Doubt cubic H-ideals of BG-algebra

Devanjan Hazarika Department of Mathematics, D.H.S.K. College, Dibrugarh-786001, Assam, India.

Karabi Dutta Choudhury Department of Mathematics, Assam University, Silchar, Assam-788011, Assam, India.

Abstract: In this article we introduce the notion of Doubt cubic H-ideals of BG-algebra and discuss some of their properties.

 $Key\ words:$ BG-algebra, Doubt fuzzy BG-subalgebra, Doubt fuzzy H-ideal of BG algebra, Cubic Set, Doubt Cubic H-ideals of BG-algebra

1 Introduction

the study of BCK- algebra and BCI algebra was initiated by Imai and Iseki [2] in 1966. B-algebra was introduced by Neggers and Kim [8], which is related to BCI/BCK- algebra in many aspects. Kim and Kim[7] generalised B-algebra as BG-algebra and this algebra was fuzzyfied by Ahn and Lee[1]. Khalid and Ahmad [6] introduced fuzzy H-ideals in BCI-algebra in 1999. In 1994, Jun [5] introduced the concept of doubt fuzzy ideals in BCK/BCI- algebras. The notion of doubt fuzzy H-ideals in BCK-algebra was introduced by Zhan and Tan [10]. The concept of interval valued fuzzy sets, an extension of fuzzy sets was due to Zadeh [9] and based upon it, Jun [3] developed the notion of cubic sets. In this approach, doubt cubic H-ideal of BG-algebra is defined and some of its properties, investigated.

2 Preliminaries

Definition 2.1. A BG-algebra is a non empty set X with a constant 0 and a binary operation * satisfying the following: (i) x * x = 0 (ii) x * 0 = x . (iii) (x * y) * (0 * y) = x $\forall x, y \in X$

In his case we say (X, *, 0) is a BG-algebra and by X now onwards we shall mean a BG-algebra. We can define a partial ordering ' \leq ' by $x \leq y$ if and only if x * y = 0.

Example 2.2. The set $X =$	$\{0, 1, 2, 3\}$	with the	caley table
-----------------------------------	------------------	----------	-------------

*	0	1	2	3
0	0	3	2	1
1	1	0	3	2
2	2	1	0	3
3	3	2	1	0

is a BG-algebra.

Definition 2.3. A non empty subset S of a BG-algebra X is called a sub-algebra of X if $x * y \in S, \forall x, y \in S$.

Definition 2.4. A non empty subset I of a BG-algebra X is called a BG-ideal or an ideal of X if

(i) $0 \in I$ and (ii) $x * y \in I, y \in I \Rightarrow x \in I$.

Definition 2.5. An ideal *I* of a BG-algebra *X* is said to be closed if,

 $0 * x \in I, \forall x \in I.$

Definition 2.6. A non empty subset *I* of a BG-algebra *X* is called a H-ideal of *X* if

(i) $0 \in I$ and (ii) $x * (y * z) \in I, y \in I \Rightarrow x * z \in I$.

Definition 2.7. The fuzzy set A in X is defined as $A = \{(x, \mu_A(x)) | x \in X\}$, where $\mu_A : X \to [0, 1]$ is known as the membership value of x in A. For brevity by $\mu_A(x)$ we mean the fuzzy set A in X.

Definition 2.8. The fuzzy set μ_A in X is said to be a fuzzy sub-algebra of X if

 $\mu_A(x*y) \ge \min\{\mu_A(x), \mu_A(y)\}, \forall x, y \in X.$

Definition 2.9. The fuzzy set μ_A in X is said to be a fuzzy ideal of X if

(i) $\mu_A(0) \ge \mu_A(x)$ and (ii) $\mu_A(x) \ge \min\{\mu_A(x * y), \mu_A(y)\}, \forall x, y \in X.$

Definition 2.10. The fuzzy set μ_A in X is said to be a doubt fuzzy sub-algebra (DF sub-algebra, for brevity) of X if

 $\mu_A(x * y) \le \max\{\mu_A(x), \mu_A(y)\}, \forall x, y \in X.$

Definition 2.11. The fuzzy set μ_A in X is said to be a doubt fuzzy ideal (DF ideal, for brevity) of X if

(i)
$$\mu_A(0) \le \mu_A(x)$$
 and (ii) $\mu_A(x) \le \max\{\mu_A(x * y), \mu_A(y)\}, \forall x, y \in X.$

Definition 2.12. The fuzzy set μ_A in X is said to be a fuzzy H-ideal of X if

(i) $\mu_A(0) \ge \mu_A(x)$ and (ii) $\mu_A(x * y) \ge \min\{\mu_A(x * (y * z)), \mu_A(y)\}, \forall x, y, z \in X.$

Definition 2.13. The fuzzy set μ_A in X is said to be a doubt fuzzy H-ideal(DF H-ideal, for brevity) of X if

(i) $\mu_A(0) \le \mu_A(x)$ and (ii) $\mu_A(x * y) \le \max\{\mu_A(x * (y * z)), \mu_A(y)\}, \forall x, y, z \in X.$

By an interval number we mean a closed subinterval given by $\tilde{a} = [a^-, a^+]$ of the interval [0, 1], where $0 \le a^- \le a^+ \le 1$. Let us denote the set of all interval numbers by D[0, 1]. Let us consider $\tilde{a}_1 = [a_1^-, a_1^+]$ and $\tilde{a}_2 = [a_2^-, a_2^+]$. Then refined minimum $(r \min)$ and refined maximum $(r \max)$ of \tilde{a}_1 and \tilde{a}_2 are defined as

$$r \min\{\tilde{a}_1, \tilde{a}_2\} = [\min\{a_1^-, a_2^-\}, \min\{a_1^+, a_2^+\}]$$

$$r \max\{\tilde{a}_1, \tilde{a}_2\} = [\max\{a_1^-, a_2^-\}, \max\{a_1^+, a_2^+\}]$$
For $a_i \in D[0, 1]; i = 1, 2, 3, ...,$ we define
$$r \inf \tilde{a}_1 = [r \inf a_i^-, r \inf a_i^+] \quad \text{and} \quad r \sup \tilde{a}_1 = [r \sup a_i^-, r \sup a_i^+]$$
We also define the symbols \succeq, \preceq and $=$ as follows:
$$\tilde{a}_1 \succeq \tilde{a}_2 \Leftrightarrow a_1^- \ge a_2^- \text{ and } a_1^+ \ge a_2^+$$
Also $\tilde{a}_1 \succ \tilde{a}_2$ means $\tilde{a}_1 \succeq \tilde{a}_2$ and $\tilde{a}_1 \neq \tilde{a}_2$.

Similar; y we can define $\tilde{a}_1 \leq \tilde{a}_2$ and $\tilde{a}_1 \prec \tilde{a}_2$.

Finally $\tilde{a}_1 = \tilde{a}_2 \Leftrightarrow a_1^- = a_2^-, a_1^+ = a_2^+$.

