$$\Lambda - \theta - I - Closed - Sets$$

M.Navaneethakrishnan ¹ and S.Alwarsamy ²

¹ Department of Mathematics, Kamaraj College, Thoothukudi - 628 003.
 ² Department of Mathematics, Government Arts and Science College, Kovilpatti.
 Tamil Nadu, India.

Abstract

We define $locally\ \theta-I-closed$ sets and $\Lambda-\theta-I-closed$ sets and discuss their properties. Using these sets we characterize $T_{1/2}-spaces$ and $T_I-spaces$.

Keywords: $\theta - I_g - closed$, $\theta - g - closed$, $locally \theta - closed$, $locally \theta - I - closed$, $\Lambda - \theta - closed$, $\Lambda - \theta - I - closed$, $T_{1/2} - spaces$, $T_I - spaces$.

1 Introduction and preliminaries

ISSN: 2231-5373

An ideal I on a topological space (X,τ) is a non empty collection of subsets of X which satisfies (i) $A \in I$ and $B \subset A$ implies $B \in I$ and (ii) $A, B \in I$ implies $A \cup B \in I$. Given a topological space (X,τ) with an ideal I on X and if P(X) is the set of all subsets of X, a set operator $(\cdot)^* : P(X) \to P(X)$ called a local function [8] of A with respect to τ and I is defