A Weaker Form of Urysohn Spaces

¹N. Nagaveni & ²D. Sheeba

^{1 & 2}Department of Mathematics, Coimbatore Institute of Technology, Coimbatore-14, Tamil Nadu, India.

Abstract: The purpose of this paper is to introduce a new type of spaces called, weakly generalized Urysohn spaces and discussed some of its basic properties. Also, the conditions for a weakly generalized Urysohn space becomes Urysohn space and g-Urysohn space have been analysed.

AMS Subject Classification: 54D10.

Key words: Urysohn space, g- Urysohn space, weakly generalized Urysohn space and weakly generalized Haussdroff space.

1. Introduction

In 1970, Levine introduced a class of closed sets called generalized closed (briefly g-closed) sets[5] in topological spaces. In 1988, Dorsett. C studied the notion of weakly Urysohn space [3]. Likewise, In 1999, Bhattacharyya et al. also contributed his study to this field of topology by introducing Pre-Urysohn spaces [8]. In 1999, Nagaveni. et al. introduced and investigated the weakly generalized closed sets[6]. In 2002, Ganster et al. studied the characteristics of semi Urysohn space[4]. In 2011, Navalagi studied some more properties of Pre- Urysohn spaces and P Urysohn spaces [7].

In this paper, we introduced weakly generalized Urysohn space. The conditions under which a weakly generalized Urysohn space coincides with Urysohn space, g-Urysohn space and weakly generalized Hausdroff spaces have been generated. Subspaces of weakly generalized Urysohn spaces are investigated. Also, introduced and investigated the notion of wgcontinuous, wg-irresolute, wg-open and quasi wgirresolute function on weakly generalized Urysohn space.

Throughout the paper (X, τ) and (Y, σ) (or simply X and Y) will always denote topological spaces. The interior and the closure of a subset A of (X, τ) are denoted by Int(A) and Cl(A) respectively.

2. Preliminaries

In this section, we list some definitions and results which are used in this sequel.

Definition: 2.1 A subset A of a space (X, τ) is called

i. generalized closed (i.e. g-closed set) [5] if $cl(A) \subset U$ whenever $A \subset U$ and U is open set.

ii. weakly generalized closed set (i.e. wg-closed set) [6] if Cl(Int(A)) ⊆ U whenever A ⊆ U and U is open in X.

The complement of g-closed set (resp. wg- closed set) is said to be g-open set (resp. wg- open set). The collection of all g-open sets (resp. wg- open set) is denoted by GO(X) (resp. WGO(X)).

Definition: 2.2 A topological space X is called

- Urysohn space (T₂' space) if every pair of distinct points x, y ∈ X, x ≠ y there exist U ∈O(X, x), V ∈ O(X, y) such that cl(U) ∩ cl(V) = Φ.
- ii. generalized Urysohn space $(g T_2' \text{ space})[11]$ if every pair of distinct points x, $y \in X$, $x \neq y$, there exist $U \in GO(X, x)$, $V \in GO(X, y)$ such that g-cl(U) \cap g-cl(V) = Φ .

Definition: 2.3 if X is said to be

- i. $g-T_1$ space[10] if for x, $y \in X$ such that $x \neq y$, there exist a generalized open set containing x but not y and a generalized open set containing y but not x.
- ii. g-T₂ space[10] if for x, $y \in X$ such that $x \neq y$, there exist a generalized open sets $U \in GO(X, x)$, $V \in GO(X, y)$ with $U \cap V = \Phi$.
- iii. wg-T₁ space if for x, $y \in X$ such that $x \neq y$, there exist a weakly generalized open set containing x but not y and a weakly generalized open set containing y but not x.
- iv. wg-T₂ space if for x, $y \in X$ such that $x \neq y$, there exist a weakly generalized open sets $U \in$ WGO(X, x), $V \in$ WGO(X, y) with $U \cap V = \Phi$.

Definition: 2.4A space X is said to be

- i. g-regular[2] if and only if for each $x \in X$ and $U \subset O(X, x)$ there exist $V \in GO(X, x)$ such that $x \in V \subset g\text{-cl}(V) \subset U$.
- ii. weakly g-regular[2] if for each point x and a regular open set U containing x, there is a gopen set V such that $x \in V \subset cl(V) \subset U$.

Definition: 2.5A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called a

- i. g-continuous [5] if $f^{-1}(V)$ is g-closed
- in X for each closed subset of V of Y.
- ii. weakly g-continuous (i.e.wg- continuous)[6] if inverse image of every open set inY iswg-open in X.