An interval valued fuzzy set (IVF set)A defined in X is given by

 $A = \{(x, [\mu_A^-(x), \mu_A^+(x)]) | x \in X, \text{ where } \mu_A^- \text{ and } \mu_A^+ \text{ are two fuzzy sets in } X \text{ such that } \mu_A^-(x) \le \mu_A^+(x), \forall x \in X. \text{ An IVF set } A \text{ is briefly denoted by } \tilde{\mu} = [\mu_A^-, \mu_A^+]. \text{ If } M_A^-(x) \le \mu_A^-(x), \forall x \in X. \text{ and } \mu_A^-(x) \ge \mu_A^-(x), \forall x \in X. \text{ and } \mu_A^-(x) \ge \mu_A^-(x), \forall x \in X. \text{ and } \mu_A^-(x) \ge \mu_A^-(x), \forall x \in X. \text{ and } \mu_A^-(x) \ge \mu_A^-(x), \forall x \in X. \text{ and } \mu_A^-(x) \ge \mu_A^-(x), \forall x \in X. \text{ and } \mu_A^-(x) \ge \mu_A^-(x), \forall x \in X. \text{ and } \mu_A^-(x), \forall x \in X. \text{ and } \mu_A^-(x) \ge \mu_A^-(x), \forall x \in X. \text{ and } \mu_A^-(x) \ge \mu_A^-(x), \forall x \in X. \text{ and } \mu_A^-(x) \ge \mu_A^-(x), \forall x \in X. \text{ and } \mu_A^-(x), \forall x \in X. \text{ and } \mu_A^-(x) \ge \mu_A^-(x), \forall x \in X. \text{ and } \mu_A^-(x) \in X. \text{ and } \mu_A^-(x), \forall x \in X. \text{ and } \mu_A^-(x),$

in the IVF set $\tilde{\mu}(x) = [\mu_A^-(x), \mu_A^+(x)], \mu_A^-(x) = c = \mu_A^+(x)$, where $0 < c \le 1$, then $\tilde{\mu}(x) = [c, c]$, which is for our convenience is assumed to be a member of D[0, 1]. So $\tilde{\mu}(x) \in D[0, 1], \forall x \in X$, where $\tilde{\mu} : X \to D[0, 1]$. $\tilde{\mu}(x)$ is called the degree of the membership of the element x to $\tilde{\mu}$ and $\mu_A^-(x), \mu_A^+(x)$ are respectively called lower and upper degrees of membership of x to $\tilde{\mu}$. By complement of $\tilde{\mu}$ we mean $[1 - \mu_A^-, 1 - \mu_A^+]$, denoted by $(\tilde{\mu})^c$.

Definition 2.14. A cubic set A in a non empty X is a structure of the form $A = \{x, \tilde{\mu}_A(x), \nu_A(x) | x \in X\}$, where $\tilde{\mu}_A = [\mu_A^-, \mu_A^+]$ is an IVF set in X and ν_A a fuzzy set in X. It is briefly denoted by $A = \langle \tilde{\mu}_A(x), \nu_A(x) \rangle = \langle [\mu_A^-(x), \mu_A^+(x)], \nu_A(x) \rangle$.

For two cubic sets A and B in X, their intersection denoted by $A \sqcap B$ is another cubic set in X given by $A \sqcap B = \langle \tilde{\mu}_A \cap \tilde{\mu}_B, \nu_A \cup \nu_B \rangle$, where $(\tilde{\mu}_A \cap \tilde{\mu}_B)(x) = r \min\{\tilde{\mu}_A(x)\}, \tilde{\mu}_B(x)$ and $(\nu_A \cup \nu_B)(x) = \max\{\nu_A(x), \nu_B(x)\}$ Similarly the union of A and B denoted by $A \sqcup B$ is another cubic set in X given by $A \sqcup B = \langle \tilde{\mu}_A \cup \tilde{\mu}_B, \nu_A \cap \nu_B \rangle$, where $(\tilde{\mu}_A \cup \tilde{\mu}_B)(x) = r \max\{\tilde{\mu}_A(x), \tilde{\mu}_B(x)\}$ and $(\nu_A \cap \nu_B)(x) = \min\{\nu_A(x), \nu_B(x)\}.$

3 Doubt Cubic H-ideals of BG-algebra

Definition 3.1. A cubic set $A = \langle \tilde{\mu}_A, \nu_A \rangle$ of X is said to be a doubt cubic sub algebra of X if for all $x, y \in X$, (i) $\tilde{\mu}_A(x * y) \preceq r \min\{\tilde{\mu}_A(x), \tilde{\mu}_A(y)\}$ (ii) $\nu_A(x * y) \ge \min\{\nu_A(x), \nu_A(y)\}$

 $(-) \ F A (-) \ F A (-)$

Example 3.2. Consider the BG-algebra $X = \{0, 1, 2, 3\}$ with the caley table

*	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	0	1
3	3	2	1	0

We define $\tilde{\mu}_A(0) = [0.3, 0.4], \tilde{\mu}_A(1) = [0.4, 0.6], \tilde{\mu}_A(2) = [0.3, 0.5], \tilde{\mu}_A(3) = [0.5, 0.9]$ and $\nu_A(0) = 0.6, \nu_A(1) = 0.5, \nu_A(2) = 0.3, \nu_A(3) = 0.4$. Then $A = \langle \tilde{\mu}_A, \nu_A \rangle$ is a doubt cubic sub algebra.

Theorem 3.3. Let $A = \langle \tilde{\mu}_A, \nu_A \rangle$ be a doubt cubic sub algebra of a BG-algebra X. Then (i) $\tilde{\mu}_A(0) \leq \tilde{\mu}_A(x)$ and $\nu_A(0) \geq \nu_A(x)$, for all $x \in X$.

Proof. We have for any $x \in X$, $\tilde{\mu}_A(0) = \tilde{\mu}_A(x * x) \preceq r \min\{\tilde{\mu}_A(x), \tilde{\mu}_A(x)\} = \tilde{\mu}_A(x)$ and $\nu_A(0) = \nu_A(x * x) \ge \min\{\nu_A(x), \nu_A(x)\} = x$.

Theorem 3.4. Let $A = \langle \tilde{\mu}_A, \nu_A \rangle$ be a doubt cubic sub algebra of a BG-algebra X. Then for all $x \in X$

(i) $\tilde{\mu}_A(x^n * x) \preceq \tilde{\mu}_A(x)$ and $\nu_A(x^n * x) \ge \nu_A(x)$, if n is odd. (ii) $\tilde{\mu}_A(x^n * x) = \tilde{\mu}_A(x)$ and $\nu_A(x^n * x) = \nu_A(x)$, if n is even. (iii) $\tilde{\mu}_A(x * x^n) = \tilde{\mu}_A(0)$ and $\nu_A(x * x^n) = \nu_A(0)$, for all $n \in \mathbb{N}$.

