Doubt cubic H-ideals of BG-algebra

Devanjan Hazarika
Department of Mathematics, D.H.S.K. College, Dibrugarh-786001, Assam, India.
Karabi Dutta Choudhury
Department of Mathematics, Assam University, Silchar, Assam-788011, Assam, India.

Abstract

In this article we introduce the notion of Doubt cubic H-ideals of BG-algebra and discuss some of their properties.

Key words: BG-algebra, Doubt fuzzy BG-subalgebra, Doubt fuzzy H - ideal of BG algebra, Cubic Set, Doubt Cubic H - ideals of BG-algebra

1 Introduction

the study of BCK- algebra and BCI algebra was initiated by Imai and Iseki [2] in 1966. B-algebra was introduced by Neggers and Kim [8], which is related to BCI/BCK- algebra in many aspects. Kim and Kim[7] generalised B-algebra as BG-algebra and this algebra was fuzzyfied by Ahn and Lee[1]. Khalid and Ahmad [6] introduced fuzzy H-ideals in BCI-algebra in 1999. In 1994, Jun [5] introduced the concept of doubt fuzzy ideals in BCK/BCI- algebras. The notion of doubt fuzzy H-ideals in BCK-algebra was introduced by Zhan and Tan [10]. The concept of interval valued fuzzy sets, an extension of fuzzy sets was due to Zadeh [9] and based upon it, Jun [3] developed the notion of cubic sets. In this approach, doubt cubic H-ideal of BG-algebra is defined and some of its properties, investigated.

2 Preliminaries

Definition 2.1. A BG-algebra is a non empty set X with a constant 0 and a binary operation $*$ satisfying the following:
(i) $x * x=0$
(ii) $x * 0=x$
. (iii) $(x * y) *(0 * y)=x \quad \forall x, y \in X$

In his case we say $(X, *, 0)$ is a BG-algebra and by X now onwards we shall mean a BG-algebra. We can define a partial ordering ' \leq ' by $x \leq y$ if and only if $x * y=0$.

Example 2.2. The set $X=\{0,1,2,3\}$ with the caley table

$*$	0	1	2	3
0	0	3	2	1
1	1	0	3	2
2	2	1	0	3
3	3	2	1	0

is a BG-algebra.
Definition 2.3. A non empty subset S of a BG-algebra X is called a sub-algebra of X if $x * y \in S, \forall x, y \in S$.

Definition 2.4. A non empty subset I of a BG-algebra X is called a BG-ideal or an ideal of X if
(i) $0 \in I$ and (ii) $x * y \in I, y \in I \Rightarrow x \in I$.

Definition 2.5. An ideal I of a BG-algebra X is said to be closed if,

$$
0 * x \in I, \forall x \in I .
$$

Definition 2.6. A non empty subset I of a BG-algebra X is called a H-ideal of X if
(i) $0 \in I$ and (ii) $x *(y * z) \in I, y \in I \Rightarrow x * z \in I$.

Definition 2.7. The fuzzy set A in X is defined as $A=\left\{\left(x, \mu_{A}(x)\right) \mid x \in X\right\}$, where $\mu_{A}: X \rightarrow[0,1]$ is known as the membership value of x in A. For brevity by $\mu_{A}(x)$ we mean the fuzzy set A in X.

Definition 2.8. The fuzzy set μ_{A} in X is said to be a fuzzy sub-algebra of X if

$$
\mu_{A}(x * y) \geq \min \left\{\mu_{A}(x), \mu_{A}(y)\right\}, \forall x, y \in X .
$$

Definition 2.9. The fuzzy set μ_{A} in X is said to be a fuzzy ideal of X if
(i) $\mu_{A}(0) \geq \mu_{A}(x)$ and
(ii) $\mu_{A}(x) \geq \min \left\{\mu_{A}(x * y), \mu_{A}(y)\right\}, \forall x, y \in X$.

Definition 2.10. The fuzzy set μ_{A} in X is said to be a doubt fuzzy sub-algebra (DF sub-algebra, for brevity) of X if

$$
\mu_{A}(x * y) \leq \max \left\{\mu_{A}(x), \mu_{A}(y)\right\}, \forall x, y \in X
$$

Definition 2.11. The fuzzy set μ_{A} in X is said to be a doubt fuzzy ideal (DF ideal, for brevity) of X if
(i) $\mu_{A}(0) \leq \mu_{A}(x) \quad$ and \quad (ii) $\mu_{A}(x) \leq \max \left\{\mu_{A}(x * y), \mu_{A}(y)\right\}, \forall x, y \in X$.

Definition 2.12. The fuzzy set μ_{A} in X is said to be a fuzzy H-ideal of X if
(i) $\mu_{A}(0) \geq \mu_{A}(x)$ and
(ii) $\mu_{A}(x * y) \geq \min \left\{\mu_{A}(x *(y * z)), \mu_{A}(y)\right\}, \forall x, y, z \in X$.

Definition 2.13. The fuzzy set μ_{A} in X is said to be a doubt fuzzy H-ideal(DF H-ideal, for brevity) of X if
(i) $\mu_{A}(0) \leq \mu_{A}(x)$ and
(ii) $\mu_{A}(x * y) \leq \max \left\{\mu_{A}(x *(y * z)), \mu_{A}(y)\right\}, \forall x, y, z \in X$.

By an interval number we mean a closed subinterval given by $\tilde{a}=\left[a^{-}, a^{+}\right]$of the interval $[0,1]$, where $0 \leq a^{-} \leq a^{+} \leq 1$. Let us denote the set of all interval numbers by $D[0,1]$. Let us consider $\tilde{a}_{1}=\left[a_{1}^{-}, a_{1}^{+}\right]$and $\tilde{a_{2}}=\left[a_{2}^{-}, a_{2}^{+}\right]$. Then refined minimum $(r \min)$ and refined maximum $(r \max)$ of \tilde{a}_{1} and \tilde{a}_{2} are defined as
$r \min \left\{\tilde{a}_{1}, \tilde{a}_{2}\right\}=\left[\min \left\{a_{1}^{-}, a_{2}^{-}\right\}, \min \left\{a_{1}^{+}, a_{2}^{+}\right\}\right]$
$r \max \left\{\tilde{a}_{1}, \tilde{a}_{2}\right\}=\left[\max \left\{a_{1}^{-}, a_{2}^{-}\right\}, \max \left\{a_{1}^{+}, a_{2}^{+}\right\}\right]$
For $a_{i} \in D[0,1] ; i=1,2,3, \ldots$, we define
$r \inf \tilde{a}_{1}=\left[r \inf a_{i}^{-}, r \inf a_{i}^{+}\right] \quad$ and $\quad r \sup \tilde{a}_{1}=\left[r \sup a_{i}^{-}, r \sup a_{i}^{+}\right]$
We also define the symbols \succeq, \preceq and $=$ as follows:
$\tilde{a}_{1} \succeq \tilde{a}_{2} \Leftrightarrow a_{1}^{-} \geq a_{2}^{-}$and $a_{1}^{+} \geq a_{2}^{+}$
Also $\tilde{a}_{1} \succ \tilde{a}_{2}$ means $\tilde{a}_{1} \succeq \tilde{a}_{2}$ and $\tilde{a}_{1} \neq \tilde{a}_{2}$.
Similar;y we can define $\tilde{a}_{1} \preceq \tilde{a}_{2}$ and $\tilde{a}_{1} \prec \tilde{a}_{2}$.
Finally $\tilde{a}_{1}=\tilde{a}_{2} \Leftrightarrow a_{1}^{-}=a_{2}^{-}, a_{1}^{+}=a_{2}^{+}$.
An interval valued fuzzy set (IVF set) A defined in X is given by
$A=\left\{\left(x,\left[\mu_{A}^{-}(x), \mu_{A}^{+}(x)\right]\right) \mid x \in X\right.$, where μ_{A}^{-}and μ_{A}^{+}are two fuzzy sets in X such that $\mu_{A}^{-}(x) \leq \mu_{A}^{+}(x), \forall x \in X$. An IVF set A is briefly denoted by $\tilde{\mu}=\left[\mu_{A}^{-}, \mu_{A}^{+}\right]$. If
in the IVF set $\tilde{\mu}(x)=\left[\mu_{A}^{-}(x), \mu_{A}^{+}(x)\right], \mu_{A}^{-}(x)=c=\mu_{A}^{+}(x)$, where $0<c \leq 1$, then $\tilde{\mu}(x)=[c, c]$, which is for our convenience is assumed to be a member of $D[0,1]$. So $\tilde{\mu}(x) \in D[0,1], \forall x \in X$, where $\tilde{\mu}: X \rightarrow D[0,1] . \tilde{\mu}(x)$ is called the degree of the membership of the element x to $\tilde{\mu}$ and $\mu_{A}^{-}(x), \mu_{A}^{+}(x)$ are respectively called lower and upper degrees of membership of x to $\tilde{\mu}$. By complement of $\tilde{\mu}$ we mean $\left[1-\mu_{A}^{-}, 1-\mu_{A}^{+}\right]$, denoted by $(\tilde{\mu})^{c}$.