- iii. weakly g-irresolute (i.e. wg-irresolute)[6] if inverse image of every wg-open set in Yiswgopen in X.
- iv. wg-open [6] if image of every open set in X is wg-open in Y.

Remark:2.6 [6]Every α – set is wg-open set

Remark: 2.7[6] The bijection function f: $X \rightarrow Y$ be wg-open, Then for any $F \in WGC(X)$, $f(F) \in WGC(Y)$.

3. WEAKLY GENERALIZED URYSOHN SPACES

In this section, we introduce weakly generalized Urysohn Space and investigate some weaker separation axioms with weakly generalized Urysohn Space.

Definition: 3.1 The wg-closure of a subset A of X is, denoted by wg-Cl(A), defined to be the intersection of all wg-closed sets containing A.

Definition: 3.2A topological space X is called weakly generalized Urysohn space (wg – T_2' space) if every pair of distinct points x, y \in X, x \neq y there exist U \in WGO(X, x), V \in WGO(X, y) such that wg-cl(U) \cap wg-cl(V) = Φ .

Remark: 3.3Every Urysohn space is weakly generalized Urysohn space. But the converse need not be true as seen from the following example.

Example: 3.4Let $X = \{a, b, c, d\}$ and $\tau = \{X, \Phi, \{a,b\}\}$. Then $\{X, \tau\}$ is called weakly generalized Urysohn space. But it is not Urysohn Space.

Theorem: 3.5Every weakly generalized Urysohn space (wg $- T_2'$ space) is weakly generalized Hausdroff space (wg- T_2 space).

Proof:Let x, y be two distinct points of X. Since X is weakly generalized Urysohn space, there exist $U \in$ WGO(X, x), $V \in$ WGO(X, y) such that wg-cl(U) \cap wg-cl(V) = Φ . Hence U \cap V = Φ . Thus, X is weakly generalized Hausdroff space (wg-T₂ space).

Theorem: 3.6Every weakly generalized Urysohn space is weakly generalized T_1 space.

Proof:Let x, y be two distinct points of X. Since X is weakly generalized Urysohn space, there exist $U \in$ WGO(X, x), $V \in$ WGO(X, y) such that wg-cl(U) \cap wg-cl(V) = Φ . This indicates that x \notin wg-cl(V) and y \notin wg-cl(U). now wg-cl(U), wg-cl(V) \in WGC(X). Therefore, X – wg-cl(U), X – wg-cl(V) \in WGO(X) such that x \in wg-cl(V) and y \in wg-cl(U). Therefore, x \notin wg-cl(U) and y \notin wg-cl(V). Thus, X is wg-T₁ space.

Theorem: 3.7Every generalized Uyrsohn space (g- T_2' space) is weakly generalized Urysohn space (wg- T_2' space).

Proof:Let x, y be two distinct points of X. Since X is generalized Urysohn space, there exist $U \in GO(X, x)$, $V \in GO(X, y)$ such that g-cl(U) \cap g-cl(V) = Φ . Since every generalized open set is weakly generalized open set. Therefore, $U \in GO(X, x) \subseteq WGO(X, x)$ and $V \in GO(X, y) \subseteq WGO(X, y)$ such that wg-cl(U) \cap wg-cl(V) = Φ . Hence X is weakly generalized Urysohn space.

Theorem: 3.8Every generalized Hausdroff space (g- T_2 space) is weakly generalized Hausdroff space (wg- T_2 space).

Proof:Let x, y be two distinct points of X. since X is generalized Haussdroff space, there exist $U \in GO(X, x)$, $V \in GO(X, y)$ such that $U \cap V = \Phi$. Since every generalized open set is weakly generalized open set. Therefore, $U \in GO(X, x) \subseteq WGO(X, x)$ and $V \in GO(X, y) \subseteq WGO(X, y)$ such that $U \cap V = \Phi$.

Theorem: 3.9A g-regular and T_2 space is generalized Urysohn space.

Proof:Let X be g-regular and T_2 space. Since X is T_2 space, for any pair of distinct points x, $y \in X$, $x \neq y$ there exist $U \in O(X, x)$, $V \in O(X, y)$ such that $U \cap V = \Phi$. Now $X - cl(U) \in O(y)$. the g-regularity of X gives the existance of a $W \in GO(X, y)$, by the definition 2.4(i), such that $y \in W \subset gcl(W) \subset X - cl(U)$. This implies that $gcl(W) \cap cl(W) = \Phi$ which yields that $gcl(U) \cap gcl(W) = \Phi$. Since every open set is g-open set. Hence X is generalized Urysohn space.

