{\prime(1)}}\right] ; \cdots ;\left[\left(\mathrm{a}_{j}^{(s)}\right) ; \alpha_{j}^{(s)}\right)_{1, n_{s}^{\prime}}\right],\left[\iota_{i(s)}\left(a_{j i(s)}^{(s)} ; \alpha_{j i(s)}^{(s)}\right)_{n_{s}^{\prime}+1, P_{i}^{(s)}}\right] \\
& \left.\left.\left.\left[\left(\mathrm{b}_{j}^{(1)}\right) ; \beta_{j}^{(1)}\right)_{1, m_{1}^{\prime}}\right],\left[\iota_{i(1)}\left(b_{j i(1)}^{(1)} ; \beta_{j i^{(1)}}^{(1)}\right)_{m_{1}^{\prime}+1, q_{i}^{(1)}}\right] ; \cdots ;\left[\left(\mathrm{b}_{j}^{(s)}\right) ; \beta_{j}^{(s)}\right)_{1, m_{s}^{\prime}}\right],\left[\iota_{i(s)}\left(b_{j i^{(s)}(s)}^{(s)} ; \beta_{j i^{(s)}}^{(s)}\right)_{\left.m_{s}^{\prime}+1, Q_{i}^{(s)}\right]}\right]\right)
\end{aligned}
$$

$=\frac{1}{(2 \pi \omega)^{s}} \int_{L_{1}^{\prime \prime}} \cdots \int_{L_{s}^{\prime \prime}} \zeta\left(t_{1}, \cdots, t_{s}\right) \prod_{k=1}^{s} \phi_{k}\left(t_{k}\right) z_{k}^{t_{k}} \mathrm{~d} t_{1} \cdots \mathrm{~d} t_{s}$
with $\omega=\sqrt{-1}$
$\zeta\left(t_{1}, \cdots, t_{s}\right)=\frac{\prod_{j=1}^{n^{\prime}} \Gamma\left(1-u_{j}+\sum_{k=1}^{s} \mu_{j}^{(k)} t_{k}\right)}{\sum_{i=1}^{r^{\prime}}\left[\iota_{i} \prod_{j=n^{\prime}+1}^{P_{i}} \Gamma\left(u_{j i}-\sum_{k=1}^{s} \mu_{j i}^{(k)} t_{k}\right) \prod_{j=1}^{q_{i}^{\prime}} \Gamma\left(1-v_{j i}+\sum_{k=1}^{s} v_{j i}^{(k)} t_{k}\right)\right]}$
and $\phi_{k}\left(t_{k}\right)=\frac{\prod_{j=1}^{m_{k}^{\prime}} \Gamma\left(b_{j}^{(k)}-\beta_{j}^{(k)} t_{k}\right) \prod_{j=1}^{n_{k}^{\prime}} \Gamma\left(1-a_{j}^{(k)}+\alpha_{j}^{(k)} s_{k}\right)}{\left.\sum_{i^{(k)}=1}^{r^{(k)}\left[\iota_{i}(k)\right.} \prod_{j=m_{k}^{\prime}+1}^{Q_{i(k)}} \Gamma\left(1-b_{j i^{(k)}}^{(k)}+\beta_{j i(k)}^{(k)} t_{k}\right) \prod_{j=n_{k}^{\prime}+1}^{P_{i(k)}} \Gamma\left(a_{j i(k)}^{(k)}-\alpha_{j i^{(k)}}^{(k)} s_{k}\right)\right]}($

Suppose, as usual , that the parameters
$u_{j}, j=1, \cdots, p^{\prime} ; v_{j}, j=1, \cdots, q^{\prime} ;$
$a_{j}^{(k)}, j=1, \cdots, n_{k}^{\prime} ; a_{j i^{(k)}}^{(k)}, j=n_{k}+1, \cdots, p_{i^{(k)}}^{\prime} ;$
$b_{j i(k)}^{(k)}, j=m_{k}^{\prime}+1, \cdots, q_{i^{(k)}}^{\prime} ; b_{j}^{(k)}, j=1, \cdots, m_{k}^{\prime} ;$
with $k=1 \cdots, s, i=1, \cdots, r^{\prime}, i^{(k)}=1, \cdots, r^{(k)}$
are complex numbers, and the $\alpha^{\prime} s, \beta^{\prime} s, \gamma^{\prime} s$ and $\delta^{\prime} s$ are assumed to be positive real numbers for standardization purpose such that

$$
\begin{align*}
& U_{i}^{\prime(k)}=\sum_{j=1}^{n^{\prime}} \mu_{j}^{(k)}+\iota_{i} \sum_{j=n^{\prime}+1}^{p_{i}^{\prime}} \mu_{j i}^{(k)}+\sum_{j=1}^{n_{k}^{\prime}} \alpha_{j}^{(k)}+\iota_{i}(k) \sum_{j=n_{k}^{\prime}+1}^{p_{i}^{\prime}(k)} \alpha_{j i(k)}^{(k)}-\iota_{i} \sum_{j=1}^{q_{i}^{\prime}} v_{j i}^{(k)}-\sum_{j=1}^{m_{k}^{\prime}} \beta_{j}^{(k)} \\
& \quad-\iota_{i}(k) \tag{1.23}\\
& \sum_{j=m_{k}^{\prime}+1}^{q_{i}^{\prime}(k)} \beta_{j i(k)}^{(k)} \leqslant 0
\end{align*}
$$

The reals numbers τ_{i} are positives for $i=1, \cdots, s, \iota_{i(k)}$ are positives for $i^{(k)}=1 \cdots r^{(k)}$
The contour L_{k} is in the t_{k}-p lane and run from $\sigma-i \infty$ to $\sigma+i \infty$ where σ is a real number with loop, if necessary ,ensure that the poles of $\Gamma\left(b_{j}^{(k)}-\beta_{j}^{(k)} t_{k}\right)$ with $j=1$ to m_{k}^{\prime} are separated from those of $\Gamma\left(1-u_{j}+\sum_{i=1}^{s} \mu_{j}^{(k)} t_{k}\right)$ with $j=1$ to N and $\Gamma\left(1-a_{j}^{(k)}+\alpha_{j}^{(k)} t_{k}\right)$ with $j=1$ to n_{k}^{\prime} to the left of the contour L_{k}. The condition for absolute convergence of multiple Mellin-Barnes type contour (1.9) can be obtained by extension of the corresponding conditions for multivariable H -function given by as :
$\left|\arg z_{k}\right|<\frac{1}{2} B_{i}^{(k)} \pi$, where

$$
B_{i}^{(k)}=\sum_{j=1}^{n^{\prime}} \mu_{j}^{(k)}-\iota_{i} \sum_{j=n^{\prime}+1}^{p_{i}^{\prime}} \mu_{j i}^{(k)}-\iota_{i} \sum_{j=1}^{q_{i}^{\prime}} v_{j i}^{(k)}+\sum_{j=1}^{n_{k}^{\prime}} \alpha_{j}^{(k)}-\iota_{i}(k) \sum_{j=n_{k}^{\prime}+1}^{p_{i}^{\prime}(k)} \alpha_{j i}^{(k)}
$$

$$
\begin{equation*}
+\sum_{j=1}^{m_{k}^{\prime}} \beta_{j}^{(k)}-\iota_{i(k)} \sum_{j=m_{k}^{\prime}+1}^{q_{i(k)}^{\prime}} \beta_{j i(k)}^{(k)}>0, \quad \text { with } k=1, \cdots, s, i=1, \cdots, r, i^{(k)}=1, \cdots, r^{(k)} \tag{1.24}
\end{equation*}
$$

The complex numbers z_{i} are not zero.Throughout this document, we assume the existence and absolute convergence conditions of the multivariable Aleph-function.

