On general Eulerian integral of certain products of two multivariable

I-functions and a class of polynomials

 $F.Y. AYANT^1$

1 Teacher in High School, France

ABSTRACT

The object of this paper is to establish an general Eulerian integral involving the product of two multivariable I-function, defined by Nambisan et al [2], a general class of multivariable polynomials and a generalized hypergeometric function which provide unification and extension of numerous results. We will study the particular case concerning the multivariable H-function defined by Srivastava et al [8] and the Srivastava-Daoust polynomial [5].

Keywords: Eulerian integral, multivariable I-function, Lauricella function of several variables, multivariable H-function, generalized hypergeometric function.

2010 Mathematics Subject Classification. 33C45, 33C60, 26D20

1. Introduction

In this paper, we evaluate a general Eulerian integral concerning the product of two multivariable I-functions defined by Nambisan et al [2], a generalized hypergeometric function and a class of multivariable polynomials. We will give a serie expansion of a multivariable I-function. The multivariable I-function is an extension of the multivariable H-function defined by Srivastava et al [8]. We will given a contracted form.

$$\bar{I}(z_{1}^{"'}, \cdots, z_{v}^{"'}) = \bar{I}_{P,Q:P_{1},Q_{1};\cdots;P_{v},Q_{v}}^{0,N:M_{1},N_{1};\cdots;M_{v},N_{v}} \begin{pmatrix} z_{1}^{"'} \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ z_{v}^{"'} \end{pmatrix} (a_{j}; \alpha_{j}^{(1)}, \cdots, \alpha_{j}^{(v)}; A_{j})_{N+1,P} :$$

$$(b_{j}; \beta_{j}^{(1)}, \cdots, \beta_{j}^{(v)}; B_{j})_{M+1,Q} :$$

$$(c_{j}^{(1)}, \gamma_{j}^{(1)}; 1)_{1,N_{1}}, (c_{j}^{(1)}, \gamma_{j}^{(1)}; C_{j}^{(1)})_{N_{1}+1,P_{1}}; \cdots; (c_{j}^{(v)}, \gamma_{j}^{(v)}; 1)_{1,N_{u}}, (c_{j}^{(v)}, \gamma_{j}^{(v)}; C_{j}^{(v)})_{N_{v}+1,P_{v}})$$

$$(\bar{d}_{j}^{(1)}, \bar{\delta}_{j}^{(1)}; 1)_{1,M_{1}}, (\bar{d}_{j}^{(1)}, \bar{\delta}_{j}^{(1)}; D_{j}^{(1)})_{M_{1}+1,Q_{1}}; \cdots; (\bar{d}_{j}^{(v)}, \bar{\delta}_{j}^{(v)}; 1)_{1,M_{v}}, (\bar{d}_{j}^{(v)}, \bar{\delta}_{j}^{(v)}; D_{j}^{(v)})_{M_{v}+1,Q_{v}})$$

$$(1.1)$$

$$= \frac{1}{(2\pi\omega)^v} \int_{L_1} \cdots \int_{L_v} \phi_1(s_1, \cdots, s_v) \prod_{i=1}^v \xi_i'(s_i) z_i'''^{s_i} ds_1 \cdots ds_v$$
 (1.2)

where $\phi_1(s_1, \dots, s_v)$, $\xi_i'(s_i)$, $i = 1, \dots, v$ are given by :

$$\phi_1(s_1, \dots, s_v) = \frac{1}{\prod_{j=N+1}^P \Gamma^{A_j} \left(a_j - \sum_{i=1}^v \alpha_j^{(i)} s_j \right) \prod_{j=M+1}^Q \Gamma^{B_j} \left(1 - b_j + \sum_{i=1}^v \beta_j^{(i)} s_j \right)}$$
(1.3)

$$\xi_{i}'(s_{i}) = \frac{\prod_{j=1}^{N_{i}} \Gamma\left(1 - c_{j}^{(i)} + \gamma_{j}^{(i)} s_{i}\right) \prod_{j=1}^{M_{i}} \Gamma\left(\bar{d}_{j}^{(i)} - \bar{\delta}_{j}^{(i)} s_{i}\right)}{\prod_{j=N_{i}+1}^{P_{i}} \Gamma^{C_{j}^{(i)}} \left(c_{j}^{(i)} - \gamma_{j}^{(i)} s_{i}\right) \prod_{j=M_{i}+1}^{Q_{i}} \Gamma^{D_{j}^{(i)}} \left(1 - \bar{d}_{j}^{(i)} + \bar{\delta}_{j}^{(i)} s_{i}\right)}$$

$$(1.4)$$

ISSN: 2231-5373 http://www.ijmttjournal.org Page 115

$$i=1,\cdots,v$$

Serie representation

If
$$z_i''' \neq 0; i = 1, \dots, v$$

$$k_i, \eta_i = 0, 1, 2, \cdots \\ (i = 1, \cdots, v), \text{ then } \delta^{\overline{(i)}}{}_{h_i} (d^{\overline{(i)}}{}_j + k_i) \neq \bar{\delta}^{(i)}_j (\bar{\delta}^{(i)}_{h_i} + \eta_i) \\ for j \neq h_i, j, h_i = 1, \cdots, m_i \\ (i = 1, \cdots, v), for j \neq h_i, h_i = 1, \cdots, m_i \\ (i = 1, \cdots, v), for j \neq h_i, h_i = 1, \cdots, m_i \\ (i = 1, \cdots, v), for j \neq h_i, h_i = 1, \cdots, m_i \\ (i = 1, \cdots, v), for j \neq h_i, h_i = 1, \cdots, m_i \\ (i = 1, \cdots, v), for j \neq h_i, h_i = 1, \cdots, m_i \\ (i = 1, \cdots, v), for j \neq h_i, h_i = 1, \cdots, m_i \\ (i = 1, \cdots, v), for j \neq h_i, h_i = 1, \cdots, m_i \\ (i = 1, \cdots, v), for j \neq h_i, h_i = 1, \cdots, m_i \\ (i = 1, \cdots, v), for j \neq h_i, h_i = 1, \cdots, m_i \\ (i = 1, \cdots, v), for j \neq h_i, h_i = 1, \cdots, m_i \\ (i = 1, \cdots, v), for j \neq h_i, h_i = 1, \cdots, m_i \\ (i = 1, \cdots, v), for j \neq h_i, h_i = 1, \cdots, m_i \\ (i = 1, \cdots, v), for j \neq h_i, h_i = 1, \cdots, m_i \\ (i =$$

$$\bar{I}(z_1''', \cdots, z_v''') = \sum_{h_1=1}^{M_1} \cdots \sum_{h_v=1}^{M_v} \sum_{k_1=0}^{\infty} \cdots \sum_{k_v=0}^{\infty} \left[\phi_1 \left(\frac{dh_1^{(1)} + k_1}{\delta h_1^{(1)}}, \cdots, \frac{dh_v^{(v)} + k_v}{\delta h_v^{(v)}} \right) \right] \prod_{j \neq h_i i=1}^r \frac{(-)^{k_i}}{\delta h_i^{(i)} k_i!} z_i'''^{\frac{dh_i + k_i}{\delta h_i}}$$

$$(1.5)$$

This result can be proved on computing the residues at the poles:

$$s_i = \frac{dh_i^{(i)} + k_i}{\delta h_i^{(i)}}, (h_i = 1, \dots, m_i, k_i = 0, 1, 2, \dots) for i = 1, \dots, v$$
(1.6)