Theorem: 3.10 A weakly g-regular and T_2 space is Urysohn space.

Proof:Let x be weakly g-regular and T_2 . Since X is T_2 for any pair of points x, $y \in X$, $x \neq y$. There exist open sets U and V containing x and y such that $U \cap V = \Phi$. Now $X - cl(U) \in O(X, y)$. The weakly g-regularity of X gives the existence of a $W \in GO(X, y)$, by the definition 2.4(ii), $y \in W \subset cl(W) \subset U$ or X - cl(U). this implies $cl(W) \cap cl(U) = \Phi$. Therefore, X is Urysohn space.

Corollary: 3.11 A weakly g-regular and T_2 space is weakly generalized Urysohn space.

Proof: It readily follows from the statement every Uryshon space is weakly generalized Urysohn space.

Definition:3.12A space X is called **almost weakly g-regular space** if for each $x \in X$ and each $U \in O(X,x)$ there exists $V \in WGO(X, x)$ such that $x \in V \subset wg$ -cl(V) $\subset U$.

Theorem: 3.13 Every almost weakly g-regular and T_2 space is weakly generalized urysohn space.

Proof:Let X be almost wg-regular and T_2 space. Let x, $y \in X$ be any two distinct points. As X is T_2 space, there exists open sets U containing x and V containing y such that $U \cap V = \Phi$. Now $X - Cl(U) \in O(X, y)$. The almost weakly g-regularity of X gives the existence of a $M \in WGO(X, y)$, by the definition 3.12, such that $y \in M \subset wg\text{-}cl(M) \subset X - Cl(U)$. This implies that $cl(U) \cap wg\text{-}cl(M) = \Phi$ which yields that wg- $cl(U) \cap wg\text{-}cl(M) = \Phi$. Since every open set is weakly generalized open set, this shows that, X is weakly generalized Urysohn space.

4. SUBSPACES OF WEAKLY GENERALIZED URYSOHN SPACE

In this section, we investigate subspaces of weakly generalized Urysohn Space.

Theorem: **4.1**Every open subspace of weakly generalized Urysohn space is weakly generalized Urysohn space.

Proof:Let Y be an open subspace of a weakly generalized Urysohn space X. Assume x and y in Y with $x \neq y$. As X is weakly generalized Urysohn space, there exist wg-open sets U containing x and V containing y such that wg-cl(U) \cap wg-cl(V) = Φ .

Lemma: 4.2In a topological space (X, τ) if $A \in WGO(X)$ and $B \in \tau^{\alpha}$, then $A \cap B \in WGO(X)$.

Proof:Given A ∈ WGO(X) ie A^c∈ WGO(X) implies that cl(int(A^c)) ⊂U ans A^c⊂ U whenever U is open in X and B ∈τ^αie., B⊂int(cl(int(B))). Now A^c∪B^c∈ WGC(X) then (A ∩ B)^c∈ WGC (X). This implies A ∩B ∈WGO(X).

Lemma: 4.3If $A \subset Y \subset X$ and $Y \in WGO(X)$, then $A \in WGO(X)$ if and only if $A \in WGO(Y)$.

The proof is obvious.

Lemma: 4.4Let $x \in X$, then $x \in wg\text{-cl}(A)$ if and only if $A \cap V \neq \Phi$, for all $V \in WGO(X, x)$.

The proof is obvious.

Lemma: 4.5 If $B \subset Y \subset X$ and $Y \in \tau^{\alpha}$, then wg-cl_Y(B) = wg-cl_X(B) $\cap Y$.

Proof:Let $y \in wg\text{-}cl_Y(B)$, so that $y \in Y$. let $V \in WGO(X, y)$, by Lemma 4.2 $V \cap Y \in WGO(X, y)$. since every α - set is a wg-open sets and $V \cap Y \subset Y \subset X$, Lemma 4.3 gives that $V \cap Y \in WGO(X, y)$. consequently, $(V \cap Y) \cap B \neq \Phi$ whence $V \cap B \neq \Phi$. So, by Lemma 4.4, $y \in wg\text{-}cl_X(B)$ which implies that $y \in wg\text{-}cl_X(B) \cap Y$. To establish the reverse inclusion, let $y \in wg-cl_X(B) \cap Y$, then $y \in wg-cl_Y(B)$, $y \in Y$. Take any $V_0 \in WGO(Y, y)$ pursuing the same reasoning as above we obtain $V_0 \in WGO(X, y)$. hence by the Lemma 4.4, $V_0 \cap B \neq \Phi$. Hence $y \in wg-cl_Y(B)$. Therefore, $wg-cl_X(B) \cap Y \subset wg-cl_Y(B)$. Hence $wg-cl_Y(B) = wg-cl_X(B) \cap Y$.

