A new strong convergence Theorem for Lipschitzian strongly pseudocontractive Mappings in a real Banach space

Ashish Nandal ${ }^{1}$ and Renu Chugh ${ }^{2}$
1,2 Department of Mathematics, Maharshi Dayanand University, Rohtak-124001(Haryana)

Abstract

In this paper we prove the strong convergence of a new iteration scheme to a common fixed point of a finite family of Lipschitz strongly pseudocontractive mappings in a real Banach space. Result proved in this paper represents an extension and refinement of the previously known results in this area.

Keywords: Iteration scheme, strongly pseudocontractive maps, L- Lipschitzian maps, Banach spaces

I. Introduction

Let E be a real Banach space and $\mathrm{C} \subseteq \mathrm{E}$ a non empty subset. A mapping $T: \mathrm{C} \rightarrow \mathrm{C}$ is said to be strongly pseudocontractive if there exists $t>1$ such that the inequality
$\square x-y \square \triangleleft(1+t)(x-y)-\operatorname{tr}(T x-T y) \square$
holds for all $\mathrm{x}, \mathrm{y} \in \mathrm{C}$ and $\mathrm{r}>0$. If $t=1$, then T is called pseudocontractive.
A mapping $\mathrm{T}: \mathrm{C} \rightarrow \mathrm{C}$ is called L - Lipschitzian, if there exists $\mathrm{L}>0$ such that
$\square T x-T y \square \leq L \square x-y \square$
for all $\mathrm{x}, \mathrm{y} \in \mathrm{C}$.
In 2000, Noor [4] gave the following three-step iterative scheme (or Noor iteration) for solving nonlinear operator equations in uniformly smooth Banach spaces.
Let C be a nonempty convex subset of E and let $T: \mathrm{C} \rightarrow \mathrm{C}$ be a mapping. For a given $\mathrm{x}_{0} \in \mathrm{C}$, compute the sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ by the iterative schemes

$$
\left\{\begin{array}{l}
x_{n+1}=\left(1-a_{n}\right) x_{n}+a_{n} T y_{n}, \tag{1.3}\\
y_{n}=\left(1-b_{n}\right) x_{n}+b_{n} T z_{n}, \\
z_{n}=\left(1-c_{n}\right) x_{n}+c_{n} T x_{n},
\end{array} \quad \mathrm{n} \geq 0\right.
$$

where $\left\{a_{n}\right\}_{n=0}^{\infty},\left\{b_{n}\right\}_{n=o}^{\infty}$ and $\left\{c_{n}\right\}_{n=0}^{\infty}$ are three real sequences in [0,1] satisfying some conditions.
If $c_{n}=0$, then (1.3) reduces to:

$$
\left\{\begin{array}{l}
x_{n+1}=\left(1-a_{n}\right) x_{n}+a_{n} T y_{n}, \tag{1.4}\\
y_{n}=\left(1-b_{n}\right) x_{n}+b_{n} T x_{n},
\end{array} \quad \mathrm{n} \geq 0\right.
$$

where $\left\{a_{n}\right\}_{n=0}^{\infty}$ and $\left\{b_{n}\right\}_{n=o}^{\infty}$ are two real sequence in [0,1] satisfying some conditions. Equation (1.4) is called the two-step (or Ishikawa iterative process) introduced by Ishikawa [8].
If $c_{n}=0$ and $b_{n}=0$, then (1.3) reduces to:

$$
\begin{equation*}
\left\{x_{n+1}=\left(1-a_{n}\right) x_{n}+a_{n} T x_{n}, \quad \mathrm{n} \geq 0\right. \tag{1.5}
\end{equation*}
$$

which is called Mann iterative scheme introduced by Mann [5].
In 2004, Rhoades and Şoltuz [9], introduced a multistep iterative algorithm by

$$
\left\{\begin{array}{l}
x_{0} \in C, \tag{1.6}\\
x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T y_{n}^{1}, \\
y_{n}^{i}=\left(1-\beta_{n}^{i}\right) x_{n}+\beta_{n}^{i} T y_{n}^{i+1}, \\
y_{n}^{k-1}=\left(1-\beta_{n}^{k-1}\right) x_{n}+\beta_{n}^{k-1} T x_{n},
\end{array} \quad \mathrm{n} \geq 0\right.
$$