We may establish the the asymptotic expansion in the following convenient form:

$$\bar{I}(z_1''', \dots, z_v''') = 0(|z_1'''|^{\alpha_1}, \dots, |z_v'''|^{\alpha_v}), max(|z_1'''|, \dots, |z_v'''|) \to 0$$

$$\bar{I}(z_1''', \cdots, z_n''') = 0(|z_1'''|^{\beta_1}, \cdots, |z_n'''|^{\beta_n}), \min(|z_1'''|, \cdots, |z_n'''|) \to \infty$$

where
$$k=1,\cdots,v$$
 : $\alpha_k=min[Re(\bar{d}_j^{(k)}/\bar{\delta}_j^{(k)})],j=1,\cdots,m_k$ and

$$\beta_k = max[Re((c_j^{(k)} - 1)/\gamma_j^{(k)})], j = 1, \dots, n_k$$

We will note
$$\eta_{h_i, k_i} = \frac{dh_i^{(i)} + k_i}{\delta h_i}$$
, $(h_i = 1, \dots, m_i, k_i = 0, 1, 2, \dots) fori = 1, \dots, v$ (1.7)

The multivariable I-function of r-variables is defined in term of multiple Mellin-Barnes type integral:

$$(c_{j}^{(1)}, \gamma_{j}^{(1)}; C_{j}^{(1)})_{1,p_{1}}; \cdots; (c_{j}^{(r)}, \gamma_{j}^{(r)}; C_{j}^{(r)})_{1,p_{r}}$$

$$(d_{j}^{(1)}, \delta_{j}^{(1)}; D_{j}^{(1)})_{1,q_{1}}; \cdots; (d_{j}^{(r)}, \delta_{j}^{(r)}; D_{j}^{(r)})_{1,q_{r}}$$

$$(1.8)$$

$$= \frac{1}{(2\pi\omega)^r} \int_{L_1} \cdots \int_{L_r} \phi(s_1, \cdots, s_r) \prod_{i=1}^r \theta_i(s_i) z_i^{s_i} \mathrm{d}s_1 \cdots \mathrm{d}s_r$$
(1.9)

where $\phi(s_1, \dots, s_r)$, $\theta_i(s_i)$, $i = 1, \dots, r$ are given by :

ISSN: 2231-5373 http://www.ijmttjournal.org

$$\phi(s_1, \dots, s_r) = \frac{\prod_{j=1}^n \Gamma^{A_j} \left(1 - aj + \sum_{i=1}^r \alpha_j^{(i)} s_j \right)}{\prod_{j=n+1}^p \Gamma^{A_j} \left(a_j - \sum_{i=1}^r \alpha_j^{(i)} s_j \right) \prod_{j=1}^q \Gamma^{B_j} \left(1 - bj + \sum_{i=1}^r \beta_j^{(i)} s_j \right)}$$
(1.10)

$$\theta_{i}(s_{i}) = \frac{\prod_{j=1}^{n_{i}} \Gamma^{C_{j}^{(i)}} \left(1 - c_{j}^{(i)} + \gamma_{j}^{(i)} s_{i}\right) \prod_{j=1}^{m_{i}} \Gamma^{D_{j}^{(i)}} \left(d_{j}^{(i)} - \delta_{j}^{(i)} s_{i}\right)}{\prod_{j=n_{i}+1}^{p_{i}} \Gamma^{C_{j}^{(i)}} \left(c_{j}^{(i)} - \gamma_{j}^{(i)} s_{i}\right) \prod_{j=m_{i}+1}^{q_{i}} \Gamma^{D_{j}^{(i)}} \left(1 - d_{j}^{(i)} + \delta_{j}^{(i)} s_{i}\right)}$$

$$(1.11)$$

For more details, see Nambisan et al [2].

Following the result of Braaksma [1] the I-function of r variables is analytic if:

$$U_{i} = \sum_{j=1}^{p} A_{j} \alpha_{j}^{(i)} - \sum_{j=1}^{q} B_{j} \beta_{j}^{(i)} + \sum_{j=1}^{p_{i}} C_{j}^{(i)} \gamma_{j}^{(i)} - \sum_{j=1}^{q_{i}} D_{j}^{(i)} \delta_{j}^{(i)} \leq 0, i = 1, \dots, r$$

$$(1.12)$$

The integral (2.1) converges absolutely if

$$|arg(z_k)|<rac{1}{2}\Delta_k\pi, k=1,\cdots,r$$
 where

$$\Delta_k = -\sum_{j=n+1}^p A_j \alpha_j^{(k)} - \sum_{j=1}^q B_j \beta_j^{(k)} + \sum_{j=1}^{m_k} D_j^{(k)} \delta_j^{(k)} - \sum_{j=m_k+1}^{q_k} D_j^{(k)} \delta_j^{(k)} + \sum_{j=1}^{n_k} C_j^{(k)} \gamma_j^{(k)} - \sum_{j=n_k+1}^{p_k} C_j^{(k)} \gamma_j^{(k)} > 0$$
 (1.13)

Srivastava and Garg [6] introduced and defined a general class of multivariable polynomials as follows

$$S_L^{h_1,\dots,h_u}[z_1,\dots,z_u] = \sum_{R_1,\dots,R_n=0}^{h_1R_1+\dots+h_uR_u} (-L)_{h_1R_1+\dots+h_uR_u} B(E;R_1,\dots,R_u) \frac{z_1^{R_1}\dots z_u^{R_u}}{R_1!\dots R_u!}$$
(1.14)

The coefficients are $B[E;R_1,\ldots,R_v]$ arbitrary constants, real or complex.

