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Abstract 

 In this paper we prove the strong convergence of a new iteration scheme to a common fixed point of a finite family 

of Lipschitz strongly pseudocontractive mappings in a real Banach space. Result proved in this paper represents an 

extension and refinement of the previously known results in this area.  
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I. Introduction 

 

Let E be a real Banach space and C   E a non empty subset. A mapping T: C  C is said to be strongly pseudo-

contractive if there exists t ˃ 1 such that the inequality 

(1 )( ) ( )x y t x y tr Tx Ty                                                                                                                              (1.1) 

holds for all x, yC and r ˃ 0. If t=1, then T is called pseudocontractive.    

A mapping T: C  C is called L- Lipschitzian , if there exists L > 0 such that  

Tx Ty L x y                                                                                                                                                  (1.2) 

for all x, yC. 

In 2000, Noor [4] gave the following three-step iterative scheme (or Noor iteration) for solving nonlinear operator 

equations in uniformly smooth Banach spaces. 

Let C be a nonempty convex subset of E and let T: C  C be a mapping. For a given x0C, compute the sequence

 
0n n

x



 by the iterative schemes 

                                                              

1 (1 ) ,

(1 ) ,

(1 ) ,

n n n n n

n n n n n

n n n n n

x a x a Ty

y b x b Tz

z c x c Tx

   


  
   

           n≥0                                                      (1.3)     

where 
0n n

a



 , n n o

b



 and  

0n n
c




 are three real sequences in [0,1] satisfying some conditions. 

If cn =0, then (1.3) reduces to: 

 

                                                                  
1 (1 ) ,

(1 ) ,

n n n n n

n n n n n

x a x a Ty

y b x b Tx

   


  
           n≥0                                                     (1.4)                    

                                                                                                                                                                                        

where  
0n n

a



and  n n o

b



 are two real sequence in [0,1] satisfying some conditions. Equation (1.4) is called the 

two-step (or Ishikawa iterative process) introduced by Ishikawa [8]. 

If cn =0 and bn =0, then (1.3) reduces to: 

                                                                   1 (1 ) ,n n n n nx a x a Tx                n≥0                                                     (1.5) 

which is called Mann iterative scheme introduced by Mann [5]. 

In 2004, Rhoades and Şoltuz [9], introduced a multistep iterative algorithm by  
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       n≥0                                                                (1.6)              

 By taking k = 3 and k = 2 in (1.6) we obtain the well-known Noor [4] and Ishikawa[8] iterative schemes, 

respectively. 

In 2006, Rafiq [3] introduced the following modified three-step iterative scheme and used it to approximate the 

unique common fixed point of a family of strongly pseudo contractive operators. 

Let 
1 2 3, ,T T T : C  C be three given mappings. For a given x0C, compute the sequence  

0n n
x




by the iterative 

scheme 

                                                     

1 1

2

3

(1 ) ,

(1 ) ,

(1 ) ,

n n n n n

n n n n n

n n n n n

x a x a T y

y b x b T z

z c x c T x

   


  
   

            n≥0                                                                (1.7) 

Observe that if 1 2 3T T T T   ,then (1.7) reduces to (1.3). 

In this paper, we shall employ the following iterative scheme, which is called a modified multi-step iterative 

scheme: 

                                            

0

1 1 1 1 1

( 1) ( 1) 1 ( 1)

( 1)

,

(1 ) ,

(1 ) ,

(1 ) ,

n n n n n

jn j n n j n j j n

k n kn n kn k n

x C

x x T y

y x T y

y x T x

 

 

 



   






  


  

   

  n≥0                                                                (1.8) 

where j=1,2,3,….,k-2 and  
1in n





 is a sequence in [0,1] for each i=1,2,…,k. 

Observe that if, 1 2 3 ... kT T T T T      then (1.8) reduces to (1.6). 

It may be noted that the iteration schemes (1.3)-(1.7) may be viewed as special cases of (1.8). 

 

II. Preliminaries 

 

We shall make use of following lemma  

Lemma 1. [6] If   is a real number such that  ∈ [0, 1), and  
0n n





  is a sequence of nonnegative numbers such 

that limn n   = 0, then, for any sequence of positive numbers  
0n n

u



  satisfying 

                              1 , ,n n nu u n        

we have lim 0n nu   . 

Remark 1 We observe that inequality (1.1) is equivalent to the following one:  

T is strongly pseudocontractive with constant r   (0,1) if and only if for all x, y C, the following inequality holds: 

                                             x y x y s I T rI x I T rI y               for all s>0. 

For rest of the paper, Li   1 denotes the Lipschitz constant of Ti and L=  1max i k iL   . 

 

III. Main Results 

 

Theorem 3.1. Let C be a nonempty closed convex subset of a real Banach space E. Let {Ti: i=1,2…,k}: C  C be a 

finite family of Lipschitzian strongly pseudocontractive mappings with Lipschitz constant {Li:i=1,2,…,k}. Suppose 

that F=
1

( )
k

i

i

Fix T


  . Let the sequence defined by (1.8) satisfying the condition: 

   
1

2 10 2 1 3k

n na r L r L L 
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Where L=  1max i k iL  and a>0 is a constant. Then {xn} converges strongly to unique common fixed point of {Ti: 

i=1,2,…,k}. 

Proof.  Assume that p ∈F=
1

( )
k

i

i

Fix T


  , using the fact the Ti is strongly pseudocontractive for each i=1,2,…,k, we 

obtain F=
1

( )
k

i

i

Fix T


 =p    . 

By (1.8), we have 

         ( 1) (1 )( ) ( )k n kn n kn k ny p x p T x p            

                               

(1 )

1 ( 1)

kn n kn k n

kn n

n

x p T x p

L x p

L x p

 



    

   

 

   

 

 

  

and  

         ( 2) ( 1) ( 1) ( 1) ( 1)(1 )( ) ( )k n k n n k n k k ny p x p T y p               

                               

( 1) ( 1) ( 1)
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L x p

 

 

  

 

    

    

 

   

   

 

  

By induction, we obtain  

               1 2 2 2 2(1 )n n n n ny p x p T y p             

                               
1k

nL x p                                                                                                                            (3.1)    

It follows from (3.1) that  

            
1 1 1 1 1n n n n n nx T y x p p T y x p L y p                    

                               (1 )k

nL x p                                                                                                                        (3.2) 

and 

       1 1 1 1 1 1n n n nT x T y L x y        
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2 2 2 1

1

2 1
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                                                                    (3.3) 

By (1.8), we have  

          1 1 1 1 1n n n n n nx x x T y     
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1 1 1 1 1 1

2

1 1 1 1 1 1 1 1

(1 ) ( ) (1 )

(2 ) ( ) ( )

n n n n n n

n n n n n n

x I T rI x r x

r x T y T x T y

  

 

 



      

    
                                                                                   (3.4) 

Observe that  

             1 1 1 1(1 ) ( ) (1 )n n np p I T rI p r p                                                                                                    (3.5) 

Together with (3.4) and (3.5), we obtain 
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                                                                                   (3.6) 

It follows from Remark 1 and (3.6) that 
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This implies that 
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                                                                      (3.7)   

We observe that 

          3 3 2 2 2

1 1 1 1 1 1 11 1 1 (1 )(1 )n n n n n n n                                                                                               (3.8) 

Using (3.8) in (3.7), we obtain                         
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                                                                      (3.9) 

Using (3.2) and (3.3) in (3.9), we obtain 
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                             1
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Set 1 ,n nu x p     0n   and 1
2

ra
     

Applying lemma 1, we obtain 0nx p    as n  .  

This completes the proof. 
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