Definition 2.14. A cubic set A in a non empty X is a structure of the form $A=$ $\left\{x, \tilde{\mu}_{A}(x), \nu_{A}(x) \mid x \in X\right\}$, where $\tilde{\mu}_{A}=\left[\mu_{A}^{-}, \mu_{A}^{+}\right]$is an IVF set in X and ν_{A} a fuzzy set in X. It is briefly denoted by $A=<\tilde{\mu}_{A}(x), \nu_{A}(x)>=<\left[\mu_{A}^{-}(x), \mu_{A}^{+}(x)\right], \nu_{A}(x)>\ldots$

For two cubic sets A and B in X, their intersection denoted by $A \sqcap B$ is another cubic set in X given by $A \sqcap B=<\tilde{\mu}_{A} \tilde{\cap} \tilde{\mu}_{B}, \nu_{A} \cup \nu_{B}>$, where $\left(\tilde{\mu}_{A} \tilde{\cap} \tilde{\mu}_{B}\right)(x)=$ $r \min \left\{\tilde{\mu}_{A}(x)\right\}, \tilde{\mu}_{B}(x)$ and $\left(\nu_{A} \cup \nu_{B}\right)(x)=\max \left\{\nu_{A}(x), \nu_{B}(x)\right\}$
Similarly the union of A and B denoted by $A \sqcup B$ is another cubic set in X given by $A \sqcup B=<\tilde{\mu}_{A} \tilde{\cup} \tilde{\mu_{B}}, \nu_{A} \cap \nu_{B}>$, where $\left(\tilde{\mu}_{A} \tilde{\cup} \tilde{\mu_{B}}\right)(x)=r \max \left\{\tilde{\mu}_{A}(x), \tilde{\mu}_{B}(x)\right\}$ and $\left(\nu_{A} \cap \nu_{B}\right)(x)=\min \left\{\nu_{A}(x), \nu_{B}(x)\right\}$.

3 Doubt Cubic H-ideals of BG-algebra

Definition 3.1. A cubic set $A=<\tilde{\mu}_{A}, \nu_{A}>$ of X is said to be a doubt cubic sub algebra of X if for all $x, y \in X$,
(i) $\tilde{\mu}_{A}(x * y) \preceq r \min \left\{\tilde{\mu}_{A}(x), \tilde{\mu}_{A}(y)\right\}$
(ii) $\nu_{A}(x * y) \geq \min \left\{\nu_{A}(x), \nu_{A}(y)\right\}$

Example 3.2. Consider the BG-algebra $X=\{0,1,2,3\}$ with the caley table

$*$	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	0	1
3	3	2	1	0

We define $\tilde{\mu}_{A}(0)=[0.3,0.4], \tilde{\mu}_{A}(1)=[0.4,0.6], \tilde{\mu}_{A}(2)=[0.3,0.5], \tilde{\mu}_{A}(3)=$ $[0.5,0.9]$ and $\nu_{A}(0)=0.6, \nu_{A}(1)=0.5, \nu_{A}(2)=0.3, \nu_{A}(3)=0.4$. Then $A=<$ $\tilde{\mu}_{A}, \nu_{A}>$ is a doubt cubic sub algebra.

Theorem 3.3. Let $A=<\tilde{\mu}_{A}, \nu_{A}>$ be a doubt cubic sub algebra of a $B G$-algebra X. Then (i) $\tilde{\mu}_{A}(0) \preceq \tilde{\mu}_{A}(x)$ and $\nu_{A}(0) \geq \nu_{A}(x)$, for all $x \in X$.

Proof. We have for any $x \in X, \tilde{\mu}_{A}(0)=\tilde{\mu}_{A}(x * x) \preceq r \min \left\{\tilde{\mu}_{A}(x), \tilde{\mu}_{A}(x)\right\}=$ $\tilde{\mu}_{A}(x)$ and $\nu_{A}(0)=\nu_{A}(x * x) \geq \min \left\{\nu_{A}(x), \nu_{A}(x)\right\}=x$.

Theorem 3.4. Let $A=<\tilde{\mu}_{A}, \nu_{A}>$ be a doubt cubic sub algebra of a $B G$-algebra X. Then for all $x \in X$
(i) $\tilde{\mu}_{A}\left(x^{n} * x\right) \preceq \tilde{\mu}_{A}(x)$ and $\nu_{A}\left(x^{n} * x\right) \geq \nu_{A}(x)$, if n is odd.
(ii) $\tilde{\mu}_{A}\left(x^{n} * x\right)=\tilde{\mu}_{A}(x)$ and $\nu_{A}\left(x^{n} * x\right)=\nu_{A}(x)$, if n is even.
(iii) $\tilde{\mu}_{A}\left(x * x^{n}\right)=\tilde{\mu}_{A}(0)$ and $\nu_{A}\left(x * x^{n}\right)=\nu_{A}(0)$, for all $n \in \mathbb{N}$.

Proof. (i) Clearly $\tilde{\mu}_{A}(x * x)=\tilde{\mu}_{A}(0) \preceq \tilde{\mu}_{A}(x)$, so that the result is true for $n=1$. Let the result be true for $n=2 p-1, p \in \mathbb{N}$.
Then $\tilde{\mu}_{A}\left(x^{2 p-1} * x\right) \preceq \tilde{\mu}_{A}(x)$.
Now $\tilde{\mu}_{A}\left(x^{2(p+1)-1} * x\right)=\tilde{\mu}_{A}\left(x^{2 p-1+2} * x\right)=\tilde{\mu}_{A}\left(x^{2 p-1} *(x *(x * x))\right)$
$=\tilde{\mu}_{A}\left(x^{2 p-1} *(x * 0)\right)=\tilde{\mu}_{A}\left(x^{2 p-1} * x\right) \preceq \tilde{\mu}_{A}(x)$
So the result is true for $n=2(p+1)-1$, whenever it is true for $n=2 p-1$. Hence by induction the result is true for all odd numbers.

The second part follows similarly. The proofs of (ii) and (iii) are similar to the preceding one.