We may establish the the asymptotic expansion in the following convenient form :
$\aleph\left(z_{1}, \cdots, z_{s}\right)=0\left(\left|z_{1}\right|^{\alpha_{1}^{\prime}}, \cdots,\left|z_{s}\right|^{\alpha_{s}^{\prime}}\right), \max \left(\left|z_{1}\right|, \cdots,\left|z_{s}\right|\right) \rightarrow 0$
$\aleph\left(z_{1}, \cdots, z_{s}\right)=0\left(\left|z_{1}\right|^{\beta_{1}^{\prime}}, \cdots,\left|z_{s}\right|^{\beta_{s}^{\prime}}\right), \min \left(\left|z_{1}\right|, \cdots,\left|z_{s}\right|\right) \rightarrow \infty$
where $k=1, \cdots, z: \alpha_{k}^{\prime}=\min \left[\operatorname{Re}\left(b_{j}^{(k)} / \beta_{j}^{(k)}\right)\right], j=1, \cdots, m_{k}^{\prime}$ and

$$
\beta_{k}^{\prime}=\max \left[\operatorname{Re}\left(\left(a_{j}^{(k)}-1\right) / \alpha_{j}^{(k)}\right)\right], j=1, \cdots, n_{k}^{\prime}
$$

We will use these following notations in this paper

$$
\begin{align*}
& U^{\prime}=p_{i}^{\prime}, q_{i}^{\prime}, \iota_{i} ; r^{\prime} ; V^{\prime}=m_{1}^{\prime}, n_{1}^{\prime} ; \cdots ; m_{s}^{\prime}, n_{s}^{\prime} \tag{1.25}\\
& W^{\prime}=p_{i^{(1)}}^{\prime}, q_{i(1)}^{\prime}, \iota_{i(1)} ; r^{(1)}, \cdots, p_{i^{(r)}}^{\prime}, q_{i(r)}^{\prime}, \iota_{i(s)} ; r^{(s)} \tag{1.26}\\
& A^{\prime}=\left\{\left(u_{j} ; \mu_{j}^{(1)}, \cdots, \mu_{j}^{(s)}\right)_{1, n^{\prime}}\right\},\left\{\iota_{i}\left(u_{j i} ; \mu_{j i}^{(1)}, \cdots, \mu_{j i}^{(s)}\right)_{n^{\prime}+1, p_{i}^{\prime}}\right\} \tag{1.27}\\
& B^{\prime}=\left\{\iota_{i}\left(v_{j i} ; v_{j i}^{(1)}, \cdots, v_{j i}^{(s)}\right)_{m^{\prime}+1, q_{i}^{\prime}}\right\} \tag{1.28}\\
& C^{\prime}=\left(a_{j}^{(1)} ; \alpha_{j}^{(1)}\right)_{1, n_{1}^{\prime}}, \iota_{i(1)}\left(a_{j i^{(1)}}^{(1)} ; \alpha_{j i(1)}^{(1)}\right)_{n_{1}^{\prime}+1, p_{i(1)}^{\prime}}, \cdots,\left(a_{j}^{(s)} ; \alpha_{j}^{(s)}\right)_{1, n_{s}^{\prime}}, \iota_{i(s)}\left(a_{j i(s)}^{(s)} ; \alpha_{j i(s)}^{(s)}\right)_{n_{s}^{\prime}+1, p_{i}^{\prime}(s)} \tag{1.29}\\
& D^{\prime}=\left(b_{j}^{(1)} ; \beta_{j}^{(1)}\right)_{1, m_{1}^{\prime}}, \iota_{i(1)}\left(b_{j i(1)}^{(1)} ; \beta_{j i^{(1)}}^{(1)}\right)_{m_{1}^{\prime}+1, q_{i(1)}^{\prime}}, \cdots,\left(b_{j}^{(s)} ; \beta_{j}^{(s)}\right)_{1, m_{s}^{\prime}}, \iota_{i(s)}\left(\beta_{j i^{(s)}}^{(s)} ; \beta_{j i(s)}^{(s)}\right)_{m_{s}^{\prime}+1, q_{i}^{\prime}(s)} \tag{1.30}
\end{align*}
$$

The multivariable Aleph-function write :
$\aleph\left(z_{1}, \cdots, z_{s}\right)=\aleph_{U^{\prime}: W^{\prime}}^{0, n^{\prime}: V^{\prime}}\left(\begin{array}{c|c}\mathrm{z}_{1} & \mathrm{~A}^{\prime}: \mathrm{C}^{\prime} \\ \cdot & \cdots \\ \cdot & \cdot \\ \mathrm{z}_{s} & \mathrm{~B}^{\prime}: \mathrm{D}^{\prime}\end{array}\right)$

Srivastava and Garg [5] introduced and defined a general class of multivariable polynomials as follows

$$
\begin{equation*}
S_{L}^{h_{1}, \cdots, h_{u}}\left[z_{1}, \cdots, z_{u}\right]=\sum_{R_{1}, \cdots, R_{u}=0}^{h_{1} R_{1}+\cdots h_{u} R_{u} \leqslant L}(-L)_{h_{1} R_{1}+\cdots+h_{u} R_{u}} B\left(E ; R_{1}, \cdots, R_{u}\right) \frac{z_{1}^{R_{1}} \cdots z_{u}^{R_{u}}}{R_{1}!\cdots R_{u}!} \tag{1.32}
\end{equation*}
$$

The coefficients are $B\left[E ; R_{1}, \ldots, R_{v}\right]$ arbitrary constants, real or complex.

2. Integral representation of generalized Lauricella function of several variables

The following generalized hypergeometric function in terms of multiple contour integrals is also required [6, page 39 eq .30]
$\frac{\prod_{j=1}^{P} \Gamma\left(A_{j}\right)}{\prod_{j=1}^{Q} \Gamma\left(B_{j}\right)}{ }_{P} F_{Q}\left[\left(A_{P}\right) ;\left(B_{Q}\right) ;-\left(x_{1}+\cdots+x_{r}\right)\right]$
$=\frac{1}{(2 \pi \omega)^{r}} \int_{L_{1}} \cdots \int_{L_{r}} \frac{\prod_{j=1}^{P} \Gamma\left(A_{j}+s_{1}+\cdots+s_{r}\right)}{\prod_{j=1}^{Q} \Gamma\left(B_{j}+s_{1}+\cdots+s_{r}\right)} \Gamma\left(-s_{1}\right) \cdots \Gamma\left(-s_{r}\right) x_{1}^{s_{1}} \cdots x_{r}^{s_{r}} \mathrm{~d} s_{1} \cdots \mathrm{~d} s_{r}$
where the contours are of Barnes type with indentations, if necessary, to ensure that the poles of $\Gamma\left(A_{j}+s_{1}+\cdots+s_{r}\right)$ are separated from those of $\Gamma\left(-s_{j}\right), j=1, \cdots, r$. The above result (1.23) can be easily established by an appeal to the calculus of residues by calculating the residues at the poles of $\Gamma\left(-s_{j}\right), j=1, \cdots, r$