Proof. (i) Clearly $\tilde{\mu}_A(x * x) = \tilde{\mu}_A(0) \leq \tilde{\mu}_A(x)$, so that the result is true for n = 1. Let the result be true for $n = 2p - 1, p \in \mathbb{N}$. Then $\tilde{\mu}_A(x^{2p-1} * x) \leq \tilde{\mu}_A(x)$. Now $\tilde{\mu}_A(x^{2(p+1)-1} * x) = \tilde{\mu}_A(x^{2p-1+2} * x) = \tilde{\mu}_A(x^{2p-1} * (x * (x * x)))$ $= \tilde{\mu}_A(x^{2p-1} * (x * 0)) = \tilde{\mu}_A(x^{2p-1} * x) \leq \tilde{\mu}_A(x)$

So the result is true for n = 2(p+1) - 1, whenever it is true for n = 2p - 1. Hence by induction the result is true for all odd numbers.

The second part follows similarly. The proofs of (ii) and (iii) are similar to the preceding one.

4 Doubt cubic H-ideals of BG-algebra

Definition 4.1. Let $A = \langle \tilde{\mu}_A, \nu_A \rangle$ be a cubic set in a BG-algebra X. Then A is called a doubt cubic H-ideal of X if for all $x, y, z \in X$,

(i) $\tilde{\mu}_A(x) \succeq \tilde{\mu}_A(0)$ (ii) $\tilde{\mu}_A(x*z) \preceq r \max\{\tilde{\mu}_A(x*(y*z)), \tilde{\mu}_A(y)\}$ (iii) $\nu_A(x) \le \nu_A(0)$ (iv) $\nu_A(x*z) \ge \min\{\nu_A(x*(y*z)), \nu_A(y)\}$

Remark 4.2. Given $A = \langle \tilde{\mu}_A, \nu_A \rangle$ is a doubt cubic *H*-ideal of a BG-algebra *X*, $\tilde{\mu}_A$ is a DF-ideal and ν_A is a fuzzy ideal of *X*.

Example 4.3. Consider the BG-algebra $X = \{0, 1, 2, 3\}$ with the caley table

*	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	1	0	3
3	3	2	1	0

We define $\tilde{\mu}_A(0) = [0.2, 0.4], \tilde{\mu}_A(2) = \tilde{\mu}_A(3) = [0.4, 0.8], \tilde{\mu}_A(1) = [0.5, 0.9]$ and $\nu_A(0) = 0.9, \nu_A(1) = 0.3, \nu_A(2) = \nu_A(3) = 0.7$. Then by routine calculation it can be shown that $A = \langle \tilde{\mu}_A, \nu_A \rangle$ is a doubt cubic *H*-ideal of *X*.

Definition 4.4. A cubic set $A = \langle \tilde{\mu}_A, \nu_A \rangle$ in X is called a closed doubt cubic *H*-ideal of X if for all $x, y, z \in X$,

(i) $\tilde{\mu}_A(0*x) \preceq \tilde{\mu}_A(x)$ (ii) $\tilde{\mu}_A(x*z) \preceq r \max\{\tilde{\mu}_A(x*(y*z)), \tilde{\mu}_A(y)\}$ (iii) $\nu_A(0*x) \le \nu_A(x)$ (iv) $\nu_A(x*z) \ge \min\{\nu_A(x*(y*z)), \nu_A(y)\}$

Theorem 4.5. Every closed doubt cubic H-ideal of X is a doubt cubic H-ideal of X.

Proof. Let $A = \langle \tilde{\mu}_A, \nu_A \rangle$ be a closed doubt cubic *H*-ideal of *X*. Then $\tilde{\mu}_A(0*x) \preceq \tilde{\mu}_A(x)$ and $\tilde{\mu}_A(x*z) \preceq r \max\{\tilde{\mu}_A(x*(y*z)), \tilde{\mu}_A(y)\}$ considering the first two conditions. In the second condition putting z = 0, we get $\forall x, y \in X$ $\tilde{\mu}_A(x*0) = \tilde{\mu}_A(x) \preceq r \max\{\tilde{\mu}_A(x*(y*0)), \tilde{\mu}_A(y)\} = r \max\{\tilde{\mu}_A(x*y), \tilde{\mu}_A(y)\}$. Replacing x by 0, $\tilde{\mu}_A(0) = \tilde{\mu}_A(x) \preceq r \max\{\tilde{\mu}_A(0*y), \tilde{\mu}_A(y)\} \preceq r \max\{\tilde{\mu}_A(y), \tilde{\mu}_A(y)\} = \tilde{\mu}_A(y)$. Using the remaining two conditions for ν_A it can be easily shown that $\nu_A(0) \ge \nu_A(x)$. Hence the proof.

Remark 4.6. Every doubt cubic H-ideal of X is not necessarily a closed doubt cubic H-ideal of X. This prompts us to assert that "The class of closed doubt cubic H-ideal of X is a proper subclass of that of the doubt cubic H-ideals of x.

Theorem 4.7. Let $A = \langle \tilde{\mu}_A, \nu_A \rangle$ be a doubt cubic *H*-ideal of *X*. Let $\{x_n\}$ be a sequence in *X*. Then (i) If $\lim_{n \to \infty} \tilde{\mu}_A(x_n) = [0, 0]$ then $\tilde{\mu}_A(0) = [0, 0]$ (ii) If $\lim_{n \to \infty} \nu_A(x_n) = 1$ then $\nu_A(0) = 1$.

Proof. Since $\tilde{\mu}_A(0) \leq \tilde{\mu}_A(x), \forall x \in X$, we have $\tilde{\mu}_A(0) \leq \tilde{\mu}_A(x_n), \forall n \in \mathbb{N}$. Clearly $[0,0] \leq \tilde{\mu}_A(0) \leq \lim_{n \to \infty} \tilde{\mu}_A(x_n) = [0,0]$. So $\tilde{\mu}_A(0) = [0,0]$. Similarly since $\nu_A(0) \geq \nu_A(x), \forall x \in X$, we have $1 \geq \nu_A(0) \geq \lim_{n \to \infty} \nu_A(x_n) = 1$, so that $\nu_A(0) = 1$.

Theorem 4.8. For the doubt cubic H-ideal $A = \langle \tilde{\mu}_A, \nu_A \rangle$ of X, $\tilde{\mu}_A$ is order preserving and ν_A is order reversing.

Proof. Let x ≤ y in X, where x ≤ y means x * y = 0. Then $\tilde{\mu}_A(x * 0) \le r \max\{\tilde{\mu}_A(x * (y * 0)), \tilde{\mu}_A(y)\}$ ⇒ $\tilde{\mu}_A(x) \le r \max\{\tilde{\mu}_A(x * y), \tilde{\mu}_A(y)\} = r \max\{\tilde{\mu}_A(0), \tilde{\mu}_A(y)\} = \tilde{\mu}_A(y).$ Also $\nu_A(x * 0) \ge \min\{\nu_A(x * (y * 0)), \nu_A(y)\}$ ⇒ $\nu_A(x) \ge \min\{\nu_A(x * y), \nu_A(y)\} = \min\{\nu_A(), \nu_A(y)\} = \nu_A(y).$

Theorem 4.9. The union of any two doubt cubic H-ideals of X, is again a doubt cubic H-ideal of X.

