Complex Composition Cordial Labeling Of Path and Star Graphs

R.Maria Irudhaya Aspin Chitra and Dr. A.Nellai Murugan
Department of Mathematics, V.O.Chidambaram College, Tuticorin, Tamilnadu(INDIA)

Abstract

Let $\langle A, *\rangle$ be any abelian group. A graph $G=(V(G), E(G))$ is said to be A-cordial if there is a mapping $f: V(G) \rightarrow A$ which satisfies the following two conditions with each edge $e=u v$ is labeled as $f *(u v)=f(u) * f(v)$ - $\left|v_{f}(a)-v_{f}(b)\right| \leq 1 \forall a, b \in A$ - $\left|e_{f}(a)-e_{f}(b)\right| \leq 1 \quad \forall a, b \in A$ where $v_{f}(a)=$ the number of vertices with label a $v_{f}(b)=$ the number of vertices with label b $e_{f}(a)=$ the number of edges with label a $e_{f}(b)=$ the number of edges with label b In [3], V_{4}-cordial labeling is defined. It motivates me an idea to define CCCL as follows. We have defined a set $\mathbb{C}=\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}$ where $f_{1}=z, f_{2}=-z, f_{3}=1 / z, f_{4}=-1 / z \forall z \in C-\{0\}$ is an abelian group and under binary operation * is defined as $f_{1} * f_{2}=f_{1} \circ f_{2}=f_{1}\left(f_{2}\right)$.

We note that if 〈 $\left.\mathbb{C},{ }^{*}\right\rangle$ is an abelian group. Then the labeling is known as Complex Composition Cordial Labeling, and in short denoted as CCCL. A graph which admits CCCL is called as Complex Composition Cordial Graph, which is denoted as CCCG. In this paper, it is proved that Path P_{n} and Star S_{n} are Complex Composition Cordial graphs.

Keywords: Complex Composition Cordial Graph, Complex Composition Cordial Labeling.
2010 Mathematics subject classification Number: 05 C78.

1. Introduction:

A graph G is a finite non empty set of objects called vertices together with a set of pairs of distinct vertices of G which is called edges. Each $e=\{u v\}$ of vertices in E is called an edge or a line of G. For Graph Theoretical Terminology, [2].

A vertex labeling of a graph G is an assignment of labels to the vertices of G that induces for each edge $u v$ a label depending on the vertex labels of u and v.
A graph G is said to be labeled if the n vertices are distinguished from one another by symbols such as $v_{1}, v_{2}, \ldots \ldots, v_{n}$. In this paper, it is proved that Path P_{n} and Star S_{n} are Complex Composition Cordial graphs.

2. Preliminaries:

Definition:2.1

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a simple graph. Let $f: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1\}$ and for each edge $u v$, assign the label $|f(u)-f(v)| \cdot f$ is called a Cordial labeling if the number of vertices labeled 0 and the number of vertices labeled 1 differ by atmost 1 and also the number of edges labeled 0 and the number of edges labeled 1 differ by atmost 1 . A graph is called Cordial if it has a cordial labeling.

Definition:2.2

Let $\langle A$, * \rangle be any abelian group. A graph $G=(V(G), E(G))$ is said to be A-cordial if there is a mapping $f: V(G) \rightarrow A$ which satisfies the following two conditions with each edge $e=u v$ is labeled as $f^{*}(u v)=f(u) * f(v)$

- $\left|v_{f}(a)-v_{f}(b)\right| \leq 1 \forall a, b \in A$
- $\left|e_{f}(a)-e_{f}(b)\right| \leq 1 \quad \forall a, b \in A$
where $v_{f}(a)=$ the number of vertices with label a

$$
\begin{aligned}
& v_{f}(b)=\text { the number of vertices with label } b \\
& e_{f}(a)=\text { the number of edges with label } a \\
& e_{f}(b)=\text { the number of edges with label } b
\end{aligned}
$$

We have defined a set $\mathbb{C}=\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}$ where $f_{1}=z, f_{2}=-z, f_{3}=1 / z, f_{4}=-1 / z \forall z \in C-\{0\}$ is an abelian group and under binary operation $*$ is defined as $f_{1} * f_{2}=f_{1} \circ f_{2}=f_{1}\left(f_{2}\right)$.