In order to evaluate a number of integrals of multivariable I-function, we first establish the formula
$\int_{a}^{b}(t-a)^{\alpha-1}(b-t)^{\beta-1} \prod_{j=1}^{l}\left[1-\tau_{j}(t-a)^{h_{i}}\right]^{-\lambda_{j}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{\sigma_{j}} \mathrm{~d} t=(b-a)^{\alpha+\beta-1} B(\alpha, \beta) \prod_{j=1}^{k}\left(a f_{j}+g_{j}\right)^{\sigma_{j}}$
$F_{1: 0, \cdots, 0 ; 0, \cdots, 0}^{1: 1, \cdots, 1 ; 1, \cdots, 1}\left(\begin{array}{c}\left(\alpha: h_{1}, \cdots, h_{l}, 1, \cdots, 1\right):\left(\lambda_{1}: 1\right), \cdots,\left(\lambda_{l}: 1\right) ;\left(-\sigma_{1}: 1\right), \cdots,\left(-\sigma_{k}: 1\right) \\ \cdots \\ \left(\alpha+\beta: h_{1}, \cdots, h_{l}, 1, \cdots, 1\right):-, \cdots,-;-, \cdots,-\end{array}\right.$
$\left.; \tau_{1}(b-a)^{h_{1}}, \cdots, \tau_{l}(b-a)^{h_{l}},-\frac{(b-a) f_{1}}{a f_{1}+g_{1}}, \cdots,-\frac{(b-a) f_{k}}{a f_{k}+g_{k}}\right)$
where $a, b \in \mathbb{R}(a<b), \alpha, \beta, f_{i}, g_{i}, \sigma_{i}, \tau_{j}, h_{j} \in \mathbb{C}, \lambda_{j} \in \mathbb{R}^{+}(i=1, \cdots, k ; j=1, \cdots, l)$
$\min (\operatorname{Re}(\alpha), \operatorname{Re}(\beta))>0, \max _{1 \leqslant j \leqslant l}\left\{\left|\tau_{j}(b-a)^{h_{j}}\right|\right\}<1, \max _{1 \leqslant j \leqslant k}\left\{\left|\frac{(b-a) f_{i}}{a f_{i}+g_{i}}\right|\right\}<1$,
and $F_{1: 0, \cdots, 0 ; 0, \cdots, 0}^{1: 1, \cdots, 1 ; 1 \cdots, 1}$ is a particular case of the generalized Lauricella function introduced by Srivastava-Daoust[5,page 454] and [6] given by :

$$
\begin{gathered}
F_{1: 0, \cdots, 0 ; 0, \cdots, 0}^{1: 1, \cdots, 1 ; 1 \cdots, 1}\left(\begin{array}{r}
\left(\alpha: h_{1}, \cdots, h_{l}, 1, \cdots, 1\right):\left(\lambda_{1}: 1\right), \cdots,\left(\lambda_{l}: 1\right) ;\left(-\sigma_{1}: 1\right), \cdots,\left(-\sigma_{k}: 1\right) \\
\cdots \\
\left(\alpha+\beta: h_{1}, \cdots, h_{l}, 1, \cdots, 1\right):-, \cdots,-;-, \cdots,- \\
\left.; \tau_{1}(b-a)^{h_{1}}, \cdots, \tau_{l}(b-a)^{h_{l}},-\frac{(b-a) f_{1}}{a f_{1}+g_{1}}, \cdots,-\frac{(b-a) f_{k}}{a f_{k}+g_{k}}\right)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \prod_{j=1}^{l} \Gamma\left(\lambda_{j}\right) \prod_{j=1}^{k} \Gamma\left(-\sigma_{j}\right)} \\
\frac{1}{(2 \pi \omega)^{l+k}} \int_{L_{1}} \cdots \int_{L_{l+k}} \frac{\Gamma\left(\alpha+\sum_{j=1}^{l} h_{j} s_{j}+\sum_{j=1}^{k} s_{l+j}\right)}{\Gamma\left(\alpha+\beta+\sum_{j=1}^{l} h_{j} s_{j}+\sum_{j=1}^{k} s_{l+j}\right)} \prod_{j=1}^{l} \Gamma\left(\lambda_{j}+s_{j}\right) \prod_{j=1}^{k} \Gamma\left(-\sigma_{j}+s_{l+j}\right)
\end{array}\right.
\end{gathered}
$$

$$
\begin{equation*}
\prod_{j=1}^{l+k} \Gamma\left(-s_{j}\right) z_{1}^{s_{1}} \cdots z_{l}^{s_{l}^{l}} z_{l+1}^{s_{l+1}} \cdots, z_{l+k}^{s_{l+k}} \mathrm{~d} s_{1} \cdots \mathrm{~d} s_{l+k} \tag{2.3}
\end{equation*}
$$

Here the contour $L_{j}^{\prime} s$ are defined by $L_{j}=L_{w \zeta_{j} \infty}\left(\operatorname{Re}\left(\zeta_{j}\right)=v_{j}^{\prime \prime}\right)$ starting at the point $v_{j}^{\prime \prime}-\omega \infty$ and terminating at the point $v_{j}^{\prime \prime}+\omega \infty$ with $v_{j}^{\prime \prime} \in \mathbb{R}(j=1, \cdots, l)$ and each of the remaining contour L_{l+1}, \cdots, L_{l+k} run from $-\omega \infty$ to $\omega \infty$ (2.2) can be easily established by expanding $\prod_{j=1}^{l}\left[1-\tau_{j}(t-a)^{h_{i}}\right]^{-\lambda_{j}}$ by means of the formula : $(1-z)^{-\alpha}=\sum_{r=0}^{\infty} \frac{(\alpha)_{r}}{r!} z^{r}(|z|<1)$
integrating term by term with the help of the integral given by Saigo and Saxena [2, page 93, eq.(3.2)] and applying the definition of the generalized Lauricella function [3, page 454].