Proof. Let $A = \langle \tilde{\mu}_A, \nu_A \rangle$ and $B = \langle \tilde{\mu}_B, \nu_B \rangle$ be two doubt cubic *H*-ideals of *X*. Then $A \sqcup B = \langle \tilde{\mu}_A \tilde{\cup} \tilde{\mu}_B, \nu_A \cap \nu_B \rangle$. We have $(\tilde{\mu}_A \tilde{\cup} \tilde{\mu}_B)(0) = r \max\{\tilde{\mu}_A(0), \tilde{\mu}_B(0)\} \leq r \max\{\tilde{\mu}_A(x), \tilde{\mu}_B(x)\} = (\tilde{\mu}_A \tilde{\cup} \tilde{\mu}_B)(x)$

And $(\tilde{\mu}_{A}\tilde{\cup}\tilde{\mu}_{B})(x * z) = r \max\{\tilde{\mu}_{A}(x * z), \tilde{\mu}_{B}(x * z)\}$ $\leq r \max\{r \max\{\tilde{\mu}_{A}(x * (y * z)), \tilde{\mu}_{A}(y)\}, r \max\{\tilde{\mu}_{B}(x * (y * z)), \tilde{\mu}_{B}(y)\}\}$ $\leq r \max\{r \max\{\tilde{\mu}_{A}(x * (y * z)), \tilde{\mu}_{B}(x * (y * z))\}, r \max\{\tilde{\mu}_{A}(y), \tilde{\mu}_{B}(y)\}\}$ $= r \max\{(\tilde{\mu}_{A}\tilde{\cup}\tilde{\mu}_{B})(x * (y * z)), (\tilde{\mu}_{A}\tilde{\cup}\tilde{\mu}_{B})(y)\}$ Again $(\nu_{A} \cap \nu_{B})(0) = \min\{\nu_{A}(0), \nu_{B}(0)\} \geq \min\{\nu_{A}(x), \nu_{B}(x)\} = (\nu_{A} \cap \nu_{B})(x).$ Finally $(\nu_{A} \cap \nu_{B})(x * z) = \min\{\nu_{A}(x * z), \nu_{A}(x * z)\}$ $\geq \min\{\min\{\nu_{A}(x * (y * z)), \nu_{A}(y)\}, \min\{\nu_{B}(x * (y * z)), \nu_{B}(y)\}\}$ $= \min\{\min\{\nu_{A}(x * (y * z)), \nu_{B}(x * (y * z))\}, \min\{\nu_{A}(y), \nu_{B}(y)\}\}$ $= \min\{(\nu_{A} \cap \nu_{B})(x * (y * z)), (\nu_{A} \cap \nu_{B})(x)\}.$ Hence $A \sqcup B$ is a doubt cubic H-ideal of X.

Theorem 4.10. (Generalisation) The union of any family of doubt cubic H-ideals of X, is again a doubt cubic H-ideal of X.

Remark 4.11. The intersection of any two doubt cubic H-ideals of X will be a doubt cubic H-ideal of X if one is contained in the other.

Theorem 4.12. (Generalisation) Let $A = \langle \tilde{\mu}_A, \nu_A \rangle$ and $B = \langle \tilde{\mu}_B, \nu_B \rangle$ be two doubt cubic H-ideals of X. Then $A \sqcap B$ is also doubt cubic H-ideal of X if $A \subseteq B$ or $B \subseteq A$.

 $\begin{array}{l} Proof. \text{ We have } (\tilde{\mu}_{A} \tilde{\cap} \tilde{\mu}_{B})(0) = r \min\{\tilde{\mu}_{A}(0), \tilde{\mu}_{B}(0)\} \preceq r \min\{\tilde{\mu}_{A}(x), \tilde{\mu}_{B}(x)\} = \\ \tilde{\mu}_{A}(x) = (\tilde{\mu}_{A} \tilde{\cap} \tilde{\mu}_{B})(x)[as \ \tilde{\mu}_{A} \preceq \tilde{\mu}_{B}] \\ \text{And } (\tilde{\mu}_{A} \tilde{\cap} \tilde{\mu}_{B})(x \ast z) = r \min\{\tilde{\mu}_{A}(x \ast z), \tilde{\mu}_{B}(x \ast z)\} \\ \preceq r \min\{r \max\{\tilde{\mu}_{A}(x \ast (y \ast z)), \tilde{\mu}_{A}(y)\}, r \max\{\tilde{\mu}_{B}(x \ast (y \ast z)), \tilde{\mu}_{B}(y)\}\} \\ \preceq r \min\{r \max\{\tilde{\mu}_{A}(x \ast (y \ast z)), \tilde{\mu}_{B}(x \ast (y \ast z))\}, r \max\{\tilde{\mu}_{A}(y), \tilde{\mu}_{B}(y)\}\} \\ = r \max\{r \min\{\tilde{\mu}_{A}(x \ast (y \ast z)), \tilde{\mu}_{B}(x \ast (y \ast z))\}, r \min\{\tilde{\mu}_{A}(y), \tilde{\mu}_{B}(y)\}\} \\ = r \max\{(\tilde{\mu}_{A} \tilde{\cap} \tilde{\mu}_{B})(x \ast (y \ast z)), (\tilde{\mu}_{A} \tilde{\cap} \tilde{\mu}_{B})(y)\} \\ \text{Similarly it can be shown that } (\nu_{A} \cup \nu_{B})(0) \ge (\nu_{A} \cup \nu_{B})(x). \\ \text{and } (\nu_{A} \cup \nu_{B})(x \ast z) \ge \min\{(\nu_{A} \cup \nu_{B})(x \ast (y \ast z)), (\nu_{A} \cup \nu_{B})(x)\}. \\ \text{Hence } A \sqcap B \text{ is a doubt cubic } H\text{-ideal of } X. \end{array}$

Theorem 4.13. The union of any two closed doubt cubic H-ideals of X, is again a closed doubt cubic H-ideal of X.