We note that if $\langle\mathbb{C}, *\rangle$ is an abelian group. Then the labeling is known as Complex Composition Cordial Labeling, and in short denoted as CCCL. A graph which admits CCCL is called as Complex Composition Cordial Graph, which is denoted as CCCG.

Definition:2.3

A Walk of a graph G is an alternating sequence of vertices and edges $v_{1}, e_{1}, v_{2}, e_{2}, \ldots . . v_{n-1}, e_{n}, v_{n}$ beginning and ending with vertices such that each edge e_{i} is incident with vertices v_{i-1} and v_{i}.

Definition:2.4

In a walk, if all the vertices are distinct, then it is called a Path and a path of length n is denoted by $\mathbf{P}_{\mathrm{n}+1}$.

Definition:2.5

A Bipartite Graph is a graph whose vertex set $\mathrm{V}(\mathrm{G})$ can be partitioned into two subsets V_{1} and V_{2} such that every edge of G has one end in V_{1} and the other end in V_{2}. $\left(V_{1}, V_{2}\right)$ is called a bipartition of G. Further, if every vertex of V_{1} is joined to all the vertices of V_{2}, then G is called a Complete Bipartite Graph. The complete bipartite graph with bipartition $\left(\mathrm{V}_{1}, \mathrm{~V}_{2}\right)$ such that $\left|\mathrm{V}_{1}\right|=\mathrm{m}$ and $\left|\mathrm{V}_{2}\right|=\mathrm{n}$ is denoted by $\mathbf{K}_{\mathrm{m}, \mathrm{n}}$. A complete bipartite graph $\mathbf{K}_{1, \mathrm{n}}$ or $\mathbf{K}_{\mathrm{n}, 1}$ or $\mathbf{S}_{\mathbf{n}}$ is called as $\mathbf{S t a r}$.

3. Main Results:

Theorem:3.1

Path P_{n} is Complex Composition Cordial graphs.

Proof:

Let $\mathrm{V}\left[P_{n}\right]=\left\{u_{i}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ and $\mathrm{E}\left[P_{n}\right]=\left\{\left(u_{i} u_{i+1}\right): 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\}$.
Let $f: \mathrm{V}\left[P_{n}\right] \rightarrow\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}$
The vertices are labeled under 3 cases

Case a:

Let P_{n} be the graph when $n \equiv 0(\bmod 4)$ and $n \neq 4$.
$f\left(u_{i}\right)=\left\{\begin{array}{ll}f_{1} & i \equiv 0,7 \bmod 8 \\ f_{2} & i \equiv 1,5 \bmod 8 \\ f_{3} & i \equiv 2,6 \bmod 8 \\ f_{4} & i \equiv 3,4 \bmod 8\end{array}, 1 \leq i \leq 8\right.$.
$f\left(u_{i}\right)=\left\{\begin{array}{ll}f_{1} & i \equiv 0,1 \bmod 8 \\ f_{2} & i \equiv 2,6 \bmod 8 \\ f_{3} & i \equiv 3,7 \bmod 8 \\ f_{4} & i \equiv 4,5 \bmod 8\end{array}, 9 \leq i \leq n\right.$.
Then the induced edge labeling are
$f^{*}\left(u_{i} u_{i+1}\right)=\left\{\begin{array}{ll}f_{1} & i \equiv 3,7 \bmod 8 \\ f_{2} & i \equiv 2 \bmod 8 \\ f_{3} & i \equiv 4,6 \bmod 8 \\ f_{4} & i \equiv 1,5 \bmod 8\end{array}, 1 \leq i \leq 7\right.$.
$f^{*}\left(u_{i} u_{i+1}\right)=\left\{\begin{array}{ll}f_{1} & i \equiv 0,4 \bmod 8 \\ f_{2} & i \equiv 1,3 \bmod 8 \\ f_{3} & i \equiv 5,7 \bmod 8 \\ f_{4} & i \equiv 2,6 \bmod 8\end{array}, 8 \leq i \leq n-1\right.$.