Theorem: 4.6 Every α - subspace of a weakly generalized Urysohn space (X, τ) is weakly generalized Urysohn space.

Proof:Let Y ⊂ X and Y ∈τ^α. Let x, y ∈ Y and x ≠ y. since Y ⊂ X, x, y are also distinct points of X. since X is weakly generalized Urysohn space, there exist U ∈ WGO(X, x), V ∈ WGO(X, y) such that wg-cl_X(U) ∩wg-cl_X(V) =Φ. Since Y ∈τ^α, by Lemma 4.2, U ∩ Y ∈ WGO(X, x) and V ∩ Y ∈ WGO(X, y). also by Lemma 4.5, wg-cl_Y(U∩ Y) ∩wg-cl_Y(V∩ Y) = (wgcl_X(U) ∩ Y) ∩ (wg-cl_X(V ∩ Y) ∩ Y) = ((wg-cl_X(U ∩Y) ∩wg-cl_X(V ∩ Y)) ∩ Y) ⊂ (wg-cl_X(U ∩ Y) ∩wgcl_X(V ∩ Y)) ⊂ (wg-cl_X(U) ∩ Wg-cl_X(V)) ∩ Y ⊂wgcl_X(U) ∩wg-cl_X(V) = Φ. Therefore, Y is weakly generalized Urysohn space.

Remark: 4.7 The property being weakly generalized Urysohn space is not hereditary as shown by the following example.

Example: 4.8 Let X be the same topological space of Example 3.4. Then $\{X, \tau\}$ is called weakly generalized Urysohn space but the subspace $\{b, c\}$ of X is not weakly generalized Urysohn space.

5. FUNCTIONS WITH WEAKLY GENERALIZED URYSOHN SPACE

In this section, we investigate some functions with weakly generalized Urysohn Space.

Theorem: 5.1 If Y is a weakly generalized Urysohn space and f: $X \rightarrow Y$ is a wg- irresolute injective, then X is weakly generalized Urysohn space.

Proof: Let x and y be two distinct points of X. Since f is injective, $f(x) \neq f(y)$ in Y. Since Y is weakly generalized Urysohn space, there exists weakly generalized open sets U and V containing f(x) and f(y) respectively. Since f is wg-irresolute, there exist $f^{-1}(U)$ and $f^{-1}(V)$ are weakly generalized open sets in X containing x and y respectively. Thus X is weakly generalized Urysohn space.

Theorem:5.2 If Y is aHausdroff space and f: $X \rightarrow Y$ is bothwg- continuous and injective, then X is weakly generalized Urysohn space.

Proof: Let x and y be two distinct points of X. Since f is injective, $f(x) \neq f(y)$ in Y. Since Y is Hausdroff space, there exists open sets U and V containing f(x) and f(y) respectively. Since f is wg- continuous, there exist $f^{-1}(U)$ and $f^{-1}(V)$ are weakly generalized open

sets in X containing x and y respectively. Thus X is weakly generalized Urysohn space.

Theorem: 5.3If the bijection f: $X \rightarrow Y$ is wg-open and X is weakly generalized Urysohn space, then Y is weakly generalized Urysohn space.