By taking $\mathrm{k}=3$ and $\mathrm{k}=2$ in (1.6) we obtain the well-known Noor [4] and Ishikawa[8] iterative schemes, respectively.
In 2006, Rafiq [3] introduced the following modified three-step iterative scheme and used it to approximate the unique common fixed point of a family of strongly pseudo contractive operators.
Let $T_{1}, T_{2}, T_{3}: \mathrm{C} \rightarrow \mathrm{C}$ be three given mappings. For a given $\mathrm{x}_{0} \in \mathrm{C}$, compute the sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ by the iterative scheme

$$
\left\{\begin{array}{l}
x_{n+1}=\left(1-a_{n}\right) x_{n}+a_{n} T_{1} y_{n}, \tag{1.7}\\
y_{n}=\left(1-b_{n}\right) x_{n}+b_{n} T_{2} z_{n}, \\
z_{n}=\left(1-c_{n}\right) x_{n}+c_{n} T_{3} x_{n},
\end{array} \quad \mathrm{n} \geq 0\right.
$$

Observe that if $T_{1}=T_{2}=T_{3}=T$,then (1.7) reduces to (1.3).
In this paper, we shall employ the following iterative scheme, which is called a modified multi-step iterative scheme:

$$
\left\{\begin{array}{l}
x_{0} \in C, \tag{1.8}\\
x_{n+1}=\left(1-\alpha_{1 n}\right) x_{n}+\alpha_{1 n} T_{1} y_{1 n}, \\
y_{j n}=\left(1-\alpha_{(j+1) n}\right) x_{n}+\alpha_{(j+1) n} T_{j+1} y_{(j+1) n}, \\
y_{(k-1) n}=\left(1-\alpha_{k n}\right) x_{n}+\alpha_{k n} T_{k} x_{n},
\end{array} \quad \mathrm{n} \geq 0\right.
$$

where $\mathrm{j}=1,2,3, \ldots, \mathrm{k}-2$ and $\left\{\alpha_{i n}\right\}_{n=1}^{\infty}$ is a sequence in $[0,1]$ for each $\mathrm{i}=1,2, \ldots, \mathrm{k}$.
Observe that if, $T_{1}=T_{2}=T_{3}=\ldots=T_{k}=T$ then (1.8) reduces to (1.6).
It may be noted that the iteration schemes (1.3)-(1.7) may be viewed as special cases of (1.8).

II. Preliminaries

We shall make use of following lemma
Lemma 1. [6] If σ is a real number such that $\sigma \in[0,1)$, and $\left\{\varepsilon_{n}\right\}_{n=0}^{\infty}$ is a sequence of nonnegative numbers such that $\lim _{n \rightarrow \infty} \varepsilon_{n}=0$, then, for any sequence of positive numbers $\left\{u_{n}\right\}_{n=0}^{\infty}$ satisfying

$$
u_{n+1}=\sigma u_{n}+\varepsilon_{n}, \forall n \in \square,
$$

we have $\lim _{n \rightarrow \infty} u_{n}=0$.
Remark 1 We observe that inequality (1.1) is equivalent to the following one:
T is strongly pseudocontractive with constant $\mathrm{r} \in(0,1)$ if and only if for all $\mathrm{x}, \mathrm{y} \in \mathrm{C}$, the following inequality holds:

$$
\square x-y \square \measuredangle x-y+s[(I-T-r I) x-(I-T-r I) y] \square \text { for all } \mathrm{s}>0 .
$$

For rest of the paper, $L_{i} \geq 1$ denotes the Lipschitz constant of T_{i} and $\mathrm{L}=\max _{1 \leq i \leq k}\left\{L_{i}\right\}$.

III. Main Results

Theorem 3.1. Let C be a nonempty closed convex subset of a real Banach space E . Let $\left\{T_{i}: \mathrm{i}=1,2 \ldots, \mathrm{k}\right\}: \mathrm{C} \rightarrow \mathrm{C}$ be a finite family of Lipschitzian strongly pseudocontractive mappings with Lipschitz constant $\left\{L_{i}: i=1,2, \ldots, k\right\}$. Suppose that $\mathrm{F}=\bigcap_{i=1}^{k} \operatorname{Fix}\left(T_{i}\right) \neq \Phi$. Let the sequence defined by (1.8) satisfying the condition: $0<a \leq \alpha_{2 n} \leq \alpha_{1 n} \leq r\left[2\left\{\left(1+L^{k}\right)(3-r+L)+L\right\}\right]^{-1}$