Case b:

Let P_{n} be the graph when $n \equiv 1(\bmod 4)$ and $n \neq 5$.
$f\left(u_{i}\right)=\left\{\begin{array}{ll}f_{1} & i \equiv 1 \bmod 8 \\ f_{2} & i \equiv 2,6 \bmod 8 \\ f_{3} & i \equiv 0,7 \bmod 88 \\ f_{4} & i \equiv 4,5 \bmod 8\end{array}, 1 \leq i \leq 9\right.$.
$f\left(u_{i}\right)=\left\{\begin{array}{ll}f_{1} & i \equiv 1,5 \bmod 8 \\ f_{2} & i \equiv 2,3 \bmod 8 \\ f_{3} & i \equiv 6,7 \bmod 8 \\ f_{4} & i \equiv 0,4 \bmod 8\end{array}, 10 \leq i \leq n\right.$.
Then the induced edge labeling are
$f^{*}\left(u_{i} u_{i+1}\right)=\left\{\begin{array}{ll}f_{1} & i \equiv 4,7 \bmod 8 \\ f_{2} & i \equiv 1,3 \bmod 8 \\ f_{3} & i \equiv 5,0 \bmod 8 \\ f_{4} & i \equiv 2,6 \bmod 8\end{array}, 1 \leq i \leq 8\right.$.
$f^{*}\left(u_{i} u_{i+1}\right)=\left\{\begin{array}{rl}f_{1} & i \neq 2,6 \bmod 8 \\ f_{2} & i \equiv 1,7 \bmod 8 \\ f_{3} & i \equiv 3,5 \bmod 8 \\ f_{4} & i \equiv 0,4 \bmod 8\end{array}, 9 \leq i \leq n-1\right.$.
Case c:
Let P_{n} be the graph when $n \equiv 2,3(\bmod 4)$.
$f\left(u_{i}\right)=\left\{\begin{array}{ll}f_{1} & i \equiv 1,0 \bmod 8 \\ f_{2} & i \equiv 2,6 \bmod 8 \\ f_{3} & i \equiv 3,7 \bmod 8 \\ f_{4} & i \equiv 4,5 \bmod 8\end{array}, 1 \leq i \leq n\right.$.
Then the induced edge labeling are
$f^{*}\left(u_{i} u_{i+1}\right)=\left\{\begin{array}{l}f_{1} \quad i \equiv 0,4 \bmod 8 \\ f_{2} \quad i \equiv 1,3 \bmod 8 \\ f_{3} \quad i \equiv 5,7 \bmod 8 \\ f_{4} \\ i \equiv 2,6 \bmod 8\end{array}, 1 \leq i \leq n-1\right.$.
When $n=4$ and 5 , it has been enumerated for all possible labeling and noted, it is not CCCL.

Vertex condition and Edge condition:

Case 1:

When $n \equiv 0(\bmod 8)$
$v_{f}\left(f_{i}\right)=\frac{n}{4}, 1 \leq i \leq 4$

$$
\begin{aligned}
& e_{f}\left(f_{i}\right)=\frac{n}{4}, \quad i=1,3,4 \\
& e_{f}\left(f_{2}\right)=\frac{n}{4}-1
\end{aligned}
$$

Case 2:
When $n \equiv 1(\bmod 8)$
$v_{f}\left(f_{i}\right)=\frac{n-1}{4}, i=1,2,4$
$e_{f}\left(f_{i}\right)=\frac{n-1}{4}, 1 \leq i \leq 4$
$v_{f}\left(f_{3}\right)=\frac{n+3}{4}$

Case 3:

When $n \equiv 2(\bmod 8)$
$v_{f}\left(f_{i}\right)=\frac{n+2}{4}, i=1,2$.
$e_{f}\left(f_{i}\right)=\frac{n-2}{4}, i=1,3,4$
$v_{f}\left(f_{i}\right)=\frac{n-2}{4}, i=3,4$
$e_{f}\left(f_{2}\right)=\frac{n+2}{4}$

Case 4:

When $\boldsymbol{n} \equiv 3 \boldsymbol{(m o d} 8)$
$v_{f}\left(f_{i}\right)=\frac{n+1}{4}, 1 \leq i \leq 3$
$v_{f}\left(f_{3}\right)=\frac{n-3}{4}$

$$
\begin{aligned}
& e_{f}\left(f_{i}\right)=\frac{n-3}{4}, i=1,3 . \\
& e_{f}\left(f_{i}\right)=\frac{n+1}{4}, i=2,4
\end{aligned}
$$

