Complex Composition Cordial Labeling Of Path and Star Graphs

R.Maria Irudhaya Aspin Chitra and Dr. A.Nellai Murugan

Department of Mathematics, V.O.Chidambaram College, Tuticorin, Tamilnadu(INDIA)

Abstract

Let $\langle A, * \rangle$ be any abelian group. A graph G = (V(G), E(G)) is said to be A-cordial if there is a mapping $f: V(G) \rightarrow A$ which satisfies the following two conditions with each edge e = uv is labeled as $f^*(uv) = f(u)*f(v)$

- $|v_f(a) v_f(b)| \le 1 \quad \forall a, b \in A$
- $|e_f(a) e_f(b)| \le 1 \quad \forall a, b \in A$

where $v_f(a) =$ the number of vertices with label a

 $v_f(b) = the number of vertices with label b$

 $e_f(a) = the number of edges with label a$

 $e_f(b) = the number of edges with label b$

In [3], V_4 -cordial labeling is defined. It motivates me an idea to define CCCL as follows.

We have defined a set $C = \{f_1, f_2, f_3, f_4\}$ where $f_1 = z$, $f_2 = -z$, $f_3 = 1/z$, $f_4 = -1/z \forall z \in C - \{0\}$ is an abelian group and under binary operation * is defined as $f_1 * f_2 = f_1 \circ f_2 = f_1(f_2)$.

We note that if $\langle C, * \rangle$ is an abelian group. Then the labeling is known as Complex Composition Cordial Labeling, and in short denoted as CCCL. A graph which admits CCCL is called as Complex Composition Cordial Graph, which is denoted as CCCG.

In this paper, it is proved that Path P_n and Star S_n are Complex Composition Cordial graphs.

Keywords: Complex Composition Cordial Graph, Complex Composition Cordial Labeling. 2010 Mathematics subject classification Number: 05C78.

1. Introduction:

A graph G is a finite non empty set of objects called vertices together with a set of pairs of distinct vertices of G which is called edges. Each $e = \{uv\}$ of vertices in E is called an edge or a line of G. For Graph Theoretical Terminology, [2].

A vertex labeling of a graph G is an assignment of labels to the vertices of G that induces for each edge uv a label depending on the vertex labels of u and v.

A graph G is said to be labeled if the *n* vertices are distinguished from one another by symbols such as $v_1, v_2, ..., v_n$. In this paper, it is proved that Path P_n and Star S_n are Complex Composition Cordial graphs.

2. Preliminaries:

Definition:2.1

Let G = (V, E) be a simple graph. Let $f : V(G) \rightarrow \{0, 1\}$ and for each edge uv, assign the label |f(u) - f(v)|. f is called a **Cordial labeling** if the number of vertices labeled 0 and the number of vertices labeled 1 differ by atmost 1 and also the number of edges labeled 0 and the number of edges labeled 1 differ by atmost 1. A graph is called **Cordial** if it has a cordial labeling.

Definition:2.2

Let $\langle A, * \rangle$ be any abelian group. A graph G = (V(G), E(G)) is said to be A-cordial if there is a mapping $f: V(G) \rightarrow A$ which satisfies the following two conditions with each edge e = uv is labeled as $f^*(uv) = f(u)*f(v)$

- $|v_f(a) v_f(b)| \le 1 \quad \forall a, b \in A$
- $|e_f(a) e_f(b)| \le 1 \quad \forall a, b \in A$

where $v_f(a)$ = the number of vertices with label *a*

 $v_f(b)$ = the number of vertices with label b

 $e_f(a)$ = the number of edges with label a

 $e_f(b)$ = the number of edges with label b

We have defined a set $\mathcal{C} = \{f_1, f_2, f_3, f_4\}$ where $f_1 = z, f_2 = -z, f_3 = 1/z, f_4 = -1/z \forall z \in \mathbb{C} - \{0\}$ is an abelian group and under binary operation * is defined as $f_1 * f_2 = f_1 \circ f_2 = f_1(f_2)$.