3. Eulerian integral

In this section, we note :
$\theta_{i}=\prod_{j=1}^{l}\left[1-\tau_{j}(t-a)^{h_{i}}\right]^{-\zeta_{j}^{(i)}}, \zeta_{j}^{(i)}>0(i=1, \cdots, r) ; \theta_{i}^{\prime}=\prod_{j=1}^{l}\left[1-\tau_{j}(t-a)^{h_{i}}\right]^{-\zeta_{j}^{\prime(i)}}, \zeta_{j}^{(i)}>0(i=1, \cdots, s)$
$\theta_{i}^{\prime \prime}=\prod_{j=1}^{l}\left[1-\tau_{j}(t-a)^{h_{i}}\right]^{-\zeta_{j}^{\prime \prime(}(i)}, \zeta_{j}^{\prime \prime(i)}>0(i=1, \cdots, u)$
$\theta_{i}^{\prime \prime \prime}=\prod_{j=1}^{l}\left[1-\tau_{j}(t-a)^{h_{i}}\right]^{-\zeta_{j}^{\prime \prime \prime(}(i)}, \zeta_{j}^{\prime \prime \prime(i)}>0(i=1, \cdots, v)$
$K_{1}=\left(1-\alpha-\sum_{i=1}^{u} R_{i} a_{i}-\sum_{i=1}^{v} \eta_{G_{i}, g_{i}} a_{i}^{\prime} ; \mu_{1}, \cdots, \mu_{r}, \mu_{1}^{\prime}, \cdots, \mu_{s}^{\prime}, h_{1}, \cdots, h_{l}, 1, \cdots, 1\right)$
$K_{2}=\left(1-\beta-\sum_{i=1}^{u} R_{i} b_{i}-\sum_{i=1}^{v} \eta_{G_{i}, g_{i}} b_{i}^{\prime} ; \rho_{1}, \cdots, \rho_{r}, \rho_{1}^{\prime}, \cdots, \rho_{s}^{\prime}, 0, \cdots, 0,0 \cdots, 0\right)$
$K_{j}=\left[1-\lambda_{j}-\sum_{i=1}^{u} R_{i} \zeta_{j}^{\prime \prime(i)}-\sum_{i=1}^{v} \eta_{G_{i}, g_{i}} \zeta_{j}^{\prime \prime \prime(i)} ; \zeta_{j}^{(1)}, \cdots, \zeta_{j}^{(r)}, \zeta_{j}^{\prime(1)} \cdots, \zeta_{j}^{\prime(s)}\right.$,
$0, \cdots, 1, \cdots, 0,0 \cdots, 0]_{1, l}$
$K_{j}^{\prime}=\left[1+\sigma_{j}-\sum_{i=1}^{u} R_{i} \lambda_{j}^{\prime \prime(i)}-\sum_{i=1}^{v} \eta_{G_{i}, g_{i}} \lambda_{j}^{\prime \prime \prime(i)} ; \lambda_{j}^{(1)}, \cdots, \lambda_{j}^{(r)}, \lambda_{j}^{\prime(1)} \cdots, \lambda_{j}^{\prime(s)}\right.$,
$0, \cdots, 0,0 \cdots,{ }_{\mathrm{j}}^{1, \cdots, 0]_{1, k}}$
$L_{1}=\left(1-\alpha-\beta-\sum_{i=1}^{u} R_{i}\left(a_{i}+b_{i}\right)-\sum_{i=1}^{v}\left(a_{i}^{\prime}+b_{i}^{\prime}\right) \eta_{G_{i}, g_{i}} ; \mu_{1}+\rho_{1}, \cdots, \mu_{r}+\rho_{r}, \mu_{1}^{\prime}+\rho_{1}^{\prime}, \cdots, \mu_{r}^{\prime}+\rho_{r}^{\prime}\right.$,
$\left.h_{1}, \cdots, h_{l}, 1, \cdots, 1\right)$
$L_{j}=\left[1-\lambda_{j}-\sum_{i=1}^{u} R_{i} \zeta_{j}^{\prime \prime(i)}-\sum_{i=1}^{s} \zeta_{j}^{\prime \prime \prime(i)} \eta_{G_{i}, g_{i}} ; \zeta_{j}^{(1)}, \cdots, \zeta_{j}^{(r)}, \zeta_{j}^{\prime(1)} \cdots, \zeta_{j}^{\prime(s)}, 0, \cdots, 0,0 \cdots, 0\right]_{1, l}$
$L_{j}^{\prime}=\left[1+\sigma_{j}-\sum_{i=1}^{u} R_{i} \lambda_{j}^{\prime \prime(i)}-\sum_{i=1}^{v} \lambda_{j}^{\prime \prime \prime(i)} \eta_{G_{i}, g_{i}} ; \lambda_{j}^{(1)}, \cdots, \lambda_{j}^{(r)}, \lambda_{j}^{\prime(1)} \cdots, \lambda_{j}^{\prime(s)}, 0, \cdots, 0,0, \cdots, 0\right]_{1, k}$
$P_{1}=(b-a)^{\alpha+\beta-1}\left\{\prod_{j=1}^{h}\left(a f_{j}+g_{j}\right)^{\sigma_{j}}\right\}$
$B_{u, v}=(b-a)^{\sum_{i=1}^{v}\left(a_{i}^{\prime}+b_{i}^{\prime}\right) \eta_{G_{i}, g_{i}}+\sum_{i=1}^{u}\left(a_{i}+b_{i}\right) R_{i}}\left\{\prod_{j=1}^{h}\left(a f_{j}+g_{j}\right)^{-\sum_{i=1}^{v} \lambda_{i}^{\prime \prime \prime} \eta_{g_{i}, h_{i}}-\sum_{i=1}^{u} \lambda_{i}^{\prime \prime} R_{i}}\right\}$
$B_{u}=\frac{(-L)_{h_{1} R_{1}+\cdots+h_{u} R_{u} B\left(E ; R_{1}, \cdots, R_{u}\right)}^{R_{1}!\cdots R_{u}!}}{\text { 信 }}$
$V_{1}=V ; V^{\prime} ; 1,0 ; \cdots ; 1,0 ; 1,0 ; \cdots ; 1,0 ; W_{1}=W ; W^{\prime} ; 0,1 ; \cdots ; 0,1 ; 0,1 ; \cdots ; 0,1$

We have the general Eulerian integral
$\int_{a}^{b}(t-a)^{\alpha-1}(b-t)^{\beta-1} \prod_{j=1}^{l}\left[1-\tau_{j}(t-a)^{h_{i}}\right]^{-\lambda_{j}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{\sigma_{j}}$
$S_{L}^{h_{1}, \cdots, h_{u}}\left(\begin{array}{c}\mathrm{z}_{1}^{\prime \prime} \theta_{1}^{\prime \prime}(t-a)^{a_{1}}(b-t)^{b_{1}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime \prime(1)}} \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{z}_{u}^{\prime \prime} \theta_{u}^{\prime \prime}(t-a)^{a_{u}}(b-t)^{b_{u}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime \prime(}(u)}\end{array}\right)$
$\bar{I}\left(\begin{array}{c}\mathrm{z}_{1}^{\prime \prime \prime} \theta_{1}^{\prime \prime \prime}(t-a)^{a_{1}^{\prime}}(b-t)^{b_{1}^{\prime}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime \prime \prime(1)}} \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{z}_{v}^{\prime \prime \prime} \theta_{v}^{\prime \prime \prime}(t-a)^{a_{v}^{\prime}}(b-t)^{b_{v}^{\prime}} \\ \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime \prime \prime(v)}}\end{array}\right)$
$\aleph\left(\begin{array}{c}\mathrm{z}_{1} \theta_{1}(t-a)^{\mu_{1}}(b-t)^{\rho_{1}} \\ \cdot\end{array} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{(1)}}+\cdots \quad \begin{array}{c}\cdot \\ \cdot \\ \mathrm{z}_{r} \theta_{r}(t-a)^{\mu_{r}}(b-t)^{\rho_{r}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{(r)}}\end{array}\right)$
$\aleph\left(\begin{array}{c}\mathrm{z}_{1}^{\prime} \theta_{1}^{\prime}(t-a)^{\mu_{1}^{\prime}}(b-t)^{\rho_{1}^{\prime}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime(1)}} \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{z}_{s}^{\prime} \theta_{s}^{\prime}(t-a)^{\mu_{s}^{\prime}}(b-t)^{\rho_{s}^{\prime}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime(s)}}\end{array}\right) \mathrm{d} t$
$=P_{1} \sum_{h_{1}=1}^{M_{1}} \cdots \sum_{h_{v}=1}^{M_{v}} \sum_{k_{1}=0}^{\infty} \cdots \sum_{k_{v}=0}^{\infty} \sum_{R_{1}, \cdots, R_{u}=0}^{h_{1} R_{1}+\cdots h_{u} R_{u} \leqslant L} \prod_{i=1}^{v} \frac{(-)^{k_{i}}}{\delta h_{i}^{(i)} k_{i}!} z_{i}^{\prime \prime \prime \eta_{h_{i}, k_{i}}} \prod_{k=1}^{u} z^{\prime \prime R_{k}} B_{u} B_{u, v}\left[\phi_{1}\left(\eta_{h_{1}, k_{1}}, \cdots, \eta_{h_{r}, k_{r}}\right)\right]_{j \neq h_{i}}$