4 Doubt cubic H-ideals of BG-algebra

Definition 4.1. Let $A=<\tilde{\mu}_{A}, \nu_{A}>$ be a cubic set in a BG-algebra X. Then A is called a doubt cubic H-ideal of X if for all $x, y, z \in X$,
(i) $\tilde{\mu}_{A}(x) \succeq \tilde{\mu}_{A}(0)$
(ii) $\tilde{\mu}_{A}(x * z) \preceq r \max \left\{\tilde{\mu}_{A}(x *(y * z)), \tilde{\mu}_{A}(y)\right\}$
(iii) $\nu_{A}(x) \leq \nu_{A}(0)$
(iv) $\nu_{A}(x * z) \geq \min \left\{\nu_{A}(x *(y * z)), \nu_{A}(y)\right\}$

Remark 4.2. Given $A=<\tilde{\mu}_{A}, \nu_{A}>$ is a doubt cubic H-ideal of a BG-algebra X, $\tilde{\mu}_{A}$ is a DF-ideal and ν_{A} is a fuzzy ideal of X.

Example 4.3. Consider the BG-algebra $X=\{0,1,2,3\}$ with the caley table

$*$	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	1	0	3
3	3	2	1	0

We define $\tilde{\mu}_{A}(0)=[0.2,0.4], \tilde{\mu}_{A}(2)=\tilde{\mu}_{A}(3)=[0.4,0.8], \tilde{\mu}_{A}(1)=[0.5,0.9]$ and $\nu_{A}(0)=0.9, \nu_{A}(1)=0.3, \nu_{A}(2)=\nu_{A}(3)=0.7$. Then by routine calculation it can be shown that $A=<\tilde{\mu}_{A}, \nu_{A}>$ is a doubt cubic H-ideal of X.

Definition 4.4. A cubic set $A=<\tilde{\mu}_{A}, \nu_{A}>$ in X is called a closed doubt cubic H-ideal of X if for all $x, y, z \in X$,
(i) $\tilde{\mu}_{A}(0 * x) \preceq \tilde{\mu}_{A}(x)$
(ii) $\tilde{\mu}_{A}(x * z) \preceq r \max \left\{\tilde{\mu}_{A}(x *(y * z)), \tilde{\mu}_{A}(y)\right\}$
(iii) $\nu_{A}(0 * x) \leq \nu_{A}(x)$
(iv) $\nu_{A}(x * z) \geq \min \left\{\nu_{A}(x *(y * z)), \nu_{A}(y)\right\}$

Theorem 4.5. Every closed doubt cubic H-ideal of X is a doubt cubic H-ideal of X.

Proof. Let $A=<\tilde{\mu}_{A}, \nu_{A}>$ be a closed doubt cubic H-ideal of X. Then $\tilde{\mu}_{A}(0 * x) \preceq \tilde{\mu}_{A}(x)$ and $\tilde{\mu}_{A}(x * z) \preceq r \max \left\{\tilde{\mu}_{A}(x *(y * z)), \tilde{\mu}_{A}(y)\right\}$ considering the first two conditions. In the second condition putting $z=0$, we get $\forall x, y \in X$ $\tilde{\mu}_{A}(x * 0)=\tilde{\mu}_{A}(x) \preceq r \max \left\{\tilde{\mu}_{A}(x *(y * 0)), \tilde{\mu}_{A}(y)\right\}=r \max \left\{\tilde{\mu}_{A}(x * y), \tilde{\mu}_{A}(y)\right\}$. Replacing x by 0 , $\tilde{\mu}_{A}(0)=\tilde{\mu}_{A}(x) \preceq r \max \left\{\tilde{\mu}_{A}(0 * y), \tilde{\mu}_{A}(y)\right\} \preceq r \max \left\{\tilde{\mu}_{A}(y), \tilde{\mu}_{A}(y)\right\}=\tilde{\mu}_{A}(y)$. Using the remaining two conditions for ν_{A} it can be easily shown that $\nu_{A}(0) \geq \nu_{A}(x)$. Hence the proof.

Remark 4.6. Every doubt cubic H-ideal of X is not necessarily a closed doubt cubic H-ideal of X. This prompts us to assert that "The class of closed doubt cubic H-ideal of X is a proper subclass of that of the doubt cubic H-ideals of x.

Theorem 4.7. Let $A=<\tilde{\mu}_{A}, \nu_{A}>$ be a doubt cubic H-ideal of X. Let $\left\{x_{n}\right\}$ be a sequence in X. Then
(i) If $\lim _{n \rightarrow \infty} \tilde{\mu}_{A}\left(x_{n}\right)=[0,0]$ then $\tilde{\mu}_{A}(0)=[0,0]$
(ii) If $\lim _{n \rightarrow \infty} \nu_{A}\left(x_{n}\right)=1$ then $\nu_{A}(0)=1$.

Proof. Since $\tilde{\mu}_{A}(0) \preceq \tilde{\mu}_{A}(x), \forall x \in X$, we have $\tilde{\mu}_{A}(0) \preceq \tilde{\mu}_{A}\left(x_{n}\right), \forall n \in \mathbb{N}$. Clearly $[0,0] \preceq \tilde{\mu}_{A}(0) \preceq \lim _{n \rightarrow \infty} \tilde{\mu}_{A}\left(x_{n}\right)=[0,0]$. So $\tilde{\mu}_{A}(0)=[0,0]$.
Similarly since $\nu_{A}(0) \geq \nu_{A}(x), \forall x \in X$, we have $1 \geq \nu_{A}(0) \geq \lim _{n \rightarrow \infty} \nu_{A}\left(x_{n}\right)=1$, so that $\nu_{A}(0)=1$.

Theorem 4.8. For the doubt cubic H-ideal $A=<\tilde{\mu}_{A}, \nu_{A}>$ of $X, \tilde{\mu}_{A}$ is order preserving and ν_{A} is order reversing.

Proof. Let $x \leq y$ in X, where $x \leq y$ means $x * y=0$.
Then $\tilde{\mu}_{A}(x * 0) \preceq r \max \left\{\tilde{\mu}_{A}(x *(y * 0)), \tilde{\mu}_{A}(y)\right\}$
$\Rightarrow \tilde{\mu}_{A}(x) \preceq r \max \left\{\tilde{\mu}_{A}(x * y), \tilde{\mu}_{A}(y)\right\}=r \max \left\{\tilde{\mu}_{A}(0), \tilde{\mu}_{A}(y)\right\}=\tilde{\mu}_{A}(y)$.
Also $\nu_{A}(x * 0) \geq \min \left\{\nu_{A}(x *(y * 0)), \nu_{A}(y)\right\}$
$\Rightarrow \nu_{A}(x) \geq \min \left\{\nu_{A}(x * y), \nu_{A}(y)\right\}=\min \left\{\nu_{A}(), \nu_{A}(y)\right\}=\nu_{A}(y)$.
Theorem 4.9. The union of any two doubt cubic H-ideals of X, is again a doubt cubic H-ideal of X.