We note that if $\langle \mathcal{C}, \rangle$ is an abelian group. Then the labeling is known as **Complex Composition Cordial** Labeling, and in short denoted as CCCL. A graph which admits CCCL is called as Complex Composition Cordial Graph, which is denoted as CCCG.

Definition:2.3

A **Walk** of a graph G is an alternating sequence of vertices and edges v_1 , e_1 , v_2 , e_2 ,..., v_{n-1} , e_n , v_n beginning and ending with vertices such that each edge e_i is incident with vertices v_{i-1} and v_i .

Definition:2.4

In a walk, if all the vertices are distinct, then it is called a **Path** and a path of length n is denoted by P_{n+1} .

Definition:2.5

A **Bipartite Graph** is a graph whose vertex set V(G) can be partitioned into two subsets V_1 and V_2 such that every edge of G has one end in V_1 and the other end in V_2 . (V_1, V_2) is called a bipartition of G. Further, if every vertex of V_1 is joined to all the vertices of V_2 , then G is called a **Complete Bipartite Graph**. The complete bipartite graph with bipartition (V_1, V_2) such that $|V_1| = m$ and $|V_2| = n$ is denoted by $\mathbf{K}_{m,n}$. A complete bipartite graph $\mathbf{K}_{1,n}$ or $\mathbf{K}_{n,1}$ or \mathbf{S}_n is called as **Star**.

3. Main Results:

Theorem:3.1

Path P_n is Complex Composition Cordial graphs. **Proof:** Let $V[P_n] = \{ u_i : 1 \le i \le n \}$ and $E[P_n] = \{ (u_i u_{i+1}) : 1 \le i \le n-1 \}.$ Let $f: V[P_n] \to \{f_1, f_2, f_3, f_4\}$ The vertices are labeled under 3 cases Case a: Let P_n be the graph when $n \equiv 0 \pmod{4}$ and $n \neq 4$. $f(u_i) = \begin{cases} f_1 & i \equiv 0, 7 \mod 8\\ f_2 & i \equiv 1, 5 \mod 8\\ f_3 & i \equiv 2, 6 \mod 8, 1 \le i \le 8. \end{cases}$ $f(u_i) = \begin{cases} f_1 & i \equiv 0, 7 \mod 8\\ f_3 & i \equiv 2, 6 \mod 8\\ f_4 & i \equiv 3, 4 \mod 8\\ f_2 & i \equiv 2, 6 \mod 8\\ f_3 & i \equiv 3, 7 \mod 8\\ f_4 & i \equiv 4, 5 \mod 8 \end{cases}, 9 \le i \le n.$ $\int f_4 \quad i \equiv 4, 5 \mod 8$ Then the induced edge labeling are $f^{*}(u_{i}u_{i+1}) = \begin{cases} f_{1} & i \equiv 3,7 \mod 8\\ f_{2} & i \equiv 2 \mod 8\\ f_{3} & i \equiv 4,6 \mod 8\\ f_{4} & i \equiv 1,5 \mod 8\\ f_{4} & i \equiv 1,5 \mod 8\\ f_{2} & i \equiv 1,3 \mod 8\\ f_{2} & i \equiv 1,3 \mod 8\\ f_{3} & i \equiv 5,7 \mod 8\\ f_{4} & i \equiv 2,6 \mod 8 \end{cases}, \ 8 \le i \le n-1.$ Case b: Then the induced edge labeling are

Case b:

Let P_n be the graph when $n \equiv 1 \pmod{4}$ and $n \neq 5$.

$$f(u_i) = \begin{cases} f_1 & i \equiv 1 \mod 8\\ f_2 & i \equiv 2, 6 \mod 8\\ f_3 & i \equiv 0, 7 \mod 8\\ f_4 & i \equiv 4, 5 \mod 8\\ f_2 & i \equiv 2, 3 \mod 8\\ f_2 & i \equiv 2, 3 \mod 8\\ f_3 & i \equiv 6, 7 \mod 8\\ f_4 & i \equiv 0, 4 \mod 8 \end{cases}, \ 10 \le i \le n.$$