Proof. Let $A = \langle \tilde{\mu}_A, \nu_A \rangle$ and $B = \langle \tilde{\mu}_B, \nu_B \rangle$ be two closed doubt cubic *H*-ideals of *X*. Then $A \sqcup B = \langle \tilde{\mu}_A \tilde{\cup} \tilde{\mu}_B, \nu_A \cap \nu_B \rangle$. We have $(\tilde{\mu}_A \tilde{\cup} \tilde{\mu}_B)(0 * x) = r \max{\{\tilde{\mu}_A(0 * x), \tilde{\mu}_B(0 * x)\}}$

 $\leq r \max\{\tilde{\mu}_A(x), \tilde{\mu}_B(x)\} = (\tilde{\mu}_A \tilde{\cup} \tilde{\mu}_B)(x)$ And $(\nu_A \cap \nu_B)(0 * x) = \min\{\nu_A(0 * x), \nu_B(0 * x)\}$ $\geq \min\{\nu_A(x), \nu_B(x)\} = (\nu_A \cap \nu_B)(x).$

The remaining part for $\tilde{\mu}_A \tilde{\cup} \tilde{\mu}_B$ and $\nu_A \cap \nu_B$ follows exactly as before. Hence $A \sqcup B$ is a closed doubt cubic *H*-ideal of *X*.

Theorem 4.14. (Generalisation) The union of any family of closed doubt cubic H-ideals of X, is again a closed doubt cubic H-ideal of X.

Remark 4.15. The intersection of any two closed doubt cubic H-ideals of X will be a closed doubt cubic H-ideal of X if one is contained in the other.

Theorem 4.16. Let $A = \langle \tilde{\mu}_A, \nu_A \rangle$ be a doubt cubic *H*-ideal of *X*. Then the sets $X_{\tilde{\mu}_A} = \{x \in X | \tilde{\mu}_A(x) = \tilde{\mu}_A(0)\}$ and $X_{\nu_A} = \{x \in X | \nu_A(x) = \nu_A(0)\}$ are *H*-ideals of *X*.

Proof. Clearly $0 \in X_{\tilde{\mu}_A}$. Next for $x * (y * z), y \in X_{\tilde{\mu}_A}$, we have $\tilde{\mu}_A(x * (y * z)) = \tilde{\mu}_A(0) = \tilde{\mu}_A(y)$. And $\forall x, z \in X, \tilde{\mu}_A(0) \preceq \tilde{\mu}_A(x * z)$. Again $\tilde{\mu}_A(x * z) \preceq r \max\{\tilde{\mu}_A(x * (y * z)), \tilde{\mu}_A(y)\} = r \max\{\tilde{\mu}_A(0), \tilde{\mu}_A(0)\} = \tilde{\mu}_A(0)$. So $\tilde{\mu}_A(x * z) = \tilde{\mu}_A(0)$ and hence $x * z \in X_{\tilde{\mu}_A}$. Thus for $x * (y * z), y \in X_{\tilde{\mu}_A}$, we get $x * z \in X_{\tilde{\mu}_A}$. So $X_{\tilde{\mu}_A}$ is a *H*-ideal of *X*. Similarly it can be shown that X_{ν_A} is also a *H*-ideal of *X*.

Theorem 4.17. Let $A = \langle \tilde{\mu}_A, \nu_A \rangle$ be a cubic set in X. Then A is a doubt cubic H-ideal of X if and only if $\tilde{\mu}_A^c = [1 - \mu_A^+, 1 - \mu_A^-]$ and ν_A are fuzzy H-ideals of X.

 $\begin{array}{l} Proof. \mbox{ Let } A = <\tilde{\mu}_A, \nu_A > \mbox{ be a doubt cubic } H\mbox{-ideal of } X. \mbox{ Then it follows immediately that } \nu_A \mbox{ is a fuzzy ideal of } X. \mbox{ Now }\\ \tilde{\mu}_A(0) \leq \tilde{\mu}_A(x) \Rightarrow [\mu_A^-(0), \mu_A^+(0)] \leq [\mu_A^-(x), \mu_A^+(x)] \\ \Rightarrow \mu_A^-(0) \leq \mu_A^-(x); \mu_A^+(0) \leq \mu_A^+(x) \\ \Rightarrow 1 - \mu_A^-(0) \geq 1 - \mu_A^-(x); 1 - \mu_A^+(0) \geq 1 - \mu_A^+(x) \\ \Rightarrow [1 - \mu_A^+(0), 1 - \mu_A^-(0)] \geq [1 - \mu_A^+(x), 1 - \mu_A^-(x)] \Rightarrow \tilde{\mu}_A^c(0) \geq \tilde{\mu}_A^c(x) \\ \mbox{Secondly } \tilde{\mu}_A(x * z) \leq r \max\{\tilde{\mu}_A(x * (y * z)), \tilde{\mu}_A(y)\} \\ \Rightarrow \mu_A^-(x * z) \leq \max\{\mu_A^-(x * (y * z)), \mu_A^-(y)\} \\ \Rightarrow 1 - \mu_A^-(x * z) \geq 1 - \max\{\mu_A^-(x * (y * z)), \mu_A^-(y)\} \\ \mbox{similarly } 1 - \mu_A^-(x * (y * z)), 1 - \mu_A^-(y)\} \\ \mbox{Similarly } 1 - \mu_A^+(x * z) \geq \min\{1 - \mu_A^+(x * (y * z)), 1 - \mu_A^+(y)\} \\ \mbox{So } \tilde{\mu}_A^c(x * z) \geq r \min\{\tilde{\mu}_A^c(x * (y * z)), \tilde{\mu}_A^c(y)\} \\ \mbox{Thus } \tilde{\mu}_A^c \mbox{ is a fuzzy } H\mbox{-ideal of } X. \\ \mbox{Conversely let } \tilde{\mu}_A^c \mbox{ and } \nu_A \mbox{ be fuzzy } H\mbox{-ideals of } X. \\ \mbox{Thus } \tilde{\mu}_A^c(0) \geq \tilde{\mu}_A^c(x) \\ \Rightarrow [1 - \mu_A^+(0), 1 - \mu_A^-(0)] \geq [1 - \mu_A^+(x), 1 - \mu_A^-(x)] \end{aligned}$

 $\Rightarrow [\mu_A^-(0), \mu_A^+(0)] \preceq [\mu_A^-(x), \mu_A^+(x)]$ $\Rightarrow \tilde{\mu}_A(0) \preceq \tilde{\mu}_A(x)$ $\text{And } \tilde{\mu}_A^c(x * z) \succeq r \min\{\tilde{\mu}_A^c(x * (y * z)), \tilde{\mu}_A^c(y)\}$ $\Rightarrow 1 - \mu_A^+(x * z) \ge \min\{1 - \mu_A^+(x * (y * z)), 1 - \mu_A^+(y)\}$ $= 1 - \max\{\mu_A^+(x * (y * z)), \mu_A^+(y)\}$ $\Rightarrow \tilde{\mu}_A^+(x * z) \le r \max\{\tilde{\mu}_A^+(x * (y * z)), \tilde{\mu}_A^+(y)\}$ $\text{Likewise } \tilde{\mu}_A^-(x * z) \le r \max\{\tilde{\mu}_A(x * (y * z)), \tilde{\mu}_A^-(y)\}$ $\text{Hence } \tilde{\mu}_A(x * z) \preceq r \max\{\tilde{\mu}_A(x * (y * z)), \tilde{\mu}_A(y)\} \\ \text{Secondly } \nu_A \text{ being a fuzzy } H\text{-ideal of } X,$ $\nu_A(0) \ge \nu_A(x) \text{ and } \nu_A(x * z) \ge \min\{\nu_A(x * (y * z)), \nu_A(y)\} \\ \text{Hence } A = < \tilde{\mu}_A, \nu_A > \text{ is a doubt cubic } H\text{-ideal of } X.$