Proof. Let $A=<\tilde{\mu}_{A}, \nu_{A}>$ and $B=<\tilde{\mu}_{B}, \nu_{B}>$ be two doubt cubic H-ideals of X. Then $A \sqcup B=<\tilde{\mu}_{A} \tilde{\cup} \tilde{\mu}_{B}, \nu_{A} \cap \nu_{B}>$. We have

$$
\begin{aligned}
& \left(\tilde{\mu}_{A} \cup \tilde{\cup} \tilde{\mu}_{B}\right)(0)=r \max \left\{\tilde{\mu}_{A}(0), \tilde{\mu}_{B}(0)\right\} \preceq r \max \left\{\tilde{\mu}_{A}(x), \tilde{\mu}_{B}(x)\right\}=\left(\tilde{\mu}_{A} \cup \tilde{\jmath}_{B}\right)(x) \\
& \quad \text { And }\left(\tilde{\mu}_{A} \tilde{\cup} \tilde{\mu}_{B}\right)(x * z)=r \max \left\{\tilde{\mu}_{A}(x * z), \tilde{\mu}_{B}(x * z)\right\} \\
& \preceq r \max \left\{r \max \left\{\tilde{\mu}_{A}(x *(y * z)), \tilde{\mu}_{A}(y)\right\}, r \max \left\{\tilde{\mu}_{B}(x *(y * z)), \tilde{\mu}_{B}(y)\right\}\right\} \\
& \preceq r \max \left\{r \max \left\{\tilde{\mu}_{A}(x *(y * z)), \tilde{\mu}_{B}(x *(y * z))\right\}, r \max \left\{\tilde{\mu}_{A}(y), \tilde{\mu}_{B}(y)\right\}\right\} \\
& =r \max \left\{\left(\tilde{\mu}_{A} \tilde{\cup} \tilde{\mu}_{B}\right)(x *(y * z)),\left(\tilde{\mu}_{A} \tilde{\cup} \tilde{\mu}_{B}\right)(y)\right\} \\
& \text { Again }\left(\nu_{A} \cap \nu_{B}\right)(0)=\min \left\{\nu_{A}(0), \nu_{B}(0)\right\} \geq \min \left\{\nu_{A}(x), \nu_{B}(x)\right\}=\left(\nu_{A} \cap \nu_{B}\right)(x) . \\
& \text { Finally }\left(\nu_{A} \cap \nu_{B}\right)(x * z)=\min \left\{\nu_{A}(x * z), \nu_{A}(x * z)\right\} \\
& \geq \min \left\{\min \left\{\nu_{A}(x *(y * z)), \nu_{A}(y)\right\}, \min \left\{\nu_{B}(x *(y * z)), \nu_{B}(y)\right\}\right\} \\
& =\min \left\{\min \left\{\nu_{A}(x *(y * z)), \nu_{B}(x *(y * z))\right\}, \min \left\{\nu_{A}(y), \nu_{B}(y)\right\}\right\} \\
& =\min \left\{\left(\nu_{A} \cap \nu_{B}\right)(x *(y * z)),\left(\nu_{A} \cap \nu_{B}\right)(x)\right\} .
\end{aligned}
$$

Hence $A \sqcup B$ is a doubt cubic H-ideal of X.
Theorem 4.10. (Generalisation) The union of any family of doubt cubic H-ideals of X, is again a doubt cubic H-ideal of X.

Remark 4.11. The intersection of any two doubt cubic H-ideals of X will be a doubt cubic H-ideal of X if one is contained in the other.

Theorem 4.12. (Generalisation) Let $A=<\tilde{\mu}_{A}, \nu_{A}>$ and $B=<\tilde{\mu}_{B}, \nu_{B}>$ be two doubt cubic H-ideals of X. Then $A \sqcap B$ is also doubt cubic H-ideal of X if $A \subseteq B$ or $B \subseteq A$.

Proof. We have $\left(\tilde{\mu}_{A} \tilde{\cap}_{\tilde{\mu}}^{B}\right)(0)=r \min \left\{\tilde{\mu}_{A}(0), \tilde{\mu}_{B}(0)\right\} \preceq r \min \left\{\tilde{\mu}_{A}(x), \tilde{\mu}_{B}(x)\right\}=$ $\tilde{\mu}_{A}(x)=\left(\tilde{\mu}_{A} \tilde{\cap}_{\tilde{\mu}}\right)(x)\left[\right.$ as $\left.\tilde{\mu}_{A} \preceq \tilde{\mu}_{B}\right]$
And $\left(\tilde{\mu}_{A} \tilde{\cap}_{B}\right)(x * z)=r \min \left\{\tilde{\mu}_{A}(x * z), \tilde{\mu}_{B}(x * z)\right\}$
$\preceq r \min \left\{r \max \left\{\tilde{\mu}_{A}(x *(y * z)), \tilde{\mu}_{A}(y)\right\}, r \max \left\{\tilde{\mu}_{B}(x *(y * z)), \tilde{\mu}_{B}(y)\right\}\right\}$
$\preceq r \min \left\{r \max \left\{\tilde{\mu}_{A}(x *(y * z)), \tilde{\mu}_{B}(x *(y * z))\right\}, r \max \left\{\tilde{\mu}_{A}(y), \tilde{\mu}_{B}(y)\right\}\right\}$
$=r \max \left\{r \min \left\{\tilde{\mu}_{A}(x *(y * z)), \tilde{\mu}_{B}(x *(y * z))\right\}, r \min \left\{\tilde{\mu}_{A}(y), \tilde{\mu}_{B}(y)\right\}\right\}$
$=r \max \left\{\left(\tilde{\mu}_{A} \tilde{\cap} \tilde{\mu}_{B}\right)(x *(y * z)),\left(\tilde{\mu}_{A} \tilde{\cap} \tilde{\mu}_{B}\right)(y)\right\}$
Similarly it can be shown that $\left(\nu_{A} \cup \nu_{B}\right)(0) \geq\left(\nu_{A} \cup \nu_{B}\right)(x)$.
and $\left(\nu_{A} \cup \nu_{B}\right)(x * z) \geq \min \left\{\left(\nu_{A} \cup \nu_{B}\right)(x *(y * z)),\left(\nu_{A} \cup \nu_{B}\right)(x)\right\}$.
Hence $A \sqcap B$ is a doubt cubic H-ideal of X.
Theorem 4.13. The union of any two closed doubt cubic H-ideals of X, is again a closed doubt cubic H-ideal of X.

Proof. Let $A=<\tilde{\mu}_{A}, \nu_{A}>$ and $B=<\tilde{\mu}_{B}, \nu_{B}>$ be two closed doubt cubic H-ideals of X. Then $A \sqcup B=<\tilde{\mu}_{A} \cup \tilde{\jmath}_{B}, \nu_{A} \cap \nu_{B}>$. We have $\left(\tilde{\mu}_{A} \tilde{\cup}_{\tilde{\mu}_{B}}\right)(0 * x)=r \max \left\{\tilde{\mu}_{A}(0 * x), \tilde{\mu}_{B}(0 * x)\right\}$
$\preceq r \max \left\{\tilde{\mu}_{A}(x), \tilde{\mu}_{B}(x)\right\}=\left(\tilde{\mu}_{A} \tilde{\cup}_{\tilde{\mu}_{B}}\right)(x)$
And $\left(\nu_{A} \cap \nu_{B}\right)(0 * x)=\min \left\{\nu_{A}(0 * x), \nu_{B}(0 * x)\right\}$
$\geq \min \left\{\nu_{A}(x), \nu_{B}(x)\right\}=\left(\nu_{A} \cap \nu_{B}\right)(x)$.
The remaining part for $\tilde{\mu}_{A} \tilde{\cup}_{\mu} \tilde{\mu}_{B}$ and $\nu_{A} \cap \nu_{B}$ follows exactly as before. Hence $A \sqcup B$ is a closed doubt cubic H-ideal of X.

Theorem 4.14. (Generalisation) The union of any family of closed doubt cubic H-ideals of X, is again a closed doubt cubic H-ideal of X.

Remark 4.15. The intersection of any two closed doubt cubic H-ideals of X will be a closed doubt cubic H-ideal of X if one is contained in the other.