2. Integral representation of generalized Lauricella function of several variables

The following generalized hypergeometric function in terms of multiple contour integrals is also required [7 ,page 39 eq .30]

$$\frac{\prod_{j=1}^{P} \Gamma(A_j)}{\prod_{j=1}^{Q} \Gamma(B_j)} {}_{P}F_{Q}\left[(A_P); (B_Q); -(x_1 + \dots + x_r) \right]$$

$$= \frac{1}{(2\pi\omega)^r} \int_{L_1} \cdots \int_{L_r} \frac{\prod_{j=1}^P \Gamma(A_j + s_1 + \dots + s_r)}{\prod_{j=1}^Q \Gamma(B_j + s_1 + \dots + s_r)} \Gamma(-s_1) \cdots \Gamma(-s_r) x_1^{s_1} \cdots x_r^{s_r} ds_1 \cdots ds_r$$
(2.1)

where the contours are of Barnes type with indentations, if necessary, to ensure that the poles of $\Gamma(A_j+s_1+\cdots+s_r)$ are separated from those of $\Gamma(-s_j)$, $j=1,\cdots,r$. The above result (1.23) can be easily established by an appeal to the calculus of residues by calculating the residues at the poles of $\Gamma(-s_j)$, $j=1,\cdots,r$

In order to evaluate a number of integrals of multivariable I-function, we first establish the formula

ISSN: 2231-5373 http://www.ijmttjournal.org

$$\int_{a}^{b} (t-a)^{\alpha-1} (b-t)^{\beta-1} \prod_{j=1}^{l} \left[1 - \tau_{j} (t-a)^{h_{i}} \right]^{-\lambda_{j}} \prod_{j=1}^{k} (f_{j}t + g_{j})^{\sigma_{j}} dt = (b-a)^{\alpha+\beta-1} B(\alpha,\beta) \prod_{j=1}^{k} (af_{j} + g_{j})^{\sigma_{j}} dt$$

$$F_{1:0,\cdots,0;0,\cdots,0}^{1:1,\cdots,1;1\cdots,1} \begin{pmatrix} (\alpha:h_1,\cdots,h_l,1,\cdots,1):(\lambda_1:1),\cdots,(\lambda_l:1);(-\sigma_1:1),\cdots,(-\sigma_k:1)\\ & \cdots\\ (\alpha+\beta:h_1,\cdots,h_l,1,\cdots,1):-,\cdots,-;-,\cdots,- \end{pmatrix}$$

$$; \tau_1(b-a)^{h_1}, \cdots, \tau_l(b-a)^{h_l}, -\frac{(b-a)f_1}{af_1+g_1}, \cdots, -\frac{(b-a)f_k}{af_k+g_k}$$
 (2.2)

where $a, b \in \mathbb{R} (a < b), \alpha, \beta, f_i, g_i, \sigma_i, \tau_j, h_j \in \mathbb{C}, \lambda_j \in \mathbb{R}^+ (i = 1, \dots, k; j = 1, \dots, l)$

$$\min(\operatorname{Re}(\alpha),\operatorname{Re}(\beta)) > 0, \max_{1 \leqslant j \leqslant l} \left\{ \left| \tau_j(b-a)^{h_j} \right| \right\} < 1, \max_{1 \leqslant j \leqslant k} \left\{ \left| \frac{(b-a)f_i}{af_i + g_i} \right| \right\} < 1,$$

and $F_{1:0,\cdots,0;0,\cdots,0}^{1:1,\cdots,1;1\cdots,1}$ is a particular case of the generalized Lauricella function introduced by Srivastava-Daoust[5,page 454] given by :

$$F_{1:0,\cdots,0;0,\cdots,0}^{1:1,\cdots,1;1\cdots,1} \begin{pmatrix} (\alpha:h_1,\cdots,h_l,1,\cdots,1):(\lambda_1:1),\cdots,(\lambda_l:1);(-\sigma_1:1),\cdots,(-\sigma_k:1)\\ & \ddots & \\ (\alpha+\beta:h_1,\cdots,h_l,1,\cdots,1):-,\cdots,-;-,\cdots,- \end{pmatrix}$$

$$; \tau_1(b-a)^{h_1}, \cdots, \tau_l(b-a)^{h_l}, -\frac{(b-a)f_1}{af_1+g_1}, \cdots, -\frac{(b-a)f_k}{af_k+g_k} \right) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \prod_{j=1}^{l} \Gamma(\lambda_j) \prod_{j=1}^{k} \Gamma(-\sigma_j)}$$

$$\frac{1}{(2\pi\omega)^{l+k}} \int_{L_1} \cdots \int_{L_{l+k}} \frac{\Gamma\left(\alpha + \sum_{j=1}^{l} h_j w_j + \sum_{j=1}^{k} w_{l+j}\right)}{\Gamma\left(\alpha + \beta + \sum_{j=1}^{l} h_j w_j + \sum_{j=1}^{k} w_{l+j}\right)} \prod_{j=1}^{l} \Gamma(\lambda_j + w_j) \prod_{j=1}^{k} \Gamma(-\sigma_j + w_{l+j})$$

$$\prod_{i=1}^{l+k} \Gamma(-w_i) z_1^{w_1} \cdots z_l^{w_l} z_{l+1}^{w_{l+1}} \cdots, w_{l+k}^{w_{l+k}} \, \mathrm{d}w_1 \cdots \mathrm{d}w_{l+k}$$
(2.3)

Here the contour $L_j's$ are defined by $L_j=L_{w\zeta_j\infty}(Re(\zeta_j)=v_j'')$ starting at the point $v_j''-\omega\infty$ and terminating at the point $v_j''+\omega\infty$ with $v_j''\in\mathbb{R}(j=1,\cdots,l)$ and each of the remaining contour L_{l+1},\cdots,L_{l+k} run from $-\omega\infty$ to $\omega\infty$

(2.2) can be easily established by expanding $\prod_{j=1}^{l} \left[1 - \tau_j (t-a)^{h_i}\right]^{-\lambda_j}$ by means of the formula : $(1-z)^{-\alpha} = \sum_{j=1}^{\infty} \frac{(\alpha)_r}{r!} z^r (|z| < 1)$ (2.4)

integrating term by term with the help of the integral given by Saigo and Saxena [3, page 93, eq.(3.2)] and applying the

3. Eulerian integral

ISSN: 2231-5373

definition of the generalized Lauricella function [5, page 454].

In this section , we evaluate a general Eulerian integral with the product of two multivariable I-functions, class of multivariable polynomials and generalized hypergeometric function

$$B_u = \frac{(-L)_{h_1 R_1 + \dots + h_u R_u} B(E; R_1, \dots, R_u)}{R_1! \dots R_u!}$$
(3.1)

and
$$B_{u,v} = (b-a)^{\sum_{i=1}^{v} (a_i' + b_i') \eta_{G_i,g_i} + \sum_{i=1}^{u} (a_i + b_i) R_i} \left\{ \prod_{j=1}^{h} (af_j + g_j)^{-\sum_{i=1}^{v} \lambda_i''' \eta_{g_i,h_i} - \sum_{i=1}^{u} \lambda_i'' R_i} \right\}$$
 (3.2)

$$\theta_i = \prod_{j=1}^l \left[1 - \tau_j (t-a)^{h_i} \right]^{-\zeta_j^{(i)}}, \zeta_j^{(i)} > 0 \\ (i = 1, \dots, r); \theta_i' = \prod_{j=1}^l \left[1 - \tau_j (t-a)^{h_i} \right]^{-\zeta_j'^{(i)}}, \zeta_j'^{(i)} > 0 \\ (i = 1, \dots, s)$$