$\aleph_{U ; U^{\prime} ; l+k+2, l+k+1: W_{1}}^{0, n+n^{\prime}+l+k+2: V_{1}}$	$\left(\begin{array}{c} \frac{z_{1}(b-a)^{\mu_{1}+\rho_{1}}}{\prod_{j=1}^{k}\left(a f_{j}+g_{j}\right)^{\lambda_{j}^{(1)}}} \tag{3.1}\\ \cdots \cdot \\ \cdots \cdot \\ \frac{z_{r}(b-a)^{\mu_{r}+\rho_{r}}}{\prod_{j=1}^{k}\left(a f_{j}+g_{j}\right)^{\lambda_{j}^{(r)}}} \\ \frac{z_{1}^{\prime}(b-a)^{\mu_{1}^{\prime}+\rho_{1}^{\prime}}}{\prod_{j=1}^{k}\left(a f_{j}+g_{j}\right)^{\lambda_{j}^{\prime(1)}}} \\ \cdots \cdot \\ \cdots \\ \frac{z_{s}^{\prime}(b-a)^{\mu_{s}^{\prime}+\rho_{s}^{\prime}}}{\prod_{j=1}^{k}\left(a f_{j}+g_{j}\right)^{\lambda_{j}^{\prime}(s)}} \\ \tau_{1}(b-a)^{h_{1}} \\ \cdots \cdot \\ \cdots \cdot \\ \tau_{l}(b-a)^{h_{l}} \\ \frac{(b-a) f_{1}}{a f_{1}+g_{1}} \\ \cdot \cdot \\ \cdot \cdot \\ \frac{(b-a) f_{k}}{a f_{k}+g_{k}} \end{array}\right.$	$\mathrm{A} ; \mathrm{A} ; \mathrm{K}_{1}, K_{2}, K_{j}, K_{j}^{\prime}: C_{1}$ $\mathrm{B} ; \mathrm{B} ; \mathrm{L}_{1}, L_{j}, L_{j}^{\prime}: D_{1}$

We obtain the Aleph-function of $r+s+k+l$ variables. The quantities $A, A^{\prime}, B, B^{\prime}, C, C^{\prime}, C_{1}, D_{1}, V_{1}$ and W_{1} are defined above.
(A) $a, b \in \mathbb{R}(a<b) ; \mu_{i}, \mu_{u}^{\prime}, \rho_{i}, \rho_{u}^{\prime}, \lambda_{j}^{(i)}, \lambda_{j}^{\prime(u)}, h_{v} \in \mathbb{R}^{+}, f_{i}, g_{j}, \tau_{v}, \sigma_{j}, \lambda_{v} \in \mathbb{C}(i=1, \cdots, r ; j=1, \cdots ; k$;
$u=1, \cdots, s ; v=1, \cdots, l), a_{i}, b_{i}, \lambda_{j}^{\prime \prime(i)}, \zeta_{j}^{\prime \prime(i)} \in \mathbb{R}^{+},(i=1, \cdots, u ; j=1, \cdots, k)$
$a_{i}^{\prime}, b_{i}^{\prime}, \lambda_{j}^{\prime \prime \prime}(i), \zeta_{j}^{\prime \prime \prime}(i) \in \mathbb{R}^{+},(i=1, \cdots, v ; j=1, \cdots, k)$
(B) See the section 1
(C) $\max _{1 \leqslant j \leqslant k}\left\{\left|\frac{(b-a) f_{i}}{a f_{i}+g_{i}}\right|\right\}<1, \max _{1 \leqslant j \leqslant l}\left\{\left|\tau_{j}(b-a)^{h_{j}}\right|\right\}<1$
(D) $R e\left[\alpha+\sum_{j=1}^{v} a_{j}^{\prime} \min _{1 \leqslant k \leqslant M_{i}} \frac{d_{k}^{(j)}}{\delta_{k}^{(j)}}+\sum_{j=1}^{r} \mu_{j} \min _{1 \leqslant k \leqslant m_{i}} \frac{d_{k}^{\prime(j)}}{\delta_{k}^{\prime(j)}}+\sum_{j=1}^{s} \mu_{i}^{\prime} \min _{1 \leqslant k \leqslant m_{i}^{\prime}} \frac{b_{k}^{(j)}}{\beta_{k}^{(j)}}\right]>0$
$R e\left[\beta+\sum_{j=1}^{v} b_{j}^{\prime} \min _{1 \leqslant k \leqslant M_{i}} \frac{d_{k}^{(j)}}{\delta_{k}^{(j)}}+\sum_{j=1}^{r} \rho_{j} \min _{1 \leqslant k \leqslant m_{i}} \frac{d_{k}^{(j)}}{\delta_{k}^{\prime(j)}}+\sum_{j=1}^{s} \rho_{j}^{\prime} \min _{1 \leqslant k \leqslant m_{i}^{\prime}} \frac{b_{k}^{(j)}}{\beta_{k}^{(j)}}\right]>0$
(E) $R e\left(\alpha+\sum_{i=1}^{v} \eta_{G_{i}, g_{i}} a_{i}^{\prime}+\sum_{i=1}^{u} R_{i} a_{i}+\sum_{i=1}^{r} \mu_{i} s_{i}+\sum_{i=1}^{s} t_{i} \mu_{i}^{\prime}\right)>0$

$$
\begin{aligned}
& \operatorname{Re}\left(\beta+\sum_{i=1}^{v} \eta_{G_{i}, g_{i}} b_{i}^{\prime}+\sum_{i=1}^{u} R_{i} b_{i}+\sum_{i=1}^{r} v_{i} s_{i}+\sum_{i=1}^{s} t_{i} \rho_{i}^{\prime}\right)>0 \\
& \operatorname{Re}\left(\lambda_{j}+\sum_{i=1}^{v} \eta_{G_{i}, g_{i}} \lambda_{j}^{\prime \prime \prime(i)}+\sum_{i=1}^{u} R_{i} \lambda_{j}^{\prime \prime(i)}+\sum_{i=1}^{r} s_{i} \zeta_{j}^{(i)}+\sum_{i=1}^{s} t_{i} \zeta_{j}^{\prime(i)}\right)>0(j=1, \cdots, l)
\end{aligned}
$$

$$
\operatorname{Re}\left(-\sigma_{j}+\sum_{i=1}^{v} \eta_{G_{i}, g_{i}} \lambda^{\prime \prime \prime(i)}+\sum_{i=1}^{u} R_{i} \lambda_{j}^{\prime \prime(i)}+\sum_{i=1}^{r} s_{i} \lambda_{j}^{(i)}+\sum_{i=1}^{s} t_{i} \lambda_{j}^{\prime(i)}\right)>0(j=1, \cdots, k) ;
$$