Where $\mathrm{L}=\max _{1 \leq i \leq k}\left\{L_{i}\right\}$ and $\mathrm{a}>0$ is a constant. Then $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ converges strongly to unique common fixed point of $\left\{T_{\mathrm{i}}\right.$: $\mathrm{i}=1,2, \ldots, \mathrm{k}\}$.
Proof. Assume that $\mathrm{p} \in \mathrm{F}=\bigcap_{i=1}^{k} \operatorname{Fix}\left(T_{i}\right)$, using the fact the T_{i} is strongly pseudocontractive for each $\mathrm{i}=1,2, \ldots, \mathrm{k}$, we obtain $\mathrm{F}=\bigcap_{i=1}^{k} \operatorname{Fix}\left(T_{i}\right)=\mathrm{p} \neq \Phi$.
By (1.8), we have

$$
\begin{aligned}
\square y_{(k-1) n}-p & \boxminus \square\left(1-\alpha_{k n}\right)\left(x_{n}-p\right)+\alpha_{k n}\left(T_{k} x_{n}-p\right) \square \\
& \leq\left(1-\alpha_{k n}\right) \square x_{n}-p \square+\alpha_{k n} \square T_{k} x_{n}-p \square \\
& \leq\left[1+\alpha_{k n}(L-1)\right] \square x_{n}-p \square \\
& \leq L \square x_{n}-p \square
\end{aligned}
$$

and

$$
\begin{aligned}
\square y_{(k-2) n}-p \square & \square \square\left(1-\alpha_{(k-1) n}\right)\left(x_{n}-p\right)+\alpha_{(k-1) n}\left(T_{(k-1)} y_{(k-1) n}-p\right) \square \\
& \leq\left(1-\alpha_{(k-1) n}\right) \square x_{n}-p \square+\alpha_{(k-1) n} L \square y_{(k-1) n}-p \square \\
& \leq\left(1-\alpha_{(k-1) n}\right) \square x_{n}-p \square+\alpha_{(k-1) n} L^{2} \square x_{n}-p \square \\
& \leq L^{2} \square x_{n}-p \square
\end{aligned}
$$

By induction, we obtain

$$
\begin{align*}
\square y_{1 n}-p \square & \leq\left(1-\alpha_{2 n}\right) \square x_{n}-p \square+\alpha_{2 n} \square T_{2} y_{2 n}-p \square \\
& \leq L^{k-1} \square x_{n}-p \square \tag{3.1}
\end{align*}
$$

It follows from (3.1) that

$$
\begin{align*}
\square x_{n}-T_{1} y_{1 n} & \square \measuredangle x_{n}-p \square+\square p-T_{1} y_{1 n} \square \measuredangle x_{n}-p \square+L \square y_{1 n}-p \square \\
& \leq\left(1+L^{k}\right) \square x_{n}-p \square \tag{3.2}
\end{align*}
$$

and

$$
\begin{align*}
\square T_{1} x_{n+1}-T_{1} y_{1 n} & \square \\
& \leq L \square x_{n+1}-y_{1 n} \square \\
& \leq L \square x_{n}-y_{1 n}+\alpha_{1 n}\left(T_{1} y_{1 n}-x_{1 n}\right) \square+L \alpha_{1 n} \square T_{1} y_{1 n}-x_{n} \square \\
& \leq L \square \alpha_{2 n}\left(x_{n}-T_{2} y_{2 n}\right) \square+L \alpha_{1 n}\left(1+L^{k}\right) \square x_{n}-p \square \tag{3.3}\\
& \leq \alpha_{2 n} L \square x_{n}-T_{2} y_{2 n} \square+\alpha_{1 n} L\left(1+L^{k}\right) \square x_{n}-p \square \\
& \leq \alpha_{2 n} L\left(1+L^{k-1}\right) \square x_{n}-p \square+\alpha_{1 n} L\left(1+L^{k}\right) \square x_{n}-p \square
\end{align*}
$$