$$\theta_i'' = \prod_{j=1}^l \left[1 - \tau_j (t - a)^{h_i} \right]^{-\zeta_j''(i)}, \zeta_j''(i) > 0 (i = 1, \dots, u)$$
(3.3)

$$\theta_i^{"'} = \prod_{j=1}^l \left[1 - \tau_j (t - a)^{h_i} \right]^{-\zeta_j^{"'}(i)}, \zeta_j^{"'}(i) > 0 (i = 1, \dots, v)$$
(3.4)

$$X = m_1, n_1; \dots; m_r, n_r; 1, 0; \dots; 1, 0; 1, 0; \dots; 1, 0; 1, 0; \dots; 1, 0$$
(3.5)

$$Y = p_1, q_1; \dots; p_r, q_r; 0, 1; \dots; 0, 1; 0, 1; \dots; 0, 1; 0, 1; \dots; 0, 1$$
(3.6)

$$A = (a_j; \alpha_j^{(1)}, \dots, \alpha_j^{(r)}, 0, \dots, 0, 0, \dots, 0, 0, \dots, 0; A_j)_{1,p}$$
(3.7)

$$B = (b_j; \beta_j^{(1)}, \dots, \beta_j^{(r)}, 0 \dots, 0, 0 \dots, 0, 0 \dots, 0; B_j)_{1,q}$$
(3.8)

$$\mathbf{C} = (\mathbf{c}_j^{(1)}, \gamma_j^{(1)}; C_j^{(1)})_{1,p_1}; \cdots; (\mathbf{c}_j^{(r)}, \gamma_j^{(r)}; C_j^{(r)})_{1,p_r}; (1, 0; 1) \cdots; (1, 0; 1)$$

$$(1,0;1);\cdots;(1,0;1);(1,0;1);\cdots;(1,0;1)$$
 (3.9)

$$D = (\mathbf{d}_{j}^{(1)}, \delta_{j}^{(1)}; D_{j}^{(1)})_{1,q_{1}}; \cdots; (d_{j}^{(r)}, \delta_{j}^{(r)}; D_{j}^{(r)})_{1,q_{r}}; (0,1;1); \cdots; (0,1;1);$$

$$(0,1;1);\cdots;(0,1;1);(0,1;1);\cdots;(0,1;1)$$
 (3.10)

$$K_1 = (1 - \alpha - \sum_{i=1}^{u} R_i a_i - \sum_{i=1}^{v} \eta_{G_i, g_i} a_i'; \mu_1, \dots, \mu_r, \mu_1', \dots, \mu_s', h_1, \dots, h_l, 1, \dots, 1; 1)$$
(3.11)

$$K_2 = (1 - \beta - \sum_{i=1}^{u} R_i b_i - \sum_{i=1}^{v} \eta_{G_i, g_i} b_i'; \rho_1, \dots, \rho_r, \rho_1', \dots, \rho_s', 0, \dots, 0, 0 \dots, 0; 1)$$
(3.12)

$$K_P = [1 - A_j; 0, \dots, 0, 1, \dots, 1, 0, \dots, 0, 0, \dots, 0; 1]_{1,P}$$
(3.13)

$$K_{j} = \left[1 - \lambda_{j} - \sum_{i=1}^{u} R_{i} \zeta_{j}^{\prime\prime(i)} - \sum_{i=1}^{v} \eta_{G_{i},g_{i}} \zeta_{j}^{\prime\prime\prime(i)}; \zeta_{j}^{(1)}, \cdots, \zeta_{j}^{(r)}, \zeta_{j}^{\prime(1)}, \cdots, \zeta_{j}^{\prime(s)}, \zeta_{j}^{\prime(s)}, \zeta_{j}^{\prime(s)}, \cdots, \zeta_{j}^{\prime(s)}, \zeta_{j}^$$

ISSN: 2231-5373 http://www.ijmttjournal.org Page 119

$$0, \cdots, 1, \cdots, 0, 0 \cdots, 0; 1]_{1,l}$$
 (3.14)

$$K'_{j} = [1 + \sigma_{j} - \sum_{i=1}^{u} R_{i} \lambda_{j}^{"(i)} - \sum_{i=1}^{v} \eta_{G_{i},g_{i}} \lambda_{j}^{"'(i)}; \lambda_{j}^{(1)}, \cdots, \lambda_{j}^{(r)}, \lambda_{j}^{'(1)}, \cdots, \lambda_{j}^{'(s)}, \delta_{j}^{'(s)}, \delta_{j}^{(s)}, \delta_{j}^{(s)},$$

$$0, \cdots, 0, 0 \cdots, 1, \cdots, 0; 1]_{1,k}$$
 (3.15)

$$L_1 = (1 - \alpha - \beta - \sum_{i=1}^{u} R_i(a_i + b_i) - \sum_{i=1}^{v} (a'_i + b'_i) \eta_{G_i, g_i}; \mu_1 + \rho_1, \dots, \mu_r + \rho_r, \mu'_1 + \rho'_1, \dots, \mu'_r + \rho'_r,$$

$$h_1, \cdots, h_l, 1, \cdots, 1; 1$$
 (3.16)

$$L_Q = [1 - B_j; 0, \dots, 0, 1, \dots, 1, 0, \dots, 0, 0 \dots, 0; 1]_{1,Q}$$
(3.17)

$$L_{j} = [1 - \lambda_{j} - \sum_{i=1}^{u} R_{i} \zeta_{j}^{\prime\prime\prime(i)} - \sum_{i=1}^{s} \zeta_{j}^{\prime\prime\prime(i)} \eta_{G_{i},g_{i}}; \zeta_{j}^{(1)}, \cdots, \zeta_{j}^{(r)}, \zeta_{j}^{\prime(1)}, \cdots, \zeta_{j}^{\prime(s)}, 0, \cdots, 0, 0 \cdots, 0; 1]_{1,l}$$
(3.18)

$$L'_{j} = [1 + \sigma_{j} - \sum_{i=1}^{u} R_{i} \lambda''_{j}^{(i)} - \sum_{i=1}^{v} \lambda'''_{j}^{(i)} \eta_{G_{i},g_{i}}; \lambda'_{j}^{(1)}, \cdots, \lambda'_{j}^{(r)}, \lambda'_{j}^{(1)}, \cdots, \lambda'_{j}^{(s)}, 0, \cdots, 0, 0, \cdots, 0; 1]_{1,k}$$
(3.19)