Theorem 4.16. Let $A=<\tilde{\mu}_{A}, \nu_{A}>$ be a doubt cubic H-ideal of X. Then the sets $X_{\tilde{\mu}_{A}}=\left\{x \in X \mid \tilde{\mu}_{A}(x)=\tilde{\mu}_{A}(0)\right\}$ and $X_{\nu_{A}}=\left\{x \in X \mid \nu_{A}(x)=\nu_{A}(0)\right\}$ are H-ideals of X.

Proof. Clearly $0 \in X_{\tilde{\mu}_{A}}$. Next for $x *(y * z), y \in X_{\tilde{\mu}_{A}}$, we have $\tilde{\mu}_{A}(x *(y * z))=$ $\tilde{\mu}_{A}(0)=\tilde{\mu}_{A}(y)$. And $\forall x, z \in X, \tilde{\mu}_{A}(0) \preceq \tilde{\mu}_{A}(x * z)$.
Again $\tilde{\mu}_{A}(x * z) \preceq r \max \left\{\tilde{\mu}_{A}(x *(y * z)), \tilde{\mu}_{A}(y)\right\}=r \max \left\{\tilde{\mu}_{A}(0), \tilde{\mu}_{A}(0)\right\}=\tilde{\mu}_{A}(0)$. So $\tilde{\mu}_{A}(x * z)=\tilde{\mu}_{A}(0)$ and hence $x * z \in X_{\tilde{\mu}_{A}}$.
Thus for $x *(y * z), y \in X_{\tilde{\mu}_{A}}$, we get $x * z \in X_{\tilde{\mu}_{A}}$. So $X_{\tilde{\mu}_{A}}$ is a H-ideal of X. Similarly it can be shown that $X_{\nu_{A}}$ is also a H-ideal of X.

Theorem 4.17. Let $A=<\tilde{\mu}_{A}, \nu_{A}>$ be a cubic set in X. Then A is a doubt cubic H-ideal of X if and only if $\tilde{\mu}_{A}^{c}=\left[1-\mu_{A}^{+}, 1-\mu_{A}^{-}\right]$and ν_{A} are fuzzy H-ideals of X.

Proof. Let $A=<\tilde{\mu}_{A}, \nu_{A}>$ be a doubt cubic H-ideal of X. Then it follows immediately that ν_{A} is a fuzzy ideal of X. Now
$\tilde{\mu}_{A}(0) \preceq \tilde{\mu}_{A}(x) \Rightarrow\left[\mu_{A}^{-}(0), \mu_{A}^{+}(0)\right] \preceq\left[\mu_{A}^{-}(x), \mu_{A}^{+}(x)\right]$
$\Rightarrow \mu_{A}^{-}(0) \leq \mu_{A}^{-}(x) ; \mu_{A}^{+}(0) \leq \mu_{A}^{+}(x)$
$\Rightarrow 1-\mu_{A}^{-}(0) \geq 1-\mu_{A}^{-}(x) ; 1-\mu_{A}^{+}(0) \geq 1-\mu_{A}^{+}(x)$
$\Rightarrow\left[1-\mu_{A}^{+}(0), 1-\mu_{A}^{-}(0)\right] \succeq\left[1-\mu_{A}^{+}(x), 1-\mu_{A}^{-}(x)\right] \Rightarrow \tilde{\mu}_{A}^{c}(0) \succeq \tilde{\mu}_{A}^{c}(x)$
Secondly $\tilde{\mu}_{A}(x * z) \preceq r \max \left\{\tilde{\mu}_{A}(x *(y * z)), \tilde{\mu}_{A}(y)\right\}$
$\Rightarrow \mu_{A}^{-}(x * z) \leq \max \left\{\mu_{A}^{-}(x *(y * z)), \mu_{A}^{-}(y)\right\}$
$\Rightarrow 1-\mu_{A}^{-}(x * z) \geq 1-\max \left\{\mu_{A}^{-}(x *(y * z)), \mu_{A}^{-}(y)\right\}$
$=\min \left\{1-\mu_{A}^{-}(x *(y * z)), 1-\mu_{A}^{-}(y)\right\}$
Similarly $1-\mu_{A}^{+}(x * z) \geq \min \left\{1-\mu_{A}^{+}(x *(y * z)), 1-\mu_{A}^{+}(y)\right\}$
So $\tilde{\mu}_{A}^{c}(x * z) \succeq r \min \left\{\tilde{\mu}_{A}^{c}(x *(y * z)), \tilde{\mu}_{A}^{c}(y)\right\}$
Thus $\tilde{\mu}_{A}^{c}$ is a fuzzy H-ideal of X.
Conversely let $\tilde{\mu}_{A}^{c}$ and ν_{A} be fuzzy H-ideals of X. Then
$\tilde{\mu}_{A}^{c}(0) \succeq \tilde{\mu}_{A}^{c}(x)$
$\Rightarrow\left[1-\mu_{A}^{+}(0), 1-\mu_{A}^{-}(0)\right] \succeq\left[1-\mu_{A}^{+}(x), 1-\mu_{A}^{-}(x)\right]$
$\Rightarrow\left[\mu_{A}^{-}(0), \mu_{A}^{+}(0)\right] \preceq\left[\mu_{A}^{-}(x), \mu_{A}^{+}(x)\right]$
$\Rightarrow \tilde{\mu}_{A}(0) \preceq \tilde{\mu}_{A}(x)$
And $\tilde{\mu}_{A}^{c}(x * z) \succeq r \min \left\{\tilde{\mu}_{A}^{c}(x *(y * z)), \tilde{\mu}_{A}^{c}(y)\right\}$
$\Rightarrow 1-\mu_{A}^{+}(x * z) \geq \min \left\{1-\mu_{A}^{+}(x *(y * z)), 1-\mu_{A}^{+}(y)\right\}$
$=1-\max \left\{\mu_{A}^{+}(x *(y * z)), \mu_{A}^{+}(y)\right\}$
$\Rightarrow \tilde{\mu}_{A}^{+}(x * z) \leq r \max \left\{\tilde{\mu}_{A}^{+}(x *(y * z)), \tilde{\mu}_{A}^{+}(y)\right\}$
Likewise $\tilde{\mu}_{A}^{-}(x * z) \leq r \max \left\{\tilde{\mu}_{A}^{-}(x *(y * z)), \tilde{\mu}_{A}^{-}(y)\right\}$
Hence $\tilde{\mu}_{A}(x * z) \preceq r \max \left\{\tilde{\mu}_{A}(x *(y * z)), \tilde{\mu}_{A}(y)\right\}$
Secondly ν_{A} being a fuzzy H-ideal of X,
$\nu_{A}(0) \geq \nu_{A}(x)$ and $\nu_{A}(x * z) \geq \min \left\{\nu_{A}(x *(y * z)), \nu_{A}(y)\right\}$
Hence $A=<\tilde{\mu}_{A}, \nu_{A}>$ is a doubt cubic H-ideal of X.
Definition 4.18. Let $A=<\tilde{\mu}_{A}, \nu_{A}>$ be a cubic set in X. Let $\tilde{q}=\left[q^{-}, q^{+}\right]$be an interval number and $r \in[0,1]$. Then the set $L_{\tilde{q}}=\left\{x \in X \mid \tilde{\mu}_{A}(x) \preceq \tilde{q}\right\}$ and $U_{r}\left\{x \in X \mid \nu_{A}(x) \geq r\right\}$ are respectively called lower \tilde{q}-level set of A and upper r level cut of A. The cubic level set of A is the set given by $(U, L)=\left\{x \in X \mid \tilde{\mu}_{A}(x) \succeq\right.$ $\left.\tilde{q}, \nu_{A}(x) \geq r\right\}$.