By (1.8), we have

$$
\begin{align*}
x_{n}= & x_{n+1}+\alpha_{1 n} x_{n}-\alpha_{1 n} T_{1} y_{1 n} \\
= & x_{n+1}+2 \alpha_{1 n} x_{n}-\alpha_{1 n} x_{n}+r \alpha_{1 n} x_{n}-r \alpha_{1 n} x_{n}-\alpha_{1 n} T_{1} y_{1 n} \\
& +\alpha_{1 n} T_{1} x_{n+1}-\alpha_{1 n} T_{1} x_{n+1} \\
= & x_{n+1}+2 \alpha_{1 n}\left[x_{n+1}+\alpha_{1 n} x_{n}-\alpha_{1 n} T_{1} y_{1 n}\right]-\alpha_{1 n} x_{n}+r \alpha_{1 n} x_{n} \\
& -r \alpha_{1 n}\left[x_{n+1}+\alpha_{1 n}-\alpha_{1 n} T_{1} y_{1 n}\right] \\
& -\alpha_{1 n} T_{1} y_{1 n}+\alpha_{1 n} T_{1} x_{n+1}-\alpha_{1 n} T_{1} x_{n+1} \\
= & \left(1+\alpha_{1 n}\right) x_{n+1}+\alpha_{1 n}\left(I-T_{1}-r I\right) x_{n+1}-(1-r) \alpha_{1 n} x_{n} \tag{3.4}\\
& +(2-r) \alpha_{1 n}^{2}\left(x_{n}-T_{1} y_{1 n}\right)+\alpha_{1 n}\left(T_{1} x_{n+1}-T_{1} y_{1 n}\right)
\end{align*}
$$

Observe that

$$
\begin{equation*}
p=\left(1+\alpha_{1 n}\right) p+\alpha_{1 n}\left(I-T_{1}-r I\right) p-(1-r) \alpha_{1 n} p \tag{3.5}
\end{equation*}
$$

Together with (3.4) and (3.5), we obtain

$$
\begin{align*}
x_{n}-p= & \left(1+\alpha_{1 n}\right)\left(x_{n+1}-p\right)+\alpha_{1 n}\left[\left(I-T_{1}-r I\right) x_{n+1}\right. \\
& \left.-\left(I-T_{1}-r I\right) p\right]-(1-r) \alpha_{1 n}\left(x_{n}-p\right) \tag{3.6}\\
& +(2-r) \alpha_{1 n}^{2}\left(x_{n}-T_{1} y_{1 n}\right)+\alpha_{1 n}\left(T_{1} x_{n+1}-T_{1} y_{1 n}\right)
\end{align*}
$$

It follows from Remark 1 and (3.6) that

$$
\begin{aligned}
\square x_{n}-p \square & \geq\left(1+\alpha_{1 n}\right) \square\left(x_{n+1}-p\right)+\frac{\alpha_{1 n}}{1+\alpha_{1 n}}\left[\left(I-T_{1}-r I\right) x_{n+1}\right. \\
& \left.\quad-\left(I-T_{1}-r I\right) p\right] \square-(1-r) \alpha_{1 n} \square x_{n}-p \square \\
\quad & -(2-r) \alpha_{1 n}^{2} \square x_{n}-T_{1} y_{1 n} \square-\alpha_{1 n} \square T_{1} x_{n+1}-T_{1} y_{1 n} \square \\
\quad \geq & \left(1+\alpha_{1 n}\right) \square x_{n+1}-p \square-(1-r) \alpha_{1 n} \square x_{n}-p \square \\
& \quad-(2-r) \alpha_{1 n}^{2} \square x_{n}-T_{1} y_{1 n} \square-\alpha_{1 n} \square T_{1} x_{n+1}-T_{1} y_{1 n} \square
\end{aligned}
$$

This implies that

$$
\begin{align*}
\square x_{n+1}-p \square \leq & \left(\frac{1}{1+\alpha_{1 n}}\right) \square x_{n+1}-p \square+\frac{(1-r) \alpha_{1 n}}{1+\alpha_{1 n}} \square x_{n}-p \square \\
& +\frac{(2-r) \alpha_{1 n}^{2}}{1+\alpha_{1 n}} \square x_{n}-T_{1} y_{1 n} \square+\frac{\alpha_{1 n}}{1+\alpha_{1 n}} \square T_{1} x_{n+1}-T_{1} y_{1 n} \square \tag{3.7}
\end{align*}
$$

We observe that

$$
\begin{equation*}
1 \leq 1+\alpha_{1 n}^{3}=1+\alpha_{1 n}^{3}+\alpha_{1 n}^{2}-\alpha_{1 n}^{2}=\left(1+\alpha_{1 n}\right)\left(1-\alpha_{1 n}+\alpha_{1 n}^{2}\right) \tag{3.8}
\end{equation*}
$$