Definition 4.18. Let $A = \langle \tilde{\mu}_A, \nu_A \rangle$ be a cubic set in X. Let $\tilde{q} = [q^-, q^+]$ be an interval number and $r \in [0, 1]$. Then the set $L_{\tilde{q}} = \{x \in X | \tilde{\mu}_A(x) \leq \tilde{q}\}$ and $U_r\{x \in X | \nu_A(x) \geq r\}$ are respectively called lower \tilde{q} -level set of A and upper rlevel cut of A. The cubic level set of A is the set given by $(U, L) = \{x \in X | \tilde{\mu}_A(x) \geq \tilde{q}, \nu_A(x) \geq r\}$.

Theorem 4.19. Let $A = \langle \tilde{\mu}_A, \nu_A \rangle$ be a doubt cubic *H*-ideal of *X*. Then $L_{\tilde{q}}$ and U_r are *H*-ideals of *X*.

Proof. We have $L_{\tilde{q}} = \{x \in X | \tilde{\mu}_A(x) \leq \tilde{q}\}$. Clearly $\tilde{\mu}_A(0) \leq \tilde{\mu}_A(x * z), \forall x, z \in X$. So $\tilde{\mu}_A(0) \leq \tilde{\mu}_A(x * z) \leq \tilde{q}$, whenever $x * z \in L_{\tilde{q}}$ i.e., $0 \in L_{\tilde{q}}$. Secondly for $x * (y * z), y \in L_{\tilde{q}}$ we have $\tilde{\mu}_A(x * (y * z)) \leq \tilde{q}$ and $\tilde{\mu}_A(y) \leq \tilde{q}$. So $\tilde{\mu}_A(x * z) \leq r \max\{\tilde{\mu}_A(x * (y * z)), \tilde{\mu}_A(y))\} = r \max\{\tilde{q}, \tilde{q}\} = \tilde{q}$ i.e., $x * z \in L_{\tilde{q}}$. Therefore for $x * (y * z) \in L_{\tilde{q}}, x * z \in L_{\tilde{q}}$. Thus $L_{\tilde{q}}$ is a *H*-ideal of *X*. Next we have $U_r\{x \in X | \nu_A(x) \geq r\}$. Since $\nu_A(0) \geq \nu_A(x * z) \forall x, z \in X$, so $\nu_A(0) \geq \nu_A(x * z) \geq r$, whenever $x * z \in U_r$ i.e., $0 \in U_r$. Secondly for $x * (y * z), y \in U_r$ we have $\nu_A(x * (y * z)) \geq r$ and $\nu_A(y) \geq r$. So $\nu_A(x * z) \geq \min\{\nu_A(x * (y * z)), \nu_A(y))\} = \min\{r, r\} = r$ i.e., $x * z \in U_r$. Therefore for $x * (y * z) \in U_r, x * z \in U_r$. Thus U_r is a *H*-ideal of *X*.

Theorem 4.20. Let $A = \langle \tilde{\mu}_A, \nu_A \rangle$ be a cubic set in X such that the lower \tilde{q} -level set $L_{\tilde{q}}$ and upper r-level cut U_r of A are H-ideals of X. Then A is a doubt cubic H-ideal of X.

Proof. Let us assume that A is not a doubt cubic H-ideal of X. Then we will find that $L_{\tilde{q}}$ and U_r are not H-ideals of X. By assumption there exist $x, y, z \in X$ such that $\tilde{\mu}_A(x * z) \succ r \max\{\tilde{\mu}_A(x * (y * z)), \tilde{\mu}_A(y))\}$. Then there exists an interval

number \tilde{q} (say) such that $\tilde{\mu}_A(x*z) \succ \tilde{q} \succ r \max\{\tilde{\mu}_A(x*(y*z)), \tilde{\mu}_A(y))\}$. Thus $x*(y*z), y \in L_{\tilde{q}}$. But $\tilde{\mu}_A(x*z) \succ \tilde{q}$ i.e., $x*z \notin L_{\tilde{q}}$. So $L_{\tilde{q}}$ is not a *H*-ideals of *X*. Secondly by our accumption there exist $x \neq x \in C$ such that y

Secondly by our assumption there exist $x, y, z \in X$ such that $\nu_A(x*z) < \min\{\nu_A(x*(y*z)), \nu_A(y))\}$. Then there exists a member $r \in [0, 1]$ such that $\nu_A(x*z) < r < \min\{\nu_A(C), \nu_A(y))\}$. Thus $x*(y*z), y \in U_r$. But $\nu_A(x*z) < r$ i.e., $x*z \notin U_r$. So U_r is not a *H*-ideals of *X*. Hence the assertion.

Theorem 4.21. Any *H*-ideal of *X* can be realised as a $\tilde{\mu}$ -level doubt fuzzy *H*-ideal and ν -level doubt fuzzy *H*-ideal for some doubt cubic *H*-ideal of *X*.

Proof. Let I be a H-ideal of X and $A = \langle \tilde{\mu}_A, \nu_A \rangle$ a cubic set in X defined as

$$\tilde{\mu}_A(x) = \begin{cases} \tilde{u}, & x \in I \\ \tilde{v}, & otherwise \end{cases}$$
$$\nu_A(x) = \begin{cases} w, & x \in I \\ r, & otherwise \end{cases}$$

Where $\tilde{u}, \tilde{v} \in D[0, 1], \ \tilde{0} = [0, 0] \leq \tilde{u} \leq \tilde{v}$ and $w, r \in [0, 1], w \geq r$. By hypothesis $x * (y * z), y \in I, \forall x, y, z \in X$. Then $x * z \in I$.

Now $\tilde{\mu}_A(x * z) = \tilde{u} = r \max\{\tilde{\mu}_A(x * (y * z)), \tilde{\mu}_A(y)\}$ and $\nu_A(x * z) = w = \min\{\nu_A(x * (y * z)), \nu_A(y))\}$

If at least one x * (y * z) and y is not in I, then at least one of $\tilde{\mu}_A(x * (y * z))$ and $\tilde{\mu}_A(y)$ is equal to \tilde{v} and at least one of $\nu_A(x * (y * z))$ and $\nu_A(y)$ is equal to r so that

 $\tilde{\mu}_A(x*z) \preceq \tilde{v} = r \max\{\tilde{\mu}_A(x*(y*z)), \tilde{\mu}_A(y)\}$ and $\nu_A(x*z) \ge w = \min\{\nu_A(x*(y*z)), \nu_A(y))\}.$

Since $0 \in I$, by definition of $\tilde{\mu}_A$ and ν_A , we have $\tilde{\mu}_A(0) \leq \tilde{\mu}_A(x), \forall x \in X$ and $\nu_i(0) \geq \nu_A(x), \forall x \in X$. Therefore $A = \langle \tilde{\mu}_A, \nu_A \rangle$ is a doubt cubic *H*-ideal of *X*.