Case 5:
When $n \equiv 4(\bmod 8)$
$v_{f}\left(f_{i}\right)=\frac{n}{4}, 1 \leq i \leq 4$

$$
\begin{aligned}
e_{f}\left(f_{i}\right)= & \frac{n}{4}, i=1,2,4 \\
& e_{f}\left(f_{3}\right)=\frac{n}{4}-1
\end{aligned}
$$

Case 6:
When $\boldsymbol{n} \equiv 5(\bmod 8)$
$v_{f}\left(f_{i}\right)=\frac{n-1}{4}, i=1,3,4 \quad e_{f}\left(f_{i}\right)=\frac{n-1}{4}, 1 \leq i \leq 4$
$v_{f}\left(f_{2}\right)=\frac{n+3}{4}$
Case 7:
When $n \equiv 6(\bmod 8)$
$v_{f}\left(f_{i}\right)=\frac{n-2}{4}, i=1,3 \quad e_{f}\left(f_{i}\right)=\frac{n-2}{4}, i=1,3,4$
$v_{f}\left(f_{i}\right)=\frac{n+2}{4}, i=2,4$.
$e_{f}\left(f_{2}\right)=\frac{n+2}{4}$

Case 8:

When $n \equiv 7(\bmod 8)$

$$
\begin{array}{lr}
v_{f}\left(f_{1}\right)=\frac{n-3}{4} & e_{f}\left(f_{i}\right)=\frac{n-3}{4}, i=1,3 \\
v_{f}\left(f_{i}\right)=\frac{n+1}{4}, 2 \leq i \leq 3 & e_{f}\left(f_{i}\right)=\frac{n+1}{4}, i=2,4
\end{array}
$$

Example:

Consider the example P_{8} for case 1 and labeling follows case a

$$
v_{f}\left(f_{i}\right)=2, i=1,3,4 \quad e_{f}\left(f_{i}\right)=2, i=1,3,4
$$

$$
v_{f}\left(f_{2}\right)=2 \quad e_{f}\left(f_{2}\right)=1
$$

Here $\left|v_{f}\left(f_{i}\right)-v_{f}\left(f_{j}\right)\right|=0$ and $\left|e_{f}\left(f_{i}\right)-e_{f}\left(f_{j}\right)\right| \leq 1$
P_{9}

Case 2 and case b

$$
\begin{array}{ll}
v_{f}\left(f_{i}\right)=2, i=1,2,4 & e_{f}\left(f_{i}\right)=2, i=1,2,4 \\
v_{f}\left(f_{3}\right)=3 & e_{f}\left(f_{3}\right)=2
\end{array}
$$

Here $\left|v_{f}\left(f_{i}\right)-v_{f}\left(f_{j}\right)\right| \leq 1$ and $\left|e_{f}\left(f_{i}\right)-e_{f}\left(f_{j}\right)\right|=0$
P_{10}

Case 3 and case c

$$
\begin{array}{ll}
v_{f}\left(f_{i}\right)=3, i=1,2 & e_{f}\left(f_{i}\right)=2, i=1,3,4 \\
v_{f}\left(f_{i}\right)=2, i=3,4 & e_{f}\left(f_{2}\right)=3
\end{array}
$$

Here $\left|v_{f}\left(f_{i}\right)-v_{f}\left(f_{j}\right)\right| \leq 1$ and $\left|e_{f}\left(f_{i}\right)-e_{f}\left(f_{j}\right)\right| \leq 1$

P_{7}

case 5 and case a case 6 and case b case 7 and case c case 8 and case c

For P_{12}

$$
\begin{array}{ll}
v_{f}\left(f_{i}\right)=3,1 \leq i \leq 4 & e_{f}\left(f_{i}\right)=3, i=1,2,4 \\
& e_{f}\left(f_{3}\right)=2
\end{array}
$$