Then the induced edge labeling are

$$f^{*}(u_{i}u_{i+1}) = \begin{cases} f_{1} & i \equiv 4,7 \mod 8\\ f_{2} & i \equiv 1,3 \mod 8\\ f_{3} & i \equiv 5,0 \mod 8\\ f_{4} & i \equiv 2,6 \mod 8 \end{cases}, \ 1 \le i \le 8.$$
$$f^{*}(u_{i}u_{i+1}) = \begin{cases} f_{1} & i \equiv 2,6 \mod 8\\ f_{2} & i \equiv 1,7 \mod 8\\ f_{3} & i \equiv 3,5 \mod 8\\ f_{4} & i \equiv 0,4 \mod 8 \end{cases}, \ 9 \le i \le n-1.$$

Case c:

Let P_n be the graph when $n \equiv 2, 3 \pmod{4}$. $f(u_i) = \begin{cases} f_1 & i \equiv 1, 0 \mod 8 \\ f_2 & i \equiv 2, 6 \mod 8 \\ f_3 & i \equiv 3, 7 \mod 8 \end{cases}, \ 1 \le i \le n.$ There is a subscript of a backling one

Then the induced edge labeling are

$$f^*(u_i u_{i+1}) = \begin{cases} f_1 & i \equiv 0, 4 \mod 8\\ f_2 & i \equiv 1, 3 \mod 8\\ f_3 & i \equiv 5, 7 \mod 8\\ f_4 & i \equiv 2, 6 \mod 8 \end{cases}, \ 1 \le i \le n-1.$$

When n = 4 and 5, it has been enumerated for all possible labeling and noted, it is not CCCL.

Vertex condition and Edge condition:

Case 1: When $n \equiv 0 \pmod{8}$ $v_f(f_i) = \frac{n}{4}, 1 \le i \le 4$ $e_f(f_i) = \frac{n}{4}, i = 1, 3, 4$ $e_f(f_2) = \frac{n}{4} - 1$

Case 2: When $n \equiv 1 \pmod{8}$ $v_f(f_i) = \frac{n-1}{4}, i = 1, 2, 4$ $v_f(f_3) = \frac{n+3}{4}$ Case 3: When $n \equiv 2 \pmod{8}$ $v_f(f_i) = \frac{n+2}{4}, i = 1, 2.$ $v_f(f_i) = \frac{n-2}{4}, i = 1, 2.$ $v_f(f_i) = \frac{n-2}{4}, i = 1, 3, 4$ $v_f(f_i) = \frac{n-2}{4}, i = 3, 4$ Case 4: When $n \equiv 3 \pmod{8}$ $v_f(f_3) = \frac{n+1}{4}, 1 \le i \le 3$ $v_f(f_3) = \frac{n-3}{4}$ Case 5: When $n \equiv 4 \pmod{8}$

$$v_f(f_i) = \frac{n}{4}$$
, $1 \le i \le 4$

$$e_f(f_i) = \frac{n}{4} , i = 1, 2, 4$$
$$e_f(f_3) = \frac{n}{4} - 1$$

Case 6:
When
$$n \equiv 5 \pmod{8}$$

 $v_f(f_i) = \frac{n-1}{4}, i = 1, 3, 4$
 $v_f(f_2) = \frac{n+3}{4}$
Case 7:
When $n \equiv 6 \pmod{8}$
 $v_f(f_i) = \frac{n-2}{4}, i = 1, 3$
 $v_f(f_i) = \frac{n+2}{4}, i = 2, 4.$
 $e_f(f_i) = \frac{n-2}{4}, i = 1, 3, 4$