Theorem 4.19. Let $A=<\tilde{\mu}_{A}, \nu_{A}>$ be a doubt cubic H-ideal of X. Then $L_{\tilde{q}}$ and U_{r} are H-ideals of X.

Proof. We have $L_{\tilde{q}}=\left\{x \in X \mid \tilde{\mu}_{A}(x) \preceq \tilde{q}\right\}$.
Clearly $\tilde{\mu}_{A}(0) \preceq \tilde{\mu}_{A}(x * z), \forall x, z \in X$. So $\tilde{\mu}_{A}(0) \preceq \tilde{\mu}_{A}(x * z) \preceq \tilde{q}$, whenever $x * z \in L_{\tilde{q}}$ i.e., $0 \in L_{\tilde{q}}$.
Secondly for $x *(y * z), y \in L_{\tilde{q}}$ we have $\tilde{\mu}_{A}(x *(y * z)) \preceq \tilde{q}$ and $\tilde{\mu}_{A}(y) \preceq \tilde{q}$. So $\left.\tilde{\mu}_{A}(x * z) \preceq r \max \left\{\tilde{\mu}_{A}(x *(y * z)), \tilde{\mu}_{A}(y)\right)\right\}=r \max \{\tilde{q}, \tilde{q}\}=\tilde{q}$ i.e., $x * z \in L_{\tilde{q}}$.
Therefore for $x *(y * z) \in L_{\tilde{q}}, x * z \in L_{\tilde{q}}$. Thus $L_{\tilde{q}}$ is a H-ideal of X.
Next we have $U_{r}\left\{x \in X \mid \nu_{A}(x) \geq r\right\}$.
Since $\nu_{A}(0) \geq \nu_{A}(x * z) \forall x, z \in X$, so $\nu_{A}(0) \geq \nu_{A}(x * z) \geq r$, whenever $x * z \in U_{r}$ i.e., $0 \in U_{r}$.

Secondly for $x *(y * z), y \in U_{r}$ we have $\nu_{A}(x *(y * z)) \geq r$ and $\nu_{A}(y) \geq r$. So $\left.\nu_{A}(x * z) \geq \min \left\{\nu_{A}(x *(y * z)), \nu_{A}(y)\right)\right\}=\min \{r, r\}=r$ i.e., $x * z \in U_{r}$.
Therefore for $x *(y * z) \in U_{r}, x * z \in U_{r}$. Thus U_{r} is a H-ideal of X.

Theorem 4.20. Let $A=<\tilde{\mu}_{A}, \nu_{A}>$ be a cubic set in X such that the lower \tilde{q}-level set $L_{\tilde{q}}$ and upper r-level cut U_{r} of A are H-ideals of X. Then A is a doubt cubic H-ideal of X.

Proof. Let us assume that A is not a doubt cubic H-ideal of X. Then we will find that $L_{\tilde{q}}$ and U_{r} are not H-ideals of X. By assumption there exist $x, y, z \in X$ such that $\left.\tilde{\mu}_{A}(x * z) \succ r \max \left\{\tilde{\mu}_{A}(x *(y * z)), \tilde{\mu}_{A}(y)\right)\right\}$. Then there exists an interval
number \tilde{q} (say) such that
$\left.\tilde{\mu}_{A}(x * z) \succ \tilde{q} \succ r \max \left\{\tilde{\mu}_{A}(x *(y * z)), \tilde{\mu}_{A}(y)\right)\right\}$.
Thus $x *(y * z), y \in L_{\tilde{q}}$. But $\tilde{\mu}_{A}(x * z) \succ \tilde{q}$ i.e., $x * z \notin L_{\tilde{q}}$.
So $L_{\tilde{q}}$ is not a H-ideals of X.
Secondly by our assumption there exist $x, y, z \in X$ such that $\nu_{A}(x * z)<\min \left\{\nu_{A}(x *\right.$ $\left.\left.(y * z)), \nu_{A}(y)\right)\right\}$. Then there exists a member $r \in[0,1]$ such that $\nu_{A}(x * z)<r<$ $\left.\min \left\{\nu_{A}(C), \nu_{A}(y)\right)\right\}$. Thus $x *(y * z), y \in U_{r}$. But $\nu_{A}(x * z)<r$ i.e., $x * z \notin U_{r}$. So U_{r} is not a H-ideals of X. Hence the assertion.

Theorem 4.21. Any H-ideal of X can be realised as a $\tilde{\mu}$-level doubt fuzzy H-ideal and ν-level doubt fuzzy H-ideal for some doubt cubic H-ideal of X.

Proof. Let I be a H-ideal of X and $A=<\tilde{\mu}_{A}, \nu_{A}>$ a cubic set in X defined as

$$
\begin{aligned}
\tilde{\mu}_{A}(x) & = \begin{cases}\tilde{u}, & x \in I \\
\tilde{v}, & \text { otherwise }\end{cases} \\
\nu_{A}(x) & = \begin{cases}w, & x \in I \\
r, & \text { otherwise }\end{cases}
\end{aligned}
$$

Where $\tilde{u}, \tilde{v} \in D[0,1], \tilde{0}=[0,0] \preceq \tilde{u} \preceq \tilde{v}$ and $w, r \in[0,1], w \geq r$. By hypothesis $x *(y * z), y \in I, \forall x, y, z \in X$. Then $x * z \in I$.
Now $\tilde{\mu}_{A}(x * z)=\tilde{u}=r \max \left\{\tilde{\mu}_{A}(x *(y * z)), \tilde{\mu}_{A}(y)\right\}$ and
$\left.\nu_{A}(x * z)=w=\min \left\{\nu_{A}(x *(y * z)), \nu_{A}(y)\right)\right\}$
If at least one $x *(y * z)$ and y is not in I, then at least one of $\tilde{\mu}_{A}(x *(y * z))$ and $\tilde{\mu}_{A}(y)$ is equal to \tilde{v} and at least one of $\nu_{A}(x *(y * z))$ and $\left.\nu_{A}(y)\right)$ is equal to r so that
$\tilde{\mu}_{A}(x * z) \preceq \tilde{v}=r \max \left\{\tilde{\mu}_{A}(x *(y * z)), \tilde{\mu}_{A}(y)\right\}$ and
$\left.\nu_{A}(x * z) \geq w=\min \left\{\nu_{A}(x *(y * z)), \nu_{A}(y)\right)\right\}$.
Since $0 \in I$, by definition of $\tilde{\mu}_{A}$ and ν_{A}, we have $\tilde{\mu}_{A}(0) \preceq \tilde{\mu}_{A}(x), \forall x \in X$ and $\nu_{(}(0) \geq \nu_{A}(x), \forall x \in X$. Therefore $A=<\tilde{\mu}_{A}, \nu_{A}>$ is a doubt cubic H-ideal of X.

Theorem 4.22. A cubic set $A=\left\langle\tilde{\mu}_{A}, \nu_{A}>\right.$ of X is a doubt cubic H-ideal of X if and only if $\tilde{\mu}_{A}$ is a doubt fuzzy H-ideal and $\overline{\nu_{A}}=1-\nu_{A}$ is a doubt fuzzy H-ideal of X.