$$
\text { (F) } U_{i}^{(k)}=\sum_{j=1}^{\mathfrak{n}} \alpha_{j}^{(k)}+\tau_{i} \sum_{j=\mathfrak{n}+1}^{p_{i}} \alpha_{j i}^{(k)}+\sum_{j=1}^{n_{k}} \gamma_{j}^{(k)}+\tau_{i^{(k)}} \sum_{j=n_{k}+1}^{p_{i}(k)} \gamma_{j i(k)}^{(k)}-\tau_{i} \sum_{j=1}^{q_{i}} \beta_{j i}^{(k)}-\sum_{j=1}^{m_{k}} \delta_{j}^{\prime(k)}
$$

$$
-\tau_{i^{(k)}} \sum_{j=m_{k}+1}^{q_{i}(k)} \delta_{j i(k)}^{(k)} \leqslant 0
$$

$$
U_{i}^{\prime(k)}=\sum_{j=1}^{n^{\prime}} \mu_{j}^{(k)}+\iota_{i} \sum_{j=n^{\prime}+1}^{p_{i}^{\prime}} \mu_{j i}^{(k)}+\sum_{j=1}^{n_{k}^{\prime}} \alpha_{j}^{(k)}+\iota_{i(k)} \sum_{j=n_{k}^{\prime}+1}^{p_{i(k)}^{\prime}} \alpha_{j i(k)}^{(k)}-\iota_{i} \sum_{j=1}^{q_{i}^{\prime}} v_{j i}^{(k)}-\sum_{j=1}^{m_{k}^{\prime}} \beta_{j}^{(k)}
$$

$$
-\iota_{i}(k) \sum_{j=m_{k}^{\prime}+1}^{q_{i}^{\prime}(k)} \beta_{j i^{(k)}}^{(k)} \leqslant 0
$$

(G) $\quad A_{i}^{(k)}=\sum_{j=1}^{\mathfrak{n}} \alpha_{j}^{(k)}-\tau_{i} \sum_{j=\mathfrak{n}+1}^{p_{i}} \alpha_{j i}^{(k)}-\tau_{i} \sum_{j=1}^{q_{i}} \beta_{j i}^{(k)}+\sum_{j=1}^{n_{k}} \gamma_{j}^{(k)}-\tau_{i^{(k)}} \sum_{j=n_{k}+1}^{p_{i}(k)} \gamma_{j i(k)}^{(k)}$
$+\sum_{j=1}^{m_{k}} \delta_{j}^{\prime(k)}-\tau_{i^{(k)}} \sum_{j=m_{k}+1}^{q_{i}(k)} \delta_{j i^{(k)}}^{(k)}-\sum_{l=1}^{k} \lambda_{j}^{(i)}-\sum_{l=1}^{l} \zeta_{j}^{(i)}-\mu_{k}-\rho_{k}>0$, with $k=1 \cdots, r$,
$i=1, \cdots, R, i^{(k)}=1, \cdots, R^{(k)}$

$$
\begin{aligned}
& B_{i}^{(k)}=\sum_{j=1}^{n^{\prime}} \mu_{j}^{(k)}-\iota_{i} \sum_{j=n^{\prime}+1}^{p_{i}^{\prime}} \mu_{j i}^{(k)}-\iota_{i} \sum_{j=1}^{q_{i}^{\prime}} v_{j i}^{(k)}+\sum_{j=1}^{n_{k}^{\prime}} \alpha_{j}^{(k)}-\iota_{i}(k) \sum_{j=n_{k}^{\prime}+1}^{p_{i}^{\prime}(k)} \alpha_{j i}^{(k)} \\
& +\sum_{j=1}^{m_{k}^{\prime}} \beta_{j}^{(k)}-\iota_{i}(k) \sum_{j=m_{k}^{\prime}+1}^{q_{i}^{\prime}(k)} \beta_{j i^{(k)}}^{(k)}-\sum_{l=1}^{k} \lambda_{j}^{\prime(i)}-\sum_{l=1}^{l} \zeta_{j}^{\prime \prime}(i)-\mu_{k}^{\prime}-\rho_{k}^{\prime}>0, \quad \text { with } k=1, \cdots, s, \\
& i=1, \cdots, r, i^{(k)}=1, \cdots, r^{(k)} \\
& \text { (H) }\left|\arg \left(z_{i} \prod_{j=1}^{l}\left[1-\tau_{j}(t-a)^{h_{i}}\right]^{-\zeta_{j}^{(i)}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{(i)}}\right)\right|<\frac{1}{2} A_{i}^{(k)} \pi(a \leqslant t \leqslant b ; i=1, \cdots, r) \\
& \mid \arg \left(z_{i}^{\prime} \prod_{j=1}^{l}\left[1-\tau_{j}^{\prime}(t-a)^{h_{i}^{\prime}}\right]-\zeta_{j}^{\prime(i)}\right. \\
& \left.\prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime(i)}}\right) \left\lvert\,<\frac{1}{2} B_{i}^{(k)} \pi \quad(a \leqslant t \leqslant b ; i=1, \cdots, s)\right.
\end{aligned}
$$

(I) The multiple series occuring on the right-hand side of (3.14) is absolutely and uniformly convergent.

Proof

To prove (3.14), first, we express in serie the multivariable I-function defined by Nambisan et al [2] with the help of (1.5), a class of multivariable polynomials defined by Srivastava $S_{L}^{h_{1}, \cdots, h_{u}}[$.$] in serie with the help of (1.32), the$ Aleph-functions of r-variables and s-variables in terms of Mellin-Barnes type contour integral with the help of (1.8) and (1.20) respectively. Now collect the power of $\left[1-\tau_{j}(t-a)^{h_{i}}\right]$ with $(i=1, \cdots, r ; j=1, \cdots, l)$ and collect the power of $\left(f_{j} t+g_{j}\right)$ with $j=1, \cdots, k$. Use the equations (2.2) and (2.3) and express the result in Mellin-Barnes contour integral. Interpreting the $(r+s+k+l)$ dimensional Mellin-Barnes integral in multivariable Alephfunction ,we obtain the equation (3.14).

Remarks

If a) $\rho_{1}=\cdots, \rho_{r}=\rho_{1}^{\prime}=\cdots, \rho_{s}^{\prime}=0$; b) $\mu_{1}=\cdots, \mu_{r}=\mu_{1}^{\prime}=\cdots, \mu_{s}^{\prime}=0$, we obtain the similar formulas that (3.14) with the corresponding simplifications.