Case 8:
When
$$n \equiv 7 \pmod{8}$$

 $v_f(f_1) = \frac{n-3}{4}$
 $e_f(f_i) = \frac{n-3}{4}$, $i = 1, 3$.
 $v_f(f_i) = \frac{n+1}{4}$, $2 \le i \le 3$
Example:

Consider the example P_8 for case 1 and labeling follows case a

 P_9

Case 2 and case b

$$\begin{aligned} & v_f(f_i) = 2, i = 1, 2, 4 & e_f(f_i) = 2, i = 1, 2, 4 \\ & v_f(f_3) = 3 & e_f(f_3) = 2 \\ & \text{Here } |v_f(f_i) - v_f(f_j)| \le 1 \text{ and } |e_f(f_i) - e_f(f_j)| = 0 \end{aligned}$$

 P_{10}

Case 3 and case c $v_f(f_i) = 3, i = 1, 2$ $v_f(f_i) = 2, i = 3, 4$ Here $|v_f(f_i) - v_f(f_j)| \le 1$ and $|e_f(f_i) - e_f(f_j)| \le 1$

case 5 and case a

case 6 and case b case 7 and case c case 8 and case c

For P_{12}

$$v_f(f_i) = 3, \ 1 \le i \le 4 \qquad e_f(f_i) = 3, \ i = 1, \ 2, \ 4$$
$$e_f(f_3) = 2$$
Here $|v_f(f_i) - v_f(f_j)| = 0$ and $|e_f(f_i) - e_f(f_j)| \le 1$
$$v_f(f_i) = 3, \ i = 1, \ 3, \ 4 \qquad e_f(f_i) = 3, \ 1 \le i \le 4$$

For P_{13}

$$\begin{aligned} v_f(f_i) &= 5, i = 1, 5, 4 \quad e_f(f_i) = 5, 1 \le i \le 4 \\ v_f(f_2) &= 4 \end{aligned}$$

Here $|v_f(f_i) - v_f(f_j)| \le 1$ and $|e_f(f_i) - e_f(f_j)| = 0$

For P_6

$v_f(f_i) = 1, i = 1, 3$	$e_f(f_i) = 1, i = 1, 3, 4$
$v_f(f_i) = 2, i = 2, 4$	$e_f(f_2)=2$
Here $ v_f(f_i) - v_f(f_j) \le 1$ and	$ e_f(f_i) - e_f(f_j) \le 1$

For P_6

$$\begin{array}{ll} v_f(f_1) = 1 & e_f(f_i) = 1, \, i = 1, \, 4 \\ v_f(f_i) = 2, \, i = 2, \, 3, \, 4 & e_f(f_i) = 2, \, i = 2, \, 3 \\ \text{Here } |v_f(f_i) - v_f(f_j)| \leq 1 \text{ and } |e_f(f_i) - e_f(f_j)| \leq 1 \end{array}$$

 P_{11}

Case 4 and case c

$$v_f(f_i) = 3, 1 \le i \le 3$$
 $e_f(f_i) = 2, i = 1, 3$
 $v_f(f_4) = 2$ $e_f(f_i) = 3, i = 2, 4$
Here $|v_f(f_i) - v_f(f_j)| \le 1$ and $|e_f(f_i) - e_f(f_j)| \le 1$

Thus P_n is a Complex Composition Cordial Graph.

Theorem 2:

Star S_n is Complex Composition Cordial graphs. **Proof:** Let $V[S_n] = \{u_i : 1 \le i \le n + 1\}$ $E[S_n] = \{(u_1u_i): 1 \le i \le n\}$. Let $f: V[S_n] \rightarrow \{f_1, f_2, f_3, f_4\}$ defined by $f(u_i) = \begin{cases} f_1 & i \equiv 1 \mod 4\\ f_2 & i \equiv 2 \mod 4\\ f_3 & i \equiv 3 \mod 4 \end{cases}, \ 1 \le i \le n + 1.$ $f_4 & i \equiv 0 \mod 4$ Then the induced edge labeling are $f^*(u_1u_i) = \begin{cases} f_1 & i \equiv 1 \mod 4\\ f_2 & i \equiv 2 \mod 4\\ f_2 & i \equiv 2 \mod 4\\ f_3 & i \equiv 3 \mod 4 \end{cases}, \ 2 \le i \le n + 1.$ $f_4 & i \equiv 0 \mod 4$