Here $\left|v_{f}\left(f_{i}\right)-v_{f}\left(f_{j}\right)\right|=0$ and $\left|e_{f}\left(f_{i}\right)-e_{f}\left(f_{j}\right)\right| \leq 1$
For P_{13}

$$
\begin{aligned}
& v_{f}\left(f_{i}\right)=3, i=1,3,4 \quad e_{f}\left(f_{i}\right)=3,1 \leq i \leq 4 \\
& v_{f}\left(f_{2}\right)=4
\end{aligned}
$$

Here $\left|v_{f}\left(f_{i}\right)-v_{f}\left(f_{j}\right)\right| \leq 1$ and $\left|e_{f}\left(f_{i}\right)-e_{f}\left(f_{j}\right)\right|=0$
For P_{6}

$$
\begin{array}{ll}
v_{f}\left(f_{i}\right)=1, i=1,3 & e_{f}\left(f_{i}\right)=1, i=1,3,4 \\
v_{f}\left(f_{i}\right)=2, i=2,4 & e_{f}\left(f_{2}\right)=2
\end{array}
$$

Here $\left|v_{f}\left(f_{i}\right)-v_{f}\left(f_{j}\right)\right| \leq 1$ and $\left|e_{f}\left(f_{i}\right)-e_{f}\left(f_{j}\right)\right| \leq 1$
For P_{6}

$$
\begin{array}{cr}
v_{f}\left(f_{1}\right)=1 & e_{f}\left(f_{i}\right)=1, i=1,4 \\
v_{f}\left(f_{i}\right)=2, i=2,3,4 & e_{f}\left(f_{i}\right)=2, i=2,3 \\
\text { Here }\left|v_{f}\left(f_{i}\right)-v_{f}\left(f_{j}\right)\right| \leq 1 \text { and }\left|e_{f}\left(f_{i}\right)-e_{f}\left(f_{j}\right)\right| \leq 1
\end{array}
$$

Case 4 and case c

$$
v_{f}\left(f_{i}\right)=3,1 \leq i \leq 3 \quad e_{f}\left(f_{i}\right)=2, i=1,3
$$

$$
v_{f}\left(f_{4}\right)=2 \quad e_{f}\left(f_{i}\right)=3, i=2,4
$$

Here $\left|v_{f}\left(f_{i}\right)-v_{f}\left(f_{j}\right)\right| \leq 1$ and $\left|e_{f}\left(f_{i}\right)-e_{f}\left(f_{j}\right)\right| \leq 1$
Thus P_{n} is a Complex Composition Cordial Graph.

Theorem 2:

Star S_{n} is Complex Composition Cordial graphs.
Proof:
Let $\mathrm{V}\left[S_{n}\right]=\left\{u_{i}: 1 \leq i \leq n+1\right\}$
$\mathrm{E}\left[S_{n}\right]=\left\{\left(u_{1} u_{i}\right): 1 \leq \mathrm{i} \leq n\right\}$.
Let $f: \mathrm{V}\left[S_{n}\right] \rightarrow\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}$ defined by
$f\left(u_{i}\right)=\left\{\begin{array}{ll}f_{1} & i \equiv 1 \bmod 4 \\ f_{2} & i \equiv 2 \bmod 4 \\ f_{3} & i \equiv 3 \bmod 4 \\ f_{4} & i \equiv 0 \bmod 4\end{array}, 1 \leq i \leq n+1\right.$.
Then the induced edge labeling are
$f^{*}\left(u_{1} u_{i}\right)=\left\{\begin{array}{ll}f_{1} & i \equiv 1 \bmod 4 \\ f_{2} & i \equiv 2 \bmod 4 \\ f_{3} & i \equiv 3 \bmod 4 \\ f_{4} & i \equiv 0 \bmod 4\end{array}, 2 \leq i \leq n+1\right.$.