4. Particular cases

a) If $\tau_{i}, \tau_{i^{(1)}}, \cdots, \tau_{i(r)}, \iota_{i}, \iota_{i(1)}, \cdots, \iota_{i(s)} \rightarrow 1$, the multivariable Aleph-functions of r and s -variables reduces to multivariable I-functions of r and s -variables defined by Sharma and al [3] respectively and we have
$\int_{a}^{b}(t-a)^{\alpha-1}(b-t)^{\beta-1} \prod_{j=1}^{l}\left[1-\tau_{j}(t-a)^{h_{i}}\right]^{-\lambda_{j}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{\sigma_{j}}$
$S_{L}^{h_{1}, \cdots, h_{u}}\left(\begin{array}{c}\mathrm{z}_{1}^{\prime \prime} \theta_{1}^{\prime \prime}(t-a)^{a_{1}}(b-t)^{b_{1}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime \prime(1)}} \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{z}_{u}^{\prime \prime} \theta_{u}^{\prime \prime}(t-a)^{a_{u}}(b-t)^{b_{u}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime \prime(}(u)}\end{array}\right)$

$$
\begin{aligned}
& \bar{I}\left(\begin{array}{c}
\mathrm{z}_{1}^{\prime \prime \prime} \theta_{1}^{\prime \prime \prime}(t-a)^{a_{1}^{\prime}}(b-t)^{b_{1}^{\prime}} \\
\cdot \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime \prime \prime(1)}} \\
\cdot \\
\cdot \\
\mathrm{z}_{v}^{\prime \prime \prime} \theta_{v}^{\prime \prime \prime}(t-a)^{a_{v}^{\prime}}(b-t)^{b_{v}^{\prime}}
\end{array} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime \prime \prime}(v)}\right)\left(\begin{array}{c}
\mathrm{z}_{1} \theta_{1}(t-a)^{\mu_{1}}(b-t)^{\rho_{1}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{(1)}} \\
\cdot \\
\cdot \\
\cdot \\
\mathrm{z}_{r} \theta_{r}(t-a)^{\mu_{r}}(b-t)^{\rho_{r}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{(r)}}
\end{array}\right) \\
& I\left(\begin{array}{c}
\mathrm{z}_{1}^{\prime} \theta_{1}^{\prime}(t-a)^{\mu_{1}^{\prime}}(b-t)^{\rho_{1}^{\prime}} \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
\left.\mathrm{z}_{s}^{\prime} \theta_{s}^{\prime}(t-a)^{\mu_{s}^{\prime}}(b-t)^{\rho_{s}^{\prime}} t+g_{j}\right)^{-\lambda_{j}^{\prime(1)}} \\
\prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime(s)}}
\end{array}\right) \mathrm{d} t \\
& =P_{1} \sum_{h_{1}=1}^{M_{1}} \cdots \sum_{h_{v}=1}^{M_{v}} \sum_{k_{1}=0}^{\infty} \cdots \sum_{k_{v}=0}^{\infty} \sum_{R_{1}, \cdots, R_{u}=0}^{h_{1} R_{1}+\cdots h_{u} R_{u} \leqslant L} \prod_{i=1}^{v} \frac{(-)^{k_{i}}}{\delta h_{i}^{(i)} k_{i}!} z_{i}^{\prime \prime \prime} \eta_{h_{i}, k_{i}} \prod_{k=1}^{u} z^{\prime \prime R_{k}} B_{u} B_{u, v}\left[\phi_{1}\left(\eta_{h_{1}, k_{1}}, \cdots, \eta_{h_{r}, k_{r}}\right)\right]_{j \neq h_{i}}
\end{aligned}
$$

$I_{U}^{0, n+U^{\prime} ; l+k+2, l+k+2: V_{1}}$	$\left(\begin{array}{c} \frac{z_{1}(b-a)^{\mu_{1}+\rho_{1}}}{\prod_{j=1}^{k}\left(a f_{j}+g_{j}\right)^{\lambda_{j}^{(1)}}} \\ \cdots \cdot \\ \cdot \cdot \\ \frac{z_{r}(b-a)^{\mu_{r}+\rho_{r}}}{\prod_{j=1}^{k}\left(a f_{j}+g_{j}\right)^{\lambda_{j}^{(r)}}} \\ \frac{z_{1}^{\prime}(b-a)^{\mu_{1}^{\prime}+\rho_{1}^{\prime}}}{\prod_{j=1}^{k}\left(a f_{j}+g_{j}\right)^{\lambda_{j}^{\prime(1)}}} \tag{4.1}\\ \cdots \cdot \\ \cdot \cdot \\ \frac{z_{s}^{\prime}(b-a)^{\mu_{s}^{\prime}+\rho_{s}^{\prime}}}{\prod_{j=1}^{k}\left(a f_{j}+g_{j}\right)_{j}^{\lambda_{j}^{\prime(s)}}} \\ \tau_{1}(b-a)^{h_{1}} \\ \cdot \cdot \\ \cdot \cdot \\ \tau_{l}(b-a)^{h_{l}} \\ \frac{(b-a) f_{1}}{a f_{1}+g_{1}} \\ \cdot \cdot \\ \cdot \cdot \\ \frac{(b-a) f_{k}}{a f_{k}+g_{k}} \end{array}\right.$	$\mathrm{A} ; \mathrm{A} ; \mathrm{K}_{1}, K_{2}, K_{j}, K_{j}^{\prime}: C_{1}$ $\mathrm{B} ; \mathrm{B} ; \mathrm{L}_{1}, L_{j}, L_{j}^{\prime}: D_{1}$

under the same conditions and notations that (3.14) with $\tau_{i}, \tau_{i(1)}, \cdots, \tau_{i(r)}, \iota_{i}, \iota_{i(1)}, \cdots, \iota_{i(s)} \rightarrow 1$
b) If $B\left(L ; R_{1}, \cdots, R_{u}\right)=\frac{\prod_{j=1}^{\bar{A}}\left(a_{j}\right)_{R_{1} \theta_{j}^{\prime}+\cdots+R_{u} \theta_{j}^{(u)}} \prod_{j=1}^{B^{\prime}}\left(b_{j}^{\prime}\right)_{R_{1} \phi_{j}^{\prime}} \cdots \prod_{j=1}^{B^{(u)}}\left(b_{j}^{(u)}\right)_{R_{u} \phi_{j}^{(u)}}}{\prod_{j=1}^{\bar{C}}\left(c_{j}\right)_{m_{1} \psi_{j}^{\prime}+\cdots+m_{u} \psi_{j}^{(u)}} \prod_{j=1}^{D^{\prime}}\left(d_{j}^{\prime}\right)_{R_{1} \delta_{j}^{\prime}} \cdots \prod_{j=1}^{D^{(u)}}\left(d_{j}^{(u)}\right)_{R_{u} \delta_{j}^{(u)}}}$
then the general class of multivariable polynomial $S_{L}^{h_{1}, \cdots, h_{u}}\left[z_{1}, \cdots, z_{u}\right]$ reduces to generalized Lauricella function defined by Srivastava et al [4]. We have
$\int_{a}^{b}(t-a)^{\alpha-1}(b-t)^{\beta-1} \prod_{j=1}^{l}\left[1-\tau_{j}(t-a)^{h_{i}}\right]^{-\lambda_{j}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{\sigma_{j}}$
$F_{\bar{C}: D^{\prime} ; \cdots ; D^{(u)}}^{1+\bar{A}: B^{\prime} ; \cdots ; B^{(u)}}\left(\begin{array}{c}\mathrm{z}_{1}^{\prime \prime} \theta_{1}^{\prime \prime}(t-a)^{a_{1}}(b-t)^{b_{1}} \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \left.\mathrm{z}_{u}^{\prime \prime} \theta_{u}^{\prime \prime}(t-a)^{a_{u}}(b-t)^{b_{u}} \prod_{j=1}^{k} t+g_{j}\right)^{-\lambda_{j}^{\prime \prime(1)}} \\ \cdot\end{array} f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime \prime(u)}}$
$\left.\begin{array}{c}{\left[(-\mathrm{L}) ; \mathrm{R}_{1}, \cdots, R_{u}\right]\left[(a) ; \theta^{\prime}, \cdots, \theta^{(u)}\right]:\left[\left(b^{\prime}\right) ; \phi^{\prime}\right] ; \cdots ;\left[\left(b^{(u)}\right) ; \phi^{(u)}\right]} \\ {\left[(\mathrm{c}) ; \psi^{\prime}, \cdots, \psi^{(u)}\right]:\left[\left(d^{\prime}\right) ; \delta^{\prime}\right] ; \cdots ;\left[\left(d^{(u)}\right) ; \delta^{(u)}\right]}\end{array}\right)$
$\bar{I}\left(\begin{array}{c}\mathrm{z}_{1}^{\prime \prime \prime} \theta_{1}^{\prime \prime \prime}(t-a)^{a_{1}^{\prime}}(b-t)^{b_{1}^{\prime}} \\ \cdot\end{array} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime \prime \prime(1)}}\right)$
$\aleph\left(\begin{array}{c}\mathrm{z}_{1} \theta_{1}(t-a)^{\mu_{1}}(b-t)^{\rho_{1}} \\ \cdot\end{array} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{(1)}}\right)$
$\aleph\left(\begin{array}{cc}\mathrm{z}_{1}^{\prime} \theta_{1}^{\prime}(t-a)^{\mu_{1}^{\prime}}(b-t)^{\rho_{1}^{\prime}} & \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime(1)}} \\ \cdot & \\ \cdot & \\ \mathrm{z}_{s}^{\prime} \theta_{s}^{\prime}(t-a)^{\mu_{s}^{\prime}}(b-t)^{\rho_{s}^{\prime}} & \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime(s)}}\end{array}\right) \mathrm{d} t$