Using (3.8) in (3.7), we obtain

$$
\begin{align*}
& \square x_{n+1}-p \square \leq\left(1-\alpha_{1 n}+\alpha_{1 n}^{2}\right) \square x_{n}-p \square+(1-r) \alpha_{1 n} \square x_{n}-p \square \tag{3.9}\\
& \quad+(2-r) \alpha_{1 n}^{2} \square x_{n}-T_{1} y_{1 n} \square+\alpha_{1 n} \square T_{1} x_{n+1}-T_{1} y_{1 n} \square
\end{align*}
$$

Using (3.2) and (3.3) in (3.9), we obtain

$$
\begin{aligned}
\square x_{n+1}-p \square \leq & \left(1-\alpha_{1 n}+\alpha_{1 n}^{2}\right) \square x_{n}-p \square+(1-r) \alpha_{1 n} \square x_{n}-p \square \\
& +(2-r) \alpha_{1 n}^{2}\left(1+L^{k}\right) \square x_{n}-p \square+\alpha_{1 n} \alpha_{2 n} L\left(1+L^{k-1}\right) \square x_{n}-p \square \\
& +\alpha_{1 n}^{2} L\left(1+L^{k}\right) \square x_{n}-p \square \\
\leq & \left(1-r \alpha_{1 n}\right) \square x_{n}-p \square+\alpha_{1 n}^{2}\left[\left(1+L^{k}\right)(2-r)\right. \\
& \left.+1+L\left(1+L^{k}\right)\right] \square x_{n}-p \square+\alpha_{1 n} \alpha_{2 n} L\left(1+L^{k-1}\right) \square x_{n}-p \square \\
\leq & \left(1-\frac{r \alpha_{1 n}}{2}\right) \square x_{n}-p \square+\alpha_{1 n}^{2}\left[\left(1+L^{k}\right)(L+2-r)\right. \\
& +1] \square x_{n}-p \square+\alpha_{1 n} \alpha_{2 n} L\left(1+L^{k-1}\right) \square x_{n}-p \square \\
& -\frac{r \alpha_{1 n}}{2} \square x_{n}-p \square \\
\leq & \left(1-\frac{r a}{2}\right) \square x_{n}-p \square+\alpha_{1 n}\left[\alpha_{1 n}\left\{\left(1+L^{k}\right)(3-r+L)+L\right\}\right. \\
& \left.-\frac{r}{2}\right] \square x_{n}-p \square \\
\leq & \left(1-\frac{r a}{2}\right) \square x_{n}-p \square
\end{aligned}
$$

Set $u_{n+1}=\square x_{n}-p \square \varepsilon_{n}=0$ and $\sigma=1-\frac{r a}{2}$
Applying lemma 1, we obtain $\square x_{n}-p \square \rightarrow 0$ as $n \rightarrow \infty$.
This completes the proof.

Acknowledgement

The work is financially supported by the Council for Scientific and Industrial Research (CSIR), New Delhi.

References

[1] C. E. Chidume, Approximation of fixed points of strongly pseudo-contractive mappings, Proc. Amer. Math. Soc. 120 (1994), 545-551
[2] C.E. Chidume, Convergence theorems for strongly pseudocontractive and strongly accretive nonlinear maps, J. Math. Anal. Appl. 228 (1998),254-264.
[3] A. Rafiq, Modified Noor iterations for nonlinear equations in Banach spaces, Applied Mathematics and Computation 182 (2006), 589-595.
[4] M. A . Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl. 251 (2000),217-229.
[5] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953),506-510.
[6] V. Berinde, Iterative Approximation of Fixed Points , Springer, Berlin (2007).
[7] N. Hussain, R. Chugh, V. Kumar, A. Rafiq, On the rate of convergence of Kirk-type iterative schemes. J. Appl. Math. 2012, Article ID 526503 (2012)
[8] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc. 149 (1974),147-150.
[9] B.E. Rhoades, S.M. Ssoltuz, The equivalence between Mann-Ishikawa iterations and multistep iteration, Nonlinear Analysis, 58(2004), 219-228.
[10] T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan 18/19(1967), 508-520.
[11] R. Chugh, V. Kumar, Convergence of SP iterative scheme with mixed errors for accretive Lipschitzian and strongly accretive Lipschitzian operators in Banach space. Int. J. Comput. Math. (2013).