We have the general Eulerian integral

$$\int_{a}^{b} (t-a)^{\alpha-1} (b-t)^{\beta-1} \prod_{j=1}^{l} \left[1 - \tau_{j} (t-a)^{h_{i}} \right]^{-\lambda_{j}} \prod_{j=1}^{k} (f_{j}t + g_{j})^{\sigma_{j}}$$

$$S_L^{h_1,\dots,h_u} \begin{pmatrix} z_1''\theta_1''(t-a)^{a_1}(b-t)^{b_1} \prod_{j=1}^k (f_jt+g_j)^{-\lambda_j''(1)} \\ \vdots \\ \vdots \\ z_u''\theta_u''(t-a)^{a_u}(b-t)^{b_u} \prod_{j=1}^k (f_jt+g_j)^{-\lambda_j''(u)} \end{pmatrix}$$

$$\bar{I} \begin{pmatrix} z_1'''\theta_1'''(t-a)^{a_1'}(b-t)^{b_1'} \prod_{j=1}^k (f_jt+g_j)^{-\lambda_j'''(1)} \\ \vdots \\ \vdots \\ z_v'''\theta_v'''(t-a)^{a_v'}(b-t)^{b_v'} \prod_{j=1}^k (f_jt+g_j)^{-\lambda_j'''(v)} \end{pmatrix}$$

$$I\left(\begin{array}{c} z_{1}\theta_{1}(t-a)^{\mu_{1}}(b-t)^{\rho_{1}}\prod_{j=1}^{k}(f_{j}t+g_{j})^{-\lambda_{j}^{(1)}} \\ \vdots \\ \vdots \\ z_{r}\theta_{r}(t-a)^{\mu_{r}}(b-t)^{\rho_{r}}\prod_{j=1}^{k}(f_{j}t+g_{j})^{-\lambda_{j}^{(r)}} \end{array}\right)$$

ISSN: 2231-5373 http://www.ijmttjournal.org Page 120

$${}_{P}F_{Q}\left[(A_{P});(B_{Q});-\sum_{i=1}^{s}z_{i}'\theta_{i}'(t-a)^{\mu_{i}'}(b-t)^{\rho_{i}'}\prod_{j=1}^{k}(f_{j}t+g_{j})^{-\lambda_{j}'^{(i)}}\right]dt=(b-a)^{\alpha+\beta-1}\frac{\prod_{j=1}^{Q}\Gamma(B_{j})}{\prod_{j=1}^{P}\Gamma(A_{j})}\prod_{j=1}^{m}(af_{j}+g_{j})^{\sigma_{j}}dt$$

$$\sum_{h_1=1}^{M_1} \cdots \sum_{h_v=1}^{M_v} \sum_{k_1=0}^{\infty} \cdots \sum_{k_v=0}^{\infty} \sum_{R_1, \cdots, R_u=0}^{h_1 R_1 + \cdots h_u R_u \leqslant L} \prod_{i=1}^v \frac{(-)^{k_i}}{\delta h_i^{(i)} k_i!} z_i^{\prime\prime\prime \eta_{h_i, k_i}} \prod_{k=1}^u z^{\prime\prime\prime R_k} B_u B_{u,v} [\phi_1 \left(\eta_{h_1, k_1}, \cdots, \eta_{h_r, k_r} \right)]_{j \neq h_i}$$

$$I_{j=1}^{0,n+P+l+k+2;X} = I_{j=1}^{0,n+P+l+k+2;X} = I_{j=1}^{0,n+P+l$$

This result is an extansion the formula given by Saxena et al [4].

Provided that

(A)
$$a, b \in \mathbb{R}(a < b); \mu_i, \mu'_u, \rho_i, \rho'_u, \lambda_j^{(i)}, \lambda'_j^{(u)}, h_v \in \mathbb{R}^+, f_i, g_j, \tau_v, \sigma_j, \lambda_v \in \mathbb{C} \ (i = 1, \dots, r; j = 1, \dots; k;$$

$$u = 1, \dots, s; v = 1, \dots, l), a_i, b_i, \lambda''_j^{(i)}, \zeta''_j^{(i)} \in \mathbb{R}^+, (i = 1, \dots, u; j = 1, \dots, k)$$

$$a'_i, b'_i, \lambda'''_j^{(i)}, \zeta'''_j^{(i)} \in \mathbb{R}^+, (i = 1, \dots, v; j = 1, \dots, k)$$
(B) $m_j, n_j, p_j, q_j (j = 1, \dots, r), n, p, q \in \mathbb{N}^*; \delta_j^{(i)} \in \mathbb{R}_+ (j = 1, \dots, q_i; i = 1, \dots, r)$

$$\alpha_j^{(i)} \in \mathbb{R}_+ (j = 1, \dots, p; i = 1, \dots, r), \beta_j^{(i)} \in \mathbb{R}_+ (j = 1, \dots, q; i = 1, \dots, r), \gamma_j^{(i)} \in \mathbb{R}_+ (j = 1, \dots, p_i; i = 1, \dots, r)$$

ISSN: 2231-5373 http://www.ijmttjournal.org Page 121

$$a_j(j=1,\cdots,p), b_j(j=1,\cdots,q), c_i^{(i)}(j=1,\cdots,p_i,i=1,\cdots,r), d_j^{(i)}(j=1,\cdots,q_i,i=1,\cdots,r) \in \mathbb{C}$$

The exposants $A_j(j=1,\cdots,p), B_j(j=1,\cdots,q), C_j^{(i)}(j=1,\cdots,p_i;i=1,\cdots,r), D_j^{(i)}(j=1,\cdots,q_i;i=1,\cdots,r)$

of various gamma function involved in (1.3) and (1.4) may take non integer values.

(C)
$$\max_{1 \leqslant j \leqslant k} \left\{ \left| \frac{(b-a)f_i}{af_i + g_i} \right| \right\} < 1$$

$$\text{(D) } Re \big[\alpha + \sum_{i=1}^v a_i' \min_{1 \leqslant j \leqslant M_i} \frac{\bar{d}_j^{(i)}}{\bar{\delta}_j^{(i)}} + \sum_{i=1}^r \mu_i \min_{1 \leqslant j \leqslant m^{(i)}} \frac{d_j^{(i)}}{\delta_j^{(i)}} \big] > 0 \text{ and }$$

$$Re\big[\beta + \sum_{i=1}^{v} b_i' \min_{1 \leqslant j \leqslant M_i} \frac{\bar{d}_j^{(i)}}{\bar{\delta}_j^{(i)}} + \sum_{i=1}^{r} \rho_i \min_{1 \leqslant j \leqslant m^{(i)}} \frac{d_j^{(i)}}{\delta_j^{(i)}} \big] > 0$$