Proof: Let $y_1, y_2 \in Y$ and $y_1 \neq y_2$. Since f is bijective f⁻¹ $(y_1), f^{-1}(y_2) \in X$ and $f^{-1}(y_1) \neq f^{-1}(y_2)$. The weakly generalized Urysohn property of X gives the existence of sets $U \in WGO$ (f⁻¹(y₁)), $V \in WGO$ (f⁻¹(y₂)) with $wg-cl_x(U) \cap wg-cl_x(V) = \Phi$. Here, $wg-cl_x(U)$ is wgclosed sets in X. The bijectivity and wg-openess of f together then indicate, by Remark 2.7, that f (wg $cl_x(U) \in WGC(Y)$. Again, from $U \subset wg-cl_x(U)$ it follows that $f(U) \subset f(wg-cl_x(U))$. Since wg-clousure respects inclusion, wg-cl_v(f(U)) \subset wgcl_v(f(wg-cl_x(U)) = $f(wg-cl_x(U))$. In like manner, $wg-cl_y(f(V)) \subset f(wg-cl_y(V))$ $cl_x(V)$). Therefore, by the injectivity of f, wg- $cl_v(f(U))$ $\bigcap wg-cl_v(f(V)) \subset f(wg-cl_x(U)) \cap f(wg-cl_x(V)) = f$ $[(wg-cl_x(U)) \cap (wg-cl_x(V))] = f(\Phi) = \Phi$. Thus wgopenness of f gives existence of two sets $f(U) \in$ WGO(Y, y_1), $f(V) \in WGO(Y, y_2)$ with wg-cl_v(f(U)) \bigcap wg-cl_v(f(V)) = Φ . Hence Y is weakly generalized urysohn space.

Definition: 5.4A function f: $X \rightarrow Y$ is quasi-weakly generalized irresolute(qwgi) if for each $x \in X$ and for each $V \in WGO(f(x))$ there exists $U \in WGO(x)$ such that $f(U) \subset wg\text{-}cl_y(f(U))$.

Theorem: 5.5If Y is weakly generalized Urysohn space and f: $X \rightarrow Y$ is quasi-weakly generalized irresolute, then X is wg-T₂ space.

Proof: Since f is injective, for any pair of distinct points $x_1, x_2 \in X$, $f(x_1) \neq f(x_2)$. The weakly generalized Urysohn property indicates that there exist $V_i \in WGO$ (Y, $f(x_i)$), i = 1, 2 such that $wg\text{-}cl_y(V_1) \cap wg\text{-}cl_y(V_2) = \Phi$. Hence $f^{-1}(wg\text{-}cl_y(V_1)) \cap f^1(wg\text{-}cl_y(V_2)) = \Phi$. Since f is quasi-weakly generalized irresolute, there exists $U_i \in WGO$ (X, x_i), i = 1, 2 such that $f(U_i) \subset wg\text{-}cl_y(V_i)$, i = 1, 2. It, then, follows that $U_i \subset f^{-1}(wg\text{-}cl_y(V_i))$, i = 1, 2. Hence $U_1 \cap U_2 \subset f^{-1}(wg\text{-}cl_y(V_1)) \cap f^1(wg\text{-}cl_y(V_2)) = \Phi$. This implies that X is wg-T₂ space.

REFERENCES

[1]. K. Balachandran, P. Sundaram and H. Maki, "On generalized continuous

maps intopological spaces", Mem. Fac. Sci. Kochi Univ. Math. 12(1991) 5-13.

[2]. S. Balasubramanian, "On g- Separation axioms", Asian Journal of current

Engg. & Math. 1:1(2012), 9-14.

[3]. C. Dorsett, "Generalized Urysohn spaces", *Revistacolombiana de mate-Maticas*, volxxii, (1988) 149 -160

[4]. J. Dontchev and M. Ganster, "More on Semi- Urysohnspaces", Bull.

Malaysian Math.Sc. Soc. (second series)25 (2002), 129 - 136.

[5]. N. Levine, "Generalized closed sets in topology", *Rend. Circ. Mat.*

Palermo, 19(2) (1970),89 - 96.

[6]. N. Nagaveni and P. Sundaram "On weakly generalized continuous maps,

weaklygeneralized closed maps andweakly generalized irresolute maps

in topological spaces", Far. East J. Math. Sci. 6(6)(1998), 903-912.

[7]. G. Navalagi, "some more properties of Pre Urysohnspace", *Int. J. Engg.*

Comp. Sci. andMath.2:1(2011) 43-47.

[8]. R. Paul and P. Bhattacharyya, "On Pre-Urysohn spaces", Bull. Malaysian

Math. Sci.Soc.(2) 22 (1999), 23 - 34.

[9]. D. A. Rose, "Weak continuity and strongly closed sets", Int.J. Math.

and Math. Sci. 7: 4 (1984) 809 -816.

[10]. S. I. Mahmood and A. M Ebrahem, "S*separationAxioms", *Iraqi. J.*

Sci.51: 1 (2010) 145-15.

[11]. D. Sheeba and N. Nagaveni, "Study on some topological generalized closed graphs", (Submitted).