Vertex condition and Edge condition:

Case 1: When $n \equiv 0 \pmod{4}$ $v_f(f_i) = \frac{n}{4} + 1, i = 1$ $e_f(f_i) = \frac{n}{4}, 1 \le i \le 4$ $v_f(f_i) = \frac{n}{4}, 2 \le i \le 4$ Case 2: When $n \equiv 1 \pmod{4}$ $v_f(f_i) = \frac{n+3}{4}, i= 1, 2$ $v_f(f_i) = \frac{n-1}{4}, i= 3, 4$ Case 3: When $n \equiv 2 \pmod{4}$ $v_f(f_i) = \frac{n+2}{4}, 1 \le i \le 3$ $v_f(f_i) = \frac{n-2}{4}, i= 4$ Case 4: When $n \equiv 3 \pmod{4}$ $v_f(f_i) = \frac{n+1}{4}, 1 \le i \le 4$

$$e_f(f_i) = \frac{n-1}{4}, i = 1, 3, 4$$

 $e_f(f_i) = \frac{n+3}{4}, i = 2$

$$e_f(f_i) = \frac{n-2}{4}, i = 1, 4$$

 $e_f(f_i) = \frac{n+2}{4}, i = 2, 3$

$$e_f(f_i) = \frac{n-3}{4}, i = 1.$$

 $e_f(f_i) = \frac{n+1}{4}, 2 \le i \le 4.$

 S_7

Example:

 S_8

For S_8

 $\begin{array}{l} v_f(f_1) = 3 & e_f(f_i) = 2, \, 1 \le i \le 4 \\ v_f(f_i) = 2, \, i = 2, \, 3, \, 4 \\ \text{Here } |v_f(f_i) - v_f(f_j)| \le 1 \text{ and } |e_f(f_i) - e_f(f_j)| = 0 \end{array}$

For S_7

$$v_f(f_i) = 2, \ 1 \le i \le 4 \qquad e_f(f_1) = 1 \\ e_f(f_i) = 2, \ i = 2, \ 3, \ 4 \\ \text{Here } |v_f(f_i) - v_f(f_j)| \le 1 \text{ and } |e_f(f_i) - e_f(f_j)| \le 1 \\ S_5$$

 S_6

For S_6

$$\begin{array}{l} v_f(f_i) = 2, \ 1 \le i \le 3 \\ v_f(f_4) = 1 \\ \text{Here } |v_f(f_i) - v_f(f_j)| \le 1 \\ \text{ and } |e_f(f_i) - e_f(f_j)| \le 1 \end{array}$$

For S_5

$$\begin{aligned} &v_f(f_i) = 2, i = 1, 2 \quad e_f(f_i) = 1, i = 1, 3, 4 \\ &v_f(f_i) = 1, i = 3, 4 \quad e_f(f_2) = 2 \\ &\text{Here } |v_f(f_i) - v_f(f_j)| \le 1 \text{ and } |e_f(f_i) - e_f(f_j)| \le 1 \end{aligned}$$

Thus S_n is a Complex Composition Cordial Graph.

References:

- 1. GALLIAN.J.A, A Dynamical survey of graphs Labeling, The Electronic Journal of combinatorics. 6(2001) #DS6.
- 2. HARRARY.F, Graph Theory, Adadison-Wesley Publishing Company Inc, USA, 1969.
- 3. L. Pandiselvi, Dr. S. Navaneethakrishnan, Dr. A. Nellai Murugan, Bi-Star V₄ Cordial Graphs, IJASR, Vol 1, Issue 2; Feb 2016, pg no.14-21.