$$\text{(E)} \ Re \left(\alpha + \sum_{i=1}^{v} \eta_{G_i,g_i} a_i' + \sum_{i=1}^{u} R_i a_i + \sum_{i=1}^{r} \mu_i s_i + \sum_{i=1}^{l} h_i w_i \right) > 0 \ ; \\ Re \left(\beta + \sum_{i=1}^{v} \eta_{G_i,g_i} b_i' + \sum_{i=1}^{u} R_i b_i + \sum_{i=1}^{r} \rho_i s_i \right) > 0 \ ; \\ Re \left(\beta + \sum_{i=1}^{v} \eta_{G_i,g_i} b_i' + \sum_{i=1}^{u} R_i b_i + \sum_{i=1}^{r} \rho_i s_i \right) > 0 \ ; \\ Re \left(\beta + \sum_{i=1}^{v} \eta_{G_i,g_i} b_i' + \sum_{i=1}^{u} R_i b_i + \sum_{i=1}^{r} \rho_i s_i \right) > 0 \ ; \\ Re \left(\beta + \sum_{i=1}^{v} \eta_{G_i,g_i} b_i' + \sum_{i=1}^{u} R_i b_i + \sum_{i=1}^{r} \rho_i s_i \right) > 0 \ ; \\ Re \left(\beta + \sum_{i=1}^{v} \eta_{G_i,g_i} b_i' + \sum_{i=1}^{u} R_i b_i + \sum_{i=1}^{r} \rho_i s_i \right) > 0 \ ; \\ Re \left(\beta + \sum_{i=1}^{v} \eta_{G_i,g_i} b_i' + \sum_{i=1}^{u} R_i b_i + \sum_{i=1}^{r} \rho_i s_i \right) > 0 \ ; \\ Re \left(\beta + \sum_{i=1}^{v} \eta_{G_i,g_i} b_i' + \sum_{i=1}^{u} R_i b_i + \sum_{i=1}^{r} \rho_i s_i \right) > 0 \ ; \\ Re \left(\beta + \sum_{i=1}^{v} \eta_{G_i,g_i} b_i' + \sum_{i=1}^{u} R_i b_i + \sum_{i=1}^{r} \rho_i s_i \right) > 0 \ ; \\ Re \left(\beta + \sum_{i=1}^{v} \eta_{G_i,g_i} b_i' + \sum_{i=1}^{u} R_i b_i + \sum_{i=1}^{r} \rho_i s_i \right) > 0 \ ; \\ Re \left(\beta + \sum_{i=1}^{v} \eta_{G_i,g_i} b_i' + \sum_{i=1}^{u} R_i b_i + \sum_{i=1}^{v} \rho_i s_i \right) > 0 \ ; \\ Re \left(\beta + \sum_{i=1}^{v} \eta_{G_i,g_i} b_i' + \sum_{i=1}^{u} R_i b_i + \sum_{i=1}^{v} \rho_i s_i \right) > 0 \ ; \\ Re \left(\beta + \sum_{i=1}^{v} \eta_{G_i,g_i} b_i' + \sum_{i=1}^{u} R_i b_i + \sum_{i=1}^{v} \rho_i s_i \right) > 0 \ ; \\ Re \left(\beta + \sum_{i=1}^{v} \eta_{G_i,g_i} b_i' + \sum_{i=1}^{u} R_i b_i + \sum_{i=1}^{v} \rho_i s_i \right) > 0 \ ; \\ Re \left(\beta + \sum_{i=1}^{v} \eta_{G_i,g_i} b_i' + \sum_{i=1}^{u} R_i b_i + \sum_{i=1}^{v} \rho_i s_i \right) > 0 \ ; \\ Re \left(\beta + \sum_{i=1}^{v} \eta_{G_i,g_i} b_i' + \sum_{i=1}^{u} R_i b_i + \sum_{i=1}^{v} \rho_i s_i \right) > 0 \ ; \\ Re \left(\beta + \sum_{i=1}^{v} \eta_{G_i,g_i} b_i' + \sum_{i=1}^{u} R_i b_i' + \sum_{i=1}^{v} \rho_i s_i \right) > 0 \ ; \\ Re \left(\beta + \sum_{i=1}^{v} \eta_{G_i,g_i} b_i' + \sum_{i=1}^{v} \rho_i s_i' + \sum_{i=1}^{v}$$

$$Re\left(\lambda_{j} + \sum_{i=1}^{v} \eta_{G_{i},g_{i}} \lambda_{j}^{\prime\prime\prime}(i) + \sum_{i=1}^{u} R_{i} \lambda_{j}^{\prime\prime}(i) + \sum_{i=1}^{r} s_{i} \zeta_{j}^{(i)}\right) > 0 (j = 1, \dots, l)$$

$$Re\left(-\sigma_{j} + \sum_{i=1}^{v} \eta_{G_{i},g_{i}} \lambda'''^{(i)} + \sum_{i=1}^{u} R_{i} \lambda_{j}''^{(i)} + \sum_{i=1}^{r} s_{i} \lambda_{j}^{(i)}\right) > 0 (j = 1, \dots, k)$$

(F)
$$U_i = \sum_{j=1}^p A_j \alpha_j^{(i)} - \sum_{j=1}^q B_j \beta_j^{(i)} + \sum_{j=1}^{p_i} C_j^{(i)} \gamma_j^{(i)} - \sum_{j=1}^{q_i} D_j^{(i)} \delta_j^{(i)} \leqslant 0, i = 1, \dots, r$$

$$\textbf{(G)} \ \Delta_k = -\sum_{j=n+1}^p A_j \alpha_j^{(k)} - \sum_{j=1}^q B_j \beta_j^{(k)} + \sum_{j=1}^{m_k} D_j^{(k)} \delta_j^{(k)} - \sum_{j=m_k+1}^{q_k} D_j^{(k)} \delta_j^{(k)} + \sum_{j=1}^{n_k} C_j^{(k)} \gamma_j^{(k)} - \sum_{j=n_k+1}^{p_k} C_j^{(k)} \gamma_j^{(k)}$$

$$-\mu_i - \rho_i - \sum_{l=1}^k \lambda_l^{(i)} > 0 \quad (i = 1, \dots, r)$$

(H)
$$\left| arg \left(z_i \prod_{j=1}^l \left[1 - \tau_j (t-a)^{h_i} \right]^{-\zeta_j^{(i)}} \prod_{j=1}^k (f_j t + g_j)^{-\lambda_j^{(i)}} \right) \right| < \frac{1}{2} \Delta_i \pi \ (a \leqslant t \leqslant b; i = 1, \dots, r)$$

(I) $P \leq Q + 1$. The equality holds, when , in addition,

$$\text{either } P > Q \text{ and } \left| \left(z_i' \sum_{i=1}^l \left[1 - \tau_j (t-a)^{h_i} \right]^{-\zeta_j'^{(i)}} \prod_{j=1}^k (f_j t + g_j)^{-\lambda_j'^{(i)}} \right) \right|^{\frac{1}{Q-P}} < 1 \ (a \leqslant t \leqslant b)$$

or
$$P \leqslant Q$$
 and $\max_{1 \leqslant i \leqslant k} \left[\left| \left(z_i' \sum_{j=1}^l \left[1 - \tau_j (t-a)^{h_i} \right]^{-\zeta_j'^{(i)}} \prod_{j=1}^k (f_j t + g_j)^{-\lambda_j'^{(i)}} \right) \right| \right] < 1 \ (a \leqslant t \leqslant b)$

(**J**) The multiple series occuring on the right-hand side of (3.20) is absolutely and uniformly convergent.