Theorem 4.22. A cubic set $A = \langle \tilde{\mu}_A, \nu_A \rangle$ of X is a doubt cubic H-ideal of X if and only if $\tilde{\mu}_A$ is a doubt fuzzy H-ideal and $\nu_A = 1 - \nu_A$ is a doubt fuzzy H-ideal of X.

Proof. Let $A = \langle \tilde{\mu}_A, \nu_A \rangle$ be a doubt cubic *H*-ideal of *X*. Then it immediately follows that $\tilde{\mu}_A$ s a doubt fuzzy *H*-ideal of *X*. Secondly $\nu_A(0) \ge \nu_A(x) \Rightarrow 1 - \nu_A(0) \le 1 - \nu_A(x) \Rightarrow \bar{\nu}_A(0) \le \bar{\nu}_A(x), \forall x \in X$ And $\nu_A(x * z) \ge \min\{\nu_A(x * (y * z))), \nu_A(y)\}$ $\Rightarrow 1 - \nu_A(x * z) \le 1 - \min\{\nu_A(x * (y * z))), \nu_A(y)\}$ $\Rightarrow \bar{\nu}_A(x * z) \le \max\{1 - \nu_A(x * (y * z))), 1 - \nu_A(y)\} = \max\{\bar{\nu}_A(x * (y * z))), \bar{\nu}_A(y)\}.$ So $\bar{\nu}_A$ is a doubt fuzzy *H*-ideal of *X*. Conversely let $\tilde{\mu}_A$ be a doubt fuzzy *H*-ideal of *X* and ν_A be a doubt fuzzy *H*-ideal of *X*. Since $\tilde{\mu}_A$ be a doubt fuzzy *H*-ideal of *X*, so $\tilde{\mu}_A(0) \leq \tilde{\mu}_A(x)$ and $\tilde{\mu}_A(x*z) \leq r \max\{\tilde{\mu}_A(x*(y*z)), \tilde{\mu}_A(y)\} \forall x, y, z \in X$. Secondly, since ν_A be a doubt fuzzy *H*-ideal of *X*, so $\bar{\nu}_A(0) \leq \bar{\nu}_A(x) \Rightarrow 1 - \nu_A(0) \leq 1 - \nu_A(x) \Rightarrow \nu_A(0) \geq \nu_A(x), \forall x \in X$ And $\bar{\nu}_A(x*z) \leq \max\{\bar{\nu}_A(x*(y*z))), \bar{\nu}_A(y)\} \Rightarrow 1 - \nu_A(x*z) \leq \max\{1 - \nu_A(x*(y*z))), 1 - \nu_A(y)\} = 1 - \min\{\nu_A(x*(y*z)), \nu_A(y)\}$ i.e., $\nu_A(x*z) \geq \min\{\nu_A(x*(y*z)), \nu_A(y)\}$ So $A = \langle \tilde{\mu}_A, \nu_A \rangle$ is a doubt cubic *H*-ideal of *X*.

Theorem 4.23. A cubic set $A = \langle \tilde{\mu}_A, \nu_A \rangle$ of X is a closed doubt cubic H-ideal of X if and only if $\tilde{\mu}_A$ is a closed doubt fuzzy H-ideal and $\nu_A = 1 - \nu_A$ is a closed doubt fuzzy H-ideal of X.

Proof. Similar to the proof of the preceding theorem.

5 Homomorphism of doubt cubic *H*-ideals of BG-algebra

Let X and Y be two BG-algebra and $\mathcal{C}(X)$ and $\mathcal{C}(Y)$ denote the family of cubic sets in X and Y respectively. A mapping $f : X \to Y$ induces two mappings $\mathcal{C}_f : \mathcal{C}(X) \to \mathcal{C}(Y)$ given by $A \mapsto \mathcal{C}_f(A)$ and $\mathcal{C}_f^{-1} : \mathcal{C}(Y) \to \mathcal{C}(X)$ given by $B \mapsto \mathcal{C}_f^{-1}(B)$, where $\mathcal{C}_f(A)$ and $\mathcal{C}_f^{-1}(B)$ are given by,

$$\mathcal{C}_{f}(\tilde{\mu}_{A})(y) \begin{cases} = r \inf\{\tilde{\mu}_{A}(x)|y=f(x)\}, & f^{-1} \neq \phi \\ = [1,1], & otherwise \end{cases}$$
$$\mathcal{C}_{f}(\nu_{A})(y) = \begin{cases} \sup\{\nu_{A}(x)|y=f(x)\}, & f^{-1} \neq \phi \\ 0, & otherwise \end{cases}$$

for all $y \in Y$.

And $\mathcal{C}_f^{-1}(\tilde{\mu}_B)(x) = \tilde{\mu}_B(f(x)), \mathcal{C}_f^{-1}(\nu_B)(x) = \mu_B(f(x))$ for all $x \in X$.

The mappings C_f and C_f^{-1} are respectively known as cubic and inverse cubic transformations induced by $f: X \to Y$. The cubic set $A = \langle \tilde{\mu}_A, \nu_A \rangle$ in X is said to have cubic property if for any subset B of X there exists $x_0 \in B$ such that $\tilde{\mu}_A(x_0) = r \inf{\{\tilde{\mu}_A(x) | x \in B\}}$ and $\nu_A(x_0) = \sup{\{\nu_A(x) | x \in B\}}$

Theorem 5.1. For a transformation $f: X \to Y$, where X and Y are BG-algebra, let $C_f: C(X) \to C(Y)$ and $C_f^{-1}: C(Y) \to C(X)$ be the cubic transformation and inverse cubic transformation respectively induced by f. (i) If $A = \langle \tilde{\mu}_A, \nu_A \rangle$ is a doubt cubic H-ideal of X, then $C_f(A)$ is a doubt cubic H-ideal of Y. (ii) If $A = \langle \tilde{\mu}_A, \nu_A \rangle$ is a doubt cubic H-ideal of Y then $C_f^{-1}(A)$ is a doubt cubic

H-ideal of X.