$$
=P_{1} \sum_{h_{1}=1}^{M_{1}} \cdots \sum_{h_{v}=1}^{M_{v}} \sum_{k_{1}=0}^{\infty} \cdots \sum_{k_{v}=0}^{\infty} \sum_{R_{1}, \cdots, R_{u}=0}^{h_{1} R_{1}+\cdots h_{u} R_{u} \leqslant L} \prod_{i=1}^{v} \frac{(-)^{k_{i}}}{\delta h_{i}^{(i)} k_{i}!} z_{i}^{\prime \prime \prime \eta_{h_{i}, k_{i}}} \prod_{k=1}^{u} z^{\prime \prime R_{k}} B_{u}^{\prime} B_{u, v}\left[\phi_{1}\left(\eta_{h_{1}, k_{1}}, \cdots, \eta_{h_{r}, k_{r}}\right)\right]_{j \neq h_{i}}
$$

$\begin{equation*} \aleph_{U ; U^{\prime} ; l+k+2, l+k+1: W_{1}}^{0, n+n^{\prime}+l+k+2: V_{1}} \tag{4.3} \end{equation*}$	$\left(\begin{array}{c} \frac{z_{1}(b-a)^{\mu_{1}+\rho_{1}}}{\prod_{j=1}^{k}\left(a f_{j}+g_{j}\right)^{\lambda_{j}^{(1)}}} \\ \cdot \cdot \\ \cdot \cdot \cdot \\ \frac{z_{r}(b-a)^{\mu_{r}+\rho_{r}}}{\prod_{j=1}^{k}\left(a f_{j}+g_{j}\right)^{\lambda_{j}^{(r)}}} \\ \frac{z_{1}^{\prime}(b-a)^{\mu_{1}^{\prime}+\rho_{1}^{\prime}}}{\prod_{j=1}^{k}\left(a f_{j}+g_{j}\right)^{\lambda_{j}^{\prime(1)}}} \\ \cdot \cdot \\ \cdot \cdot \\ \frac{z_{s}^{\prime}(b-a)^{\mu_{s}^{\prime}+\rho_{s}^{\prime}}}{\prod_{j=1}^{k}\left(a f_{j}+g_{j}\right)^{\lambda_{j}^{\prime}(s)}} \\ \tau_{1}(b-a)^{h_{1}} \\ \cdot \cdot \cdot \\ \cdot \cdot \cdot \\ \tau_{l}(b-a)^{h_{l}} \\ \frac{(b-a) f_{1}}{a f_{1}+g_{1}} \\ \cdot \cdot \cdot \\ \cdot \cdot \end{array}\right.$	$\mathrm{A} ; \mathrm{A} ; \mathrm{K}_{1}, K_{2}, K_{j}, K_{j}^{\prime}: C_{1}$ $\mathrm{B} ; \mathrm{B}^{\prime} ; \mathrm{L}_{1}, L_{j}, L_{j}^{\prime}: D_{1}$

under the same notations and conditions that (3.14)
where $B_{u}^{\prime}=\frac{(-L)_{h_{1} R_{1}+\cdots+h_{u} R_{u} B\left(E ; R_{1}, \cdots, R_{u}\right)}^{R_{1}!\cdots R_{u}!}, B\left[E ; R_{1}, \ldots, R_{v}\right] \text { is defined by (4.2) }}{\text { (4) }}$

Remark:

By the following similar procedure, the results of this document can be extented to product of any finite number of multivariable Aleph-functions and a class of multivariable polynomials defined by Srivastava et al [5].

5. Conclusion

In this paper we have evaluated a generalized Eulerian integral involving the product of two multivariable Alephfunction, a expansion of multivariable I-function defined by Nambisan et al [1] and a class of multivariable polynomials
defined by Srivastava et al [5] with general arguments. The formulae established in this paper is very general nature. Thus, the results established in this research work would serve as a key formula from which, upon specializing the parameters, as many as desired results involving the special functions of one and several variables can be obtained.

REFERENCES

[1] Prathima J. Nambisan V. and Kurumujji S.K. A Study of I-function of Several Complex Variables, International Journalof Engineering Mathematics $\operatorname{Vol}(2014), 2014$ page 1-12
[2] Saigo M. and Saxena R.K. Unified fractional integral formulas for the multivariable H-function I. J.Fractional Calculus 15 (1999), page 91-107.
[3] Sharma C.K.and Ahmad S.S.: On the multivariable I-function. Acta ciencia Indica Math , 1994 vol 20,no2, p 113116.
[4] Srivastava H.M. and Daoust M.C. Certain generalized Neumann expansions associated with Kampé de Fériet function. Nederl. Akad. Wetensch. Proc. Ser A72 = Indag Math 31(1969) page 449-457.
[5] Srivastava H.M. And Garg M. Some integral involving a general class of polynomials and multivariable H-function. Rev. Roumaine Phys. 32(1987), page 685-692.
[6] Srivastava H.M. and Karlsson P.W. Multiple Gaussian Hypergeometric series. Ellis.Horwood. Limited. New-York, Chichester. Brisbane. Toronto , 1985.
[7] H.M. Srivastava and R.Panda. Some expansion theorems and generating relations for the H-function of several complex variables. Comment. Math. Univ. St. Paul. 24(1975), p.119-137.

Personal adress : 411 Avenue Joseph Raynaud Le parc Fleuri, Bat B
83140 , Six-Fours les plages
Tel : 06-83-12-49-68
Department: VAR
Country : FRANCE