Proof

To prove (3.20), first, we express in serie the multivariable I-function defined by Nambisan et al [2] with the help of To prove (3.20), first, we express in serie the multivariable 1-function defined by Ivalinoisali et al [2] with the help of (1.5), a class of multivariable polynomials defined by Srivastava et al [6] $S_L^{h_1, \cdots, h_u}[.]$ in serie with the help of (1.14), the I-functions of r-variables defined by Nambisan et al [1] and in terms of Mellin-Barnes type contour integral with the help of (1.9), the generalized hypergeometric function $PF_Q(.)$ in Mellin-Barnes contour integral with the help of (2.1). Now collect the power of $[1-\tau_j(t-a)^{h_i}]$ with $(i=1,\cdots,r;j=1,\cdots,l)$ and collect the power of (f_jt+g_j) with $j=1,\cdots,k$. Use the equations (2.2) and (2.3) and express the result in Mellin-Barnes contour integral. Interpreting the (r+s+k+l) dimensional Mellin-Barnes integral to multivariable I-function, we obtain the equation (3.20).

4. Particular cases

a) If $A_j = B_j = C_j^{(i)} = D_j^{(i)} = 1$, the multivariable I-function defined by Nambisan et al [2] reduces to multivariable H-function defined by Srivastava et al [8].

The following generalized Eulerian integral concerning the multivariable H-function under the same notations and conditions that (3.20) with $A_j = B_j = C_j^{(i)} = D_j^{(i)} = 1$:

$$\int_{a}^{b} (t-a)^{\alpha-1} (b-t)^{\beta-1} \prod_{j=1}^{l} \left[1 - \tau_{j} (t-a)^{h_{i}} \right]^{-\lambda_{j}} \prod_{j=1}^{k} (f_{j}t + g_{j})^{\sigma_{j}}$$

$$S_L^{h_1,\dots,h_u} \begin{pmatrix} z_1''\theta_1''(t-a)^{a_1}(b-t)^{b_1} \prod_{j=1}^k (f_jt+g_j)^{-\lambda_j''(1)} \\ \vdots \\ \vdots \\ z_u''\theta_u''(t-a)^{a_u}(b-t)^{b_u} \prod_{j=1}^k (f_jt+g_j)^{-\lambda_j''(u)} \end{pmatrix}$$

$$\bar{I} \begin{pmatrix} z_1'''\theta_1'''(t-a)^{a_1'}(b-t)^{b_1'} \prod_{j=1}^k (f_jt+g_j)^{-\lambda_j'''(1)} \\ \vdots \\ z_v'''\theta_v'''(t-a)^{a_v'}(b-t)^{b_v'} \prod_{j=1}^k (f_jt+g_j)^{-\lambda_j'''(v)} \end{pmatrix}$$

$$H\begin{pmatrix} z_{1}\theta_{1}(t-a)^{\mu_{1}}(b-t)^{\rho_{1}}\prod_{j=1}^{k}(f_{j}t+g_{j})^{-\lambda_{j}^{(1)}} \\ \vdots \\ z_{r}\theta_{r}(t-a)^{\mu_{r}}(b-t)^{\rho_{r}}\prod_{j=1}^{k}(f_{j}t+g_{j})^{-\lambda_{j}^{(r)}} \end{pmatrix}$$

$${}_{P}F_{Q}\left[(A_{P});(B_{Q});-\sum_{i=1}^{s}z_{i}'\theta_{i}'(t-a)^{\mu_{i}'}(b-t)^{\rho_{i}'}\prod_{j=1}^{k}(f_{j}t+g_{j})^{-\lambda_{j}'^{(i)}}\right]dt=(b-a)^{\alpha+\beta-1}\frac{\prod_{j=1}^{Q}\Gamma(B_{j})}{\prod_{j=1}^{P}\Gamma(A_{j})}\prod_{j=1}^{q}(af_{j}+g_{j})^{\sigma_{j}}$$

$$\sum_{h_{1}=1}^{M_{1}}\cdots\sum_{h_{v}=1}^{M_{v}}\sum_{k_{1}=0}^{\infty}\cdots\sum_{k_{v}=0}^{\infty}\sum_{R_{1},\cdots,R_{u}=0}^{h_{1}R_{1}+\cdots h_{u}R_{u}\leqslant L}\prod_{i=1}^{v}\frac{(-)^{k_{i}}}{\delta h_{i}^{(i)}k_{i}!}z_{i}^{\prime\prime\prime\eta_{h_{i},k_{i}}}\prod_{k=1}^{u}z^{\prime\prime\prime R_{k}}B_{u}B_{u,v}[\phi_{1}\left(\eta_{h_{1},k_{1}},\cdots,\eta_{h_{r},k_{r}}\right)]_{j\neq h_{i}}$$

ISSN: 2231-5373 http://www.ijmttjournal.org Page 123

$$\begin{pmatrix} \frac{z_{1}(b-a)^{\mu_{1}+\rho_{1}}}{\prod_{j=1}^{k}(af_{j}+g_{j})^{\lambda_{j}^{(1)}}} \\ \vdots \\ \vdots \\ \frac{z_{r}(b-a)^{\mu_{r}+\rho_{r}}}{\prod_{j=1}^{k}(af_{j}+g_{j})^{\lambda_{j}^{(r)}}} \\ \frac{z_{1}'(b-a)^{\mu_{1}+\rho_{1}}}{\prod_{j=1}^{k}(af_{j}+g_{j})^{\lambda_{j}^{(r)}}} \\ \frac{z_{1}'(b-a)^{\mu_{1}'+\rho_{1}'}}{\prod_{j=1}^{k}(af_{j}+g_{j})^{\lambda_{j}^{(r)}}} \\ \vdots \\ \vdots \\ \frac{z'_{s}(b-a)^{\mu'_{s}'+\rho'_{s}}}{\prod_{j=1}^{k}(af_{j}+g_{j})^{\lambda_{j}^{(s)}}} \\ \frac{z'_{s}(b-a)^{\mu'_{s}'+\rho'_{s}}}{\prod_{j=1}^{k}(af_{j}+g_{j})^{\lambda_{j}^{(s)}}} \\ \vdots \\ \vdots \\ \tau_{1}(b-a)^{h_{1}} \\ \vdots \\ \vdots \\ \frac{(b-a)f_{1}}{af_{1}+g_{1}} \\ \vdots \\ \vdots \\ B, L_{1}, L_{2}, L_{j}, L'_{j} : D \end{pmatrix}$$

$$(4.1)$$

b) If
$$B(L; R_1, \dots, R_u) = \frac{\prod_{j=1}^{\bar{A}} (a_j)_{R_1 \theta'_j + \dots + R_u \theta_j^{(u)}} \prod_{j=1}^{B'} (b'_j)_{R_1 \phi'_j} \dots \prod_{j=1}^{B^{(u)}} (b_j^{(u)})_{R_u \phi_j^{(u)}}}{\prod_{j=1}^{\bar{C}} (c_j)_{m_1 \psi'_j + \dots + m_u \psi_j^{(u)}} \prod_{j=1}^{D'} (d'_j)_{R_1 \delta'_j} \dots \prod_{j=1}^{D^{(u)}} (d_j^{(u)})_{R_u \delta_j^{(u)}}}$$
 (4.2)