Proof. Let $A=<\tilde{\mu}_{A}, \nu_{A}>$ be a doubt cubic H-ideal of X. Then it immediately follows that $\tilde{\mu}_{A}$ s a doubt fuzzy H-ideal of X.
Secondly $\nu_{A}(0) \geq \nu_{A}(x) \Rightarrow 1-\nu_{A}(0) \leq 1-\nu_{A}(x) \Rightarrow \bar{\nu}_{A}(0) \leq \bar{\nu}_{A}(x), \forall x \in X$
And $\left.\nu_{A}(x * z) \geq \min \left\{\nu_{A}(x *(y * z))\right), \nu_{A}(y)\right\}$
$\left.\Rightarrow 1-\nu_{A}(x * z) \leq 1-\min \left\{\nu_{A}(x *(y * z))\right), \nu_{A}(y)\right\}$
$\left.\left.\Rightarrow \bar{\nu}_{A}(x * z) \leq \max \left\{1-\nu_{A}(x *(y * z))\right), 1-\nu_{A}(y)\right\}=\max \left\{\bar{\nu}_{A}(x *(y * z))\right), \bar{\nu}_{A}(y)\right\}$.
So $\bar{\nu}_{A}$ is a doubt fuzzy H-ideal of X.

Conversely let $\tilde{\mu}_{A}$ be a doubt fuzzy H-ideal of X and ν_{A} be a doubt fuzzy H ideal of X. Since $\tilde{\mu}_{A}$ be a doubt fuzzy H-ideal of X, so $\tilde{\mu}_{A}(0) \preceq \tilde{\mu}_{A}(x)$ and $\tilde{\mu}_{A}(x * z) \preceq r \max \left\{\tilde{\mu}_{A}(x *(y * z)), \tilde{\mu}_{A}(y)\right\} \forall x, y, z \in X$.
Secondly, since ν_{A} be a doubt fuzzy H-ideal of X, so
$\bar{\nu}_{A}(0) \leq \bar{\nu}_{A}(x) \Rightarrow 1-\nu_{A}(0) \leq 1-\nu_{A}(x) \Rightarrow \nu_{A}(0) \geq \nu_{A}(x), \forall x \in X$
And $\left.\bar{\nu}_{A}(x * z) \leq \max \left\{\bar{\nu}_{A}(x *(y * z))\right), \bar{\nu}_{A}(y)\right\}$
$\left.\Rightarrow 1-\nu_{A}(x * z) \leq \max \left\{1-\nu_{A}(x *(y * z))\right), 1-\nu_{A}(y)\right\}$
$=1-\min \left\{\nu_{A}(x *(y * z)), \nu_{A}(y)\right\}$ i.e., $\nu_{A}(x * z) \geq \min \left\{\nu_{A}(x *(y * z)), \nu_{A}(y)\right\}$
So $A=<\tilde{\mu}_{A}, \nu_{A}>$ is a doubt cubic H-ideal of X.
Theorem 4.23. A cubic set $A=<\tilde{\mu}_{A}, \nu_{A}>$ of X is a closed doubt cubic H-ideal of X if and only if $\tilde{\mu}_{A}$ is a closed doubt fuzzy H-ideal and $\overline{\nu_{A}}=1-\nu_{A}$ is a closed doubt fuzzy H-ideal of X.

Proof. Similar to the proof of the preceding theorem.

5 Homomorphism of doubt cubic H-ideals of BG-algebra

Let X and Y be two BG-algebra and $\mathcal{C}(X)$ and $\mathcal{C}(Y)$ denote the family of cubic sets in X and Y respectively. A mapping $f: X \rightarrow Y$ induces two mappings $\mathcal{C}_{f}: \mathcal{C}(X) \rightarrow \mathcal{C}(Y)$ given by $A \mapsto \mathcal{C}_{f}(A)$ and $\mathcal{C}_{f}^{-1}: \mathcal{C}(Y) \rightarrow \mathcal{C}(X)$ given by $B \mapsto \mathcal{C}_{f}^{-1}(B)$, where $\mathcal{C}_{f}(A)$ and $\mathcal{C}_{f}^{-1}(B)$ are given by,

$$
\begin{aligned}
\mathcal{C}_{f}\left(\tilde{\mu}_{A}\right)(y) & \begin{cases}=r \inf \left\{\tilde{\mu}_{A}(x) \mid y=f(x)\right\}, & f^{-1} \neq \phi \\
=[1,1], & \text { otherwise }\end{cases} \\
\mathcal{C}_{f}\left(\nu_{A}\right)(y) & = \begin{cases}\sup \left\{\nu_{A}(x) \mid y=f(x)\right\}, & f^{-1} \neq \phi \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

for all $y \in Y$.
And $\mathcal{C}_{f}^{-1}\left(\tilde{\mu}_{B}\right)(x)=\tilde{\mu}_{B}(f(x)), \mathcal{C}_{f}^{-1}\left(\nu_{B}\right)(x)=\mu_{B}(f(x))$ for all $x \in X$.
The mappings \mathcal{C}_{f} and \mathcal{C}_{f}^{-1} are respectively known as cubic and inverse cubic transformations induced by $f: X \rightarrow Y$. The cubic set $A=<\tilde{\mu}_{A}, \nu_{A}>$ in X is said to have cubic property if for any subset B of X there exists $x_{0} \in B$ such that $\tilde{\mu}_{A}\left(x_{0}\right)=r \inf \left\{\tilde{\mu}_{A}(x) \mid x \in B\right\}$ and $\nu_{A}\left(x_{0}\right)=\sup \left\{\nu_{A}(x) \mid x \in B\right\}$

Theorem 5.1. For a transformation $f: X \rightarrow Y$, where X and Y are $B G$-algebra, let $\mathcal{C}_{f}: \mathcal{C}(X) \rightarrow \mathcal{C}(Y)$ and $\mathcal{C}_{f}^{-1}: \mathcal{C}(Y) \rightarrow \mathcal{C}(X)$ be the cubic transformation and inverse cubic transformation respectively induced by f.
(i) If $A=<\tilde{\mu}_{A}, \nu_{A}>$ is a doubt cubic H-ideal of X, then $\mathcal{C}_{f}(A)$ is a doubt cubic H-ideal of Y.
(ii) If $A=<\tilde{\mu}_{A}, \nu_{A}>$ is a doubt cubic H-ideal of Y then $\mathcal{C}_{f}^{-1}(A)$ is a doubt cubic H-ideal of X.