Proof. Let $f(x) \in f(X)$. Then there exists $x_0 \in f^{-1}(f(x))$ such that $\tilde{\mu}_A(x_0) = r \inf\{\tilde{\mu}_A(a) | a \in f^{-1}(f(x))\} \text{ and } \nu_A(x_0) = \sup\{\nu_A(a) | a \in f^{-1}(f(x))\}.$ Now $C_f(\tilde{\mu}_A)(f(0)) = r \inf{\{\tilde{\mu}_A(z) | z \in f^{-1}(f(0))\}} = \tilde{\mu}_A(0_0),$ where $0_0 \in f^{-1}(f(0))$. In particular when $0_0 = 0$, $\tilde{\mu}_A(0) \preceq \tilde{\mu}_A(x_0)$ $\Rightarrow \mathcal{C}_f(\tilde{\mu}_A)(f(0)) \preceq r \inf\{\tilde{\mu}_A(a) | a \in f^{-1}(f(x))\} = \mathcal{C}_f(\tilde{\mu}_A)(f(x))$ And $C_f(\nu_A)(f(0)) = \sup\{\nu_A(z) | z \in f^{-1}(f(0))\}$, where $0_0 \in f^{-1}(f(0))$. In particular when $0_0 = 0, \nu_A(0) \ge \nu_A(x_0)$ $\Rightarrow \mathcal{C}_f(\nu_A)(f(0)) \ge \sup\{\nu_A(a) | a \in f^{-1}(f(x))\} = \mathcal{C}_f(\nu_A)(f(x))$ Again $C_f(\tilde{\mu}_A)(f(x) * f(z)) = C_f(\tilde{\mu}_A)(f(x * z))$ $= r \inf\{\tilde{\mu}_A(x'*z') | x'*z' \in f^{-1}(f(x*z))\} = \tilde{\mu}_A(x_0*z_0)$ $\leq r \max\{\tilde{\mu}_A(x_0 * (y_0 * z_0)), \tilde{\mu}_A(y_0)\}$ $= r \max\{r \inf\{\tilde{\mu}_A(a * (b * c)) | a * (b * c) \in f^{-1}(f(x * (y * z)))\}, r \inf\{\tilde{\mu}_A(d) | d \in f^{-1}(f(x * (y * z)))\}\}$ $f^{-1}(f(y))\} = r \max\{\mathcal{C}_f(\tilde{\mu}_A)(f(x*(y*z)), \mathcal{C}_f(\tilde{\mu}_A)(f(y))\}\}$ $= r \max\{\mathcal{C}_f(\tilde{\mu}_A)(f(x) * f(y * z)), \mathcal{C}_f(\tilde{\mu}_A)(f(y))\}\}$ $= r \max\{\mathcal{C}_f(\tilde{\mu}_A)(f(x) * (f(y) * f(z))), \mathcal{C}_f(\tilde{\mu}_A)(f(y))\}\}$ And $C_f(\nu_A)(f(x) * f(z)) = C_f(\nu_A)(f(x * z))$ $= \sup\{\nu_A(x' * z') | x' * z' \in f^{-1}(f(x * z))\} = \nu_A(x_0 * z_0)$ $\geq \min\{\nu_A(x_0 * (y_0 * z_0)), \nu_A(y_0)\}$ $= \min\{\sup\{\nu_A(a*(b*c)) | a*(b*c) \in f^{-1}(f(x*(y*z)))\}, \sup\{\nu_A(d) | d \in f^{-1}(f(y))\}\}$ $= \min\{\mathcal{C}_f(\nu_A)(f(x*(y*z))), \mathcal{C}_f(\nu_A)(f(y))\}\}$ $= \min\{\mathcal{C}_f(\nu_A)(f(x) * f(y * z))), \mathcal{C}_f(\nu_A)(f(y))\}$ $= \min\{\mathcal{C}_{f}(\nu_{A})(f(x) * (f(y) * f(z))), \mathcal{C}_{f}(\nu_{A})(f(y))\}\}$ Therefore $\mathcal{C}_f(A)$ is a doubt cubic *H*-ideal of *Y*. (ii) Let $x \in X$ and $f(x) \in Y$. Now $C_f^{-1}(\tilde{\mu}_A)(0) = \tilde{\mu}_A(f(0)) \preceq \tilde{\mu}_A(f(x)) = C_f^{-1}(\tilde{\mu}_A)(x)$ and $\mathcal{C}_{f}^{-1}(\nu_{A})(0) = \nu_{A}(f(0)) \ge \nu_{A}(f(x)) = \mathcal{C}_{f}^{-1}(\nu_{A})(x)$ Again $\mathcal{C}_f^{-1}(\nu_A)(x*z) = \tilde{\mu}_A(f(x*z)) = \tilde{\mu}_A(f(x)*f(z))$ $\leq r \max\{\tilde{\mu}_A(f(x) * (f(y) * f(z))), \tilde{\mu}_A(f(y))\}$ $= r \max\{\tilde{\mu}_A(f(x) * (f(y * z))), \tilde{\mu}_A(f(y))\}$ $= r \max\{\tilde{\mu}_A(f(x \ast (y \ast z)), \tilde{\mu}_A(f(y))\}\$ $= r \max\{\mathcal{C}_{f}^{-1}(\tilde{\mu})(x * (y * z)), \mathcal{C}_{f}^{-1}(\tilde{\mu}_{A})(y)\}.$ And $C_f^{-1}(\nu_A)(x * z) = \nu_A(f(x * z)) = \nu_A(f(x) * f(z))$ $\geq \min\{\nu_A(f(x) * (f(y) * f(z))), \nu_A(f(y))\} = \min\{\nu_A(f(x) * (f(y * z)), \nu_A(f(y)))\} = \min\{\nu_A(f(x * (y * z)), \nu_A(f(y)))\} = \min\{\mathcal{C}_f^{-1}(\nu_A)(x * (y * z)), \mathcal{C}_f^{-1}(\nu_A)(y)\}.$ So $\mathcal{C}_f^{-1}(A)$ is a doubt cubic *H*-ideal of *X*.

References

- S.S. Ahn and H. D. Lee, Fuzzy subalgebras of BG-algebras, Commun. Korean Math. Soc. 19 (2) (2004), 243-251.
- [2] Y. Imai and J. Iseki, On axiom System of Propositional Calculi 15, Proc. Japan Academy, 42 (1966), 19-22.
- [3] Y. B. Jun, C. S. Kim and K. O. Yang, Cubic sets 2012, Annals of Fuzzy Mathematics and Informatics, Vol. 4 No.1, pp-83-98.
- [4] Y. B. Jun, C. S. Kim and J. B. Kang, 2011, Cubic q-ideals of BCI-algebras, 2011,
- [5] Y. B. Jun, Doubt fuzzy BCK/BCI-algebras, Soochow Journal of Mathematics, Vol. 20 No.3, 351-358, July 1994.
- [6] H. M. Khalid and B. Ahmad, Fuzzy sets and systems, Vol. 101, Issue 1, January 1999,153-158.
- [7] C. B. Kim and H. S. Kim, On BG-algebras, *Demonstratio Math.* 41 (3) (2008), 497-505.
- [8] J. Neggers and H. S. Kim, On BG-algebras, Math. Vensik, 54 (2002), 21-29.
- [9] L. A. Zadeh, Fuzzy Sets, Information and Control, 8 (1965), 338-353.
- [10] J. Zhan and Z. Tan, Soochow Journal of Mathematics, Vol.29, No. 3, pp-293-298, July 2003.