then the general class of multivariable polynomial $S_L^{h_1,\cdots,h_u}[z_1,\cdots,z_u]$ reduces to generalized Lauricella function defined by Srivastava et al [5]. We have

$$\int_{a}^{b} (t-a)^{\alpha-1} (b-t)^{\beta-1} \prod_{j=1}^{l} \left[1 - \tau_{j} (t-a)^{h_{i}} \right]^{-\lambda_{j}} \prod_{j=1}^{k} (f_{j}t + g_{j})^{\sigma_{j}}$$

$$F_{\bar{C}:D';\cdots;D^{(u)}}^{1+\bar{A}:B';\cdots;B^{(u)}} \begin{pmatrix} z_1''\theta_1''(t-a)^{a_1}(b-t)^{b_1} \prod_{j=1}^k (f_jt+g_j)^{-\lambda_j''^{(1)}} \\ \vdots \\ \vdots \\ z_u''\theta_u''(t-a)^{a_u}(b-t)^{b_u} \prod_{j=1}^k (f_jt+g_j)^{-\lambda_j''^{(u)}} \end{pmatrix}$$

$$[(-L); R_1, \dots, R_u][(a); \theta', \dots, \theta^{(u)}] : [(b'); \phi']; \dots ; [(b^{(u)}); \phi^{(u)}]$$

$$[(c); \psi', \dots, \psi^{(u)}] : [(d'); \delta']; \dots ; [(d^{(u)}); \delta^{(u)}]$$

ISSN: 2231-5373

$$\bar{I} \begin{pmatrix} z_1'''\theta_1'''(t-a)^{a_1'}(b-t)^{b_1'} \prod_{j=1}^k (f_jt+g_j)^{-\lambda_j'''(1)} \\ \vdots \\ \vdots \\ z_v'''\theta_v'''(t-a)^{a_v'}(b-t)^{b_v'} \prod_{j=1}^k (f_jt+g_j)^{-\lambda_j'''(v)} \end{pmatrix}$$

$$I\left(\begin{array}{c} z_{1}\theta_{1}(t-a)^{\mu_{1}}(b-t)^{\rho_{1}}\prod_{j=1}^{k}(f_{j}t+g_{j})^{-\lambda_{j}^{(1)}} \\ \vdots \\ \vdots \\ z_{r}\theta_{r}(t-a)^{\mu_{r}}(b-t)^{\rho_{r}}\prod_{j=1}^{k}(f_{j}t+g_{j})^{-\lambda_{j}^{(r)}} \end{array}\right)$$

$${}_{P}F_{Q}\left[(A_{P});(B_{Q});-\sum_{i=1}^{s}z_{i}'\theta_{i}'(t-a)^{\mu_{i}'}(b-t)^{\rho_{i}'}\prod_{j=1}^{k}(f_{j}t+g_{j})^{-\lambda_{j}'^{(i)}}\right]dt=(b-a)^{\alpha+\beta-1}\frac{\prod_{j=1}^{Q}\Gamma(B_{j})}{\prod_{j=1}^{P}\Gamma(A_{j})}\prod_{j=1}^{q}(af_{j}+g_{j})^{\sigma_{j}}$$

$$\sum_{h_{1}=1}^{M_{1}}\cdots\sum_{h_{v}=1}^{M_{v}}\sum_{k_{1}=0}^{\infty}\cdots\sum_{k_{v}=0}^{\infty}\sum_{R_{1},\cdots,R_{u}=0}^{h_{1}R_{1}+\cdots h_{u}R_{u}\leqslant L}\prod_{i=1}^{v}\frac{(-)^{k_{i}}}{\delta h_{i}^{(i)}k_{i}!}z_{i}^{\prime\prime\prime\eta_{h_{i},k_{i}}}\prod_{k=1}^{u}z^{\prime\prime\prime R_{k}}B_{u}^{\prime}B_{u,v}[\phi_{1}\left(\eta_{h_{1},k_{1}},\cdots,\eta_{h_{r},k_{r}}\right)]_{j\neq h_{i}}$$

ISSN: 2231-5373 http://www.ijmttjournal.org

under the same notations and conditions that (3.20)

where
$$B'_u = \frac{(-L)_{h_1R_1 + \dots + h_uR_u}B(E; R_1, \dots, R_u)}{R_1! \cdots R_u!}$$
, $B[E; R_1, \dots, R_v]$ is defined by (4.2)

Remark:

By the following similar procedure, the results of this document can be extented to product of any finite number of multivariable I-functions and a class of multivariable polynomials defined by Srivastava et al [6].

5. Conclusion

In this paper we have evaluated a generalized Eulerian integral involving the product of two multivariable I-function, defined by Nambisan et al [2], a class of multivariable polynomials and generalized hypergeometric function with general arguments. The formulae established in this paper is very general nature. Thus, the results established in this research work would serve as a key formula from which, upon specializing the parameters, as many as desired results involving the special functions of one and several variables can be obtained.

REFERENCES

- [1] B. L. J. Braaksma, "Asymptotic expansions and analytic continuations for a class of Barnes integrals," Compositio Mathematical, vol. 15, pp. 239–341, 1964.
- [2] Prathima J. Nambisan V. and Kurumujji S.K. A Study of I-function of Several Complex Variables, International Journal of Engineering Mathematics Vol(2014), 2014 page 1-12
- [3] Saigo M. and Saxena R.K. Unified fractional integral formulas for the multivariable H-function I. J.Fractional Calculus 15 (1999), page 91-107.
- [4] Saigo M. and Saxena R.K. Unified fractional integral formulas for the multivariable H-function III. J.Fractional Calculus 20 (2001), page 45-68.
- [5] Srivastava H.M. and Daoust M.C. Certain generalized Neumann expansions associated with Kampé de Fériet function. Nederl. Akad. Wetensch. Proc. Ser A72 = Indag Math 31(1969) page 449-457.
- [6] Srivastava H.M. And Garg M. Some integral involving a general class of polynomials and multivariable H-function. Rev. Roumaine Phys. 32(1987), page 685-692.
- [7] Srivastava H.M. and Karlsson P.W. Multiple Gaussian Hypergeometric series. Ellis.Horwood. Limited. New-York, Chichester. Brisbane. Toronto , 1985.
- [8] H.M. Srivastava And R.Panda. Some expansion theorems and generating relations for the H-function of several complex variables. Comment. Math. Univ. St. Paul. 24(1975), p.119-137.

Personal adress: 411 Avenue Joseph Raynaud

Le parc Fleuri , Bat B 83140 , Six-Fours les plages

Tel: 06-83-12-49-68 Department: VAR Country: FRANCE