Proof. Let $f(x) \in f(X)$. Then there exists $x_{0} \in f^{-1}(f(x))$ such that $\tilde{\mu}_{A}\left(x_{0}\right)=r \inf \left\{\tilde{\mu}_{A}(a) \mid a \in f^{-1}(f(x))\right\}$ and $\nu_{A}\left(x_{0}\right)=\sup \left\{\nu_{A}(a) \mid a \in f^{-1}(f(x))\right\}$.
Now $\mathcal{C}_{f}\left(\tilde{\mu}_{A}\right)(f(0))=r \inf \left\{\tilde{\mu}_{A}(z) \mid z \in f^{-1}(f(0))\right\}=\tilde{\mu}_{A}\left(0_{0}\right)$,
where $0_{0} \in f^{-1}(f(0))$. In particular when $0_{0}=0, \tilde{\mu}_{A}(0) \preceq \tilde{\mu}_{A}\left(x_{0}\right)$
$\Rightarrow \mathcal{C}_{f}\left(\tilde{\mu}_{A}\right)(f(0)) \preceq r \inf \left\{\tilde{\mu}_{A}(a) \mid a \in f^{-1}(f(x))\right\}=\mathcal{C}_{f}\left(\tilde{\mu}_{A}\right)(f(x))$
And $\mathcal{C}_{f}\left(\nu_{A}\right)(f(0))=\sup \left\{\nu_{A}(z) \mid z \in f^{-1}(f(0))\right\}$, where $0_{0} \in f^{-1}(f(0))$. In particular when $0_{0}=0, \nu_{A}(0) \geq \nu_{A}\left(x_{0}\right)$
$\Rightarrow \mathcal{C}_{f}\left(\nu_{A}\right)(f(0)) \geq \sup \left\{\nu_{A}(a) \mid a \in f^{-1}(f(x))\right\}=\mathcal{C}_{f}\left(\nu_{A}\right)(f(x))$
Again $\mathcal{C}_{f}\left(\tilde{\mu}_{A}\right)(f(x) * f(z))=\mathcal{C}_{f}\left(\tilde{\mu}_{A}\right)(f(x * z))$
$=r \inf \left\{\tilde{\mu}_{A}\left(x^{\prime} * z^{\prime}\right) \mid x^{\prime} * z^{\prime} \in f^{-1}(f(x * z))\right\}=\tilde{\mu}_{A}\left(x_{0} * z_{0}\right)$
$\preceq r \max \left\{\tilde{\mu}_{A}\left(x_{0} *\left(y_{0} * z_{0}\right)\right), \tilde{\mu}_{A}\left(y_{0}\right)\right\}$
$=r \max \left\{r \inf \left\{\tilde{\mu}_{A}(a *(b * c)) \mid a *(b * c) \in f^{-1}(f(x *(y * z)))\right\}, r \inf \left\{\tilde{\mu}_{A}(d) \mid d \in\right.\right.$
$\left.\left.f^{-1}(f(y))\right\}\right\}=r \max \left\{\mathcal{C}_{f}\left(\tilde{\mu}_{A}\right)\left(f(x *(y * z)), \mathcal{C}_{f}\left(\tilde{\mu}_{A}\right)(f(y))\right\}\right.$
$=r \max \left\{\mathcal{C}_{f}\left(\tilde{\mu}_{A}\right)(f(x) * f(y * z)), \mathcal{C}_{f}\left(\tilde{\mu}_{A}\right)(f(y))\right\}$
$=r \max \left\{\mathcal{C}_{f}\left(\tilde{\mu}_{A}\right)(f(x) *(f(y) * f(z))), \mathcal{C}_{f}\left(\tilde{\mu}_{A}\right)(f(y))\right\}$
And $\mathcal{C}_{f}\left(\nu_{A}\right)(f(x) * f(z))=\mathcal{C}_{f}\left(\nu_{A}\right)(f(x * z))$
$=\sup \left\{\nu_{A}\left(x^{\prime} * z^{\prime}\right) \mid x^{\prime} * z^{\prime} \in f^{-1}(f(x * z))\right\}=\nu_{A}\left(x_{0} * z_{0}\right)$
$\geq \min \left\{\nu_{A}\left(x_{0} *\left(y_{0} * z_{0}\right)\right), \nu_{A}\left(y_{0}\right)\right\}$
$=\min \left\{\sup \left\{\nu_{A}(a *(b * c)) \mid a *(b * c) \in f^{-1}(f(x *(y * z)))\right\}, \sup \left\{\nu_{A}(d) \mid d \in f^{-1}(f(y))\right\}\right\}$
$=\min \left\{\mathcal{C}_{f}\left(\nu_{A}\right)(f(x *(y * z))), \mathcal{C}_{f}\left(\nu_{A}\right)(f(y))\right\}$
$\left.=\min \left\{\mathcal{C}_{f}\left(\nu_{A}\right)(f(x) * f(y * z))\right), \mathcal{C}_{f}\left(\nu_{A}\right)(f(y))\right\}$
$=\min \left\{\mathcal{C}_{f}\left(\nu_{A}\right)(f(x) *(f(y) * f(z))), \mathcal{C}_{f}\left(\nu_{A}\right)(f(y))\right\}$
Therefore $\mathcal{C}_{f}(A)$ is a doubt cubic H-ideal of Y.
(ii) Let $x \in X$ and $f(x) \in Y$. Now
$\mathcal{C}_{f}^{-1}\left(\tilde{\mu}_{A}\right)(0)=\tilde{\mu}_{A}(f(0)) \preceq \tilde{\mu}_{A}(f(x))=\mathcal{C}_{f}^{-1}\left(\tilde{\mu}_{A}\right)(x)$ and
$\mathcal{C}_{f}^{-1}\left(\nu_{A}\right)(0)=\nu_{A}(f(0)) \geq \nu_{A}(f(x))=\mathcal{C}_{f}^{-1}\left(\nu_{A}\right)(x)$
Again $\mathcal{C}_{f}^{-1}\left(\nu_{A}\right)(x * z)=\tilde{\mu}_{A}(f(x * z))=\tilde{\mu}_{A}(f(x) * f(z))$
$\preceq r \max \left\{\tilde{\mu}_{A}(f(x) *(f(y) * f(z))), \tilde{\mu}_{A}(f(y))\right\}$
$=r \max \left\{\tilde{\mu}_{A}(f(x) *(f(y * z))), \tilde{\mu}_{A}(f(y))\right\}$
$=r \max \left\{\tilde{\mu}_{A}\left(f(x *(y * z)), \tilde{\mu}_{A}(f(y))\right\}\right.$
$=r \max \left\{\mathcal{C}_{f}^{-1}(\tilde{\mu})(x *(y * z)), \mathcal{C}_{f}^{-1}\left(\tilde{\mu}_{A}\right)(y)\right\}$.
And $\mathcal{C}_{f}^{-1}\left(\nu_{A}\right)(x * z)=\nu_{A}(f(x * z))=\nu_{A}(f(x) * f(z))$
$\geq \min \left\{\nu_{A}(f(x) *(f(y) * f(z))), \nu_{A}(f(y))\right\}=\min \left\{\nu_{A}\left(f(x) *(f(y * z)), \nu_{A}(f(y))\right\}\right.$
$=\min \left\{\nu_{A}\left(f(x *(y * z)), \nu_{A}(f(y))\right\}=\min \left\{\mathcal{C}_{f}^{-1}\left(\nu_{A}\right)(x *(y * z)), \mathcal{C}_{f}^{-1}\left(\nu_{A}\right)(y)\right\}\right.$.
So $\mathcal{C}_{f}^{-1}(A)$ is a doubt cubic H-ideal of X.

References

[1] S.S. Ahn and H. D. Lee, Fuzzy subalgebras of BG-algebras, Commun. Korean Math. Soc. 19 (2) (2004), 243-251.
[2] Y. Imai and J. Iseki, On axiom System of Propositional Calculi 15, Proc. Japan Academy, 42 (1966), 19-22.
[3] Y. B. Jun, C. S. Kim and K. O. Yang, Cubic sets 2012, Annals of Fuzzy Mathematics and Informatics, Vol. 4 No.1, pp-83-98.
[4] Y. B. Jun, C. S. Kim and J. B. Kang, 2011, Cubic q-ideals of BCI-algebras, 2011,
[5] Y. B. Jun, Doubt fuzzy BCK/BCI-algebras, Soochow Journal of Mathematics,Vol. 20 No.3, 351-358, July 1994.
[6] H. M. Khalid and B. Ahmad, Fuzzy sets and systems, Vol. 101, Issue 1, January 1999,153-158.
[7] C. B. Kim and H. S. Kim, On BG-algebras, Demonstratio Math. 41 (3) (2008), 497-505.
[8] J. Neggers and H. S. Kim, On BG-algebras, Math. Vensik, 54 (2002), 21-29.
[9] L. A. Zadeh, Fuzzy Sets, Information and Control, 8 (1965), 338-353.
[10] J. Zhan and Z. Tan, Soochow Journal of Mathematics, Vol.29, No. 3, pp-293298, July 2003.