Vertex condition and Edge condition:

Case 1:

When $n \equiv 0(\bmod 4)$
$v_{f}\left(f_{i}\right)=\frac{n}{4}+1, i=1$

$$
e_{f}\left(f_{i}\right)=\frac{n}{4}, 1 \leq i \leq 4
$$

$v_{f}\left(f_{i}\right)=\frac{n}{4}, 2 \leq i \leq 4$
Case 2:
When $n \equiv 1(\bmod 4)$
$v_{f}\left(f_{i}\right)=\frac{n+3}{4}, i=1,2$
$v_{f}\left(f_{i}\right)=\frac{n-1}{4}, i=3,4$

$$
e_{f}\left(f_{i}\right)=\frac{n-1}{4}, i=1,3,4
$$

Case 3:
When $n \equiv 2(\bmod 4)$
$v_{f}\left(f_{i}\right)=\frac{n+2}{4}, 1 \leq i \leq 3$
$v_{f}\left(f_{i}\right)=\frac{n-2}{4}, i=4$

$$
\begin{aligned}
e_{f}\left(f_{i}\right)= & \frac{n-2}{4}, i=1,4 \\
& e_{f}\left(f_{i}\right)=\frac{n+2}{4}, i=2,3
\end{aligned}
$$

Case 4:

When $\boldsymbol{n} \equiv 3 \boldsymbol{(m o d} 4)$
$v_{f}\left(f_{i}\right)=\frac{n+1}{4}, 1 \leq i \leq 4$

$$
\begin{aligned}
e_{f}\left(f_{i}\right)=\frac{n-3}{4}, i & =1 \\
e_{f}\left(f_{i}\right) & =\frac{n+1}{4}, 2 \leq i \leq 4
\end{aligned}
$$

Example:

S_{8}

Case 2

For S_{8}

$$
\begin{array}{ll}
v_{f}\left(f_{1}\right)=3 \\
v_{f}\left(f_{i}\right)=2, i=2,3,4 & e_{f}\left(f_{i}\right)=2,1 \leq i \leq 4
\end{array}
$$

$$
\text { Here }\left|v_{f}\left(f_{i}\right)-v_{f}\left(f_{j}\right)\right| \leq 1 \text { and }\left|e_{f}\left(f_{i}\right)-e_{f}\left(f_{j}\right)\right|=0
$$

For S_{7}

$$
\begin{array}{ll}
v_{f}\left(f_{i}\right)=2,1 \leq i \leq 4 & e_{f}\left(f_{1}\right)=1 \\
& e_{f}\left(f_{i}\right)=2, i=2,3,4
\end{array}
$$

Here $\left|v_{f}\left(f_{i}\right)-v_{f}\left(f_{j}\right)\right| \leq 1$ and $\left|e_{f}\left(f_{i}\right)-e_{f}\left(f_{j}\right)\right| \leq 1$
S_{6}

Case 3

Case 4

For S_{6}

$$
\begin{array}{ll}
v_{f}\left(f_{i}\right)=2,1 \leq i \leq 3 & e_{f}\left(f_{i}\right)=1, i=1,4 \\
v_{f}\left(f_{4}\right)=1 & e_{f}\left(f_{i}\right)=2, i=2,3
\end{array}
$$

$$
\text { Here }\left|v_{f}\left(f_{i}\right)-v_{f}\left(f_{j}\right)\right| \leq 1 \text { and }\left|e_{f}\left(f_{i}\right)-e_{f}\left(f_{j}\right)\right| \leq 1
$$

For S_{5}

$$
\begin{aligned}
& v_{f}\left(f_{i}\right)=2, i=1,2 \quad e_{f}\left(f_{i}\right)=1, i=1,3,4 \\
& v_{f}\left(f_{i}\right)=1, i=3,4 \quad e_{f}\left(f_{2}\right)=2 \\
& \text { Here }\left|v_{f}\left(f_{i}\right)-v_{f}\left(f_{j}\right)\right| \leq 1 \text { and }\left|e_{f}\left(f_{i}\right)-e_{f}\left(f_{j}\right)\right| \leq 1
\end{aligned}
$$

Thus S_{n} is a Complex Composition Cordial Graph.

References:

1. GALLIAN.J.A,A Dynamical survey of graphs Labeling, The Electronic Journal of combinatorics. 6(2001) \#DS6.
2. HARRARY.F, Graph Theory, Adadison-Wesley Publishing Company Inc, USA, 1969.
3. L. Pandiselvi, Dr. S. Navaneethakrishnan, Dr. A. Nellai Murugan, Bi-Star V4 Cordial Graphs, IJASR, Vol 1, Issue 2; Feb 2016, pg no.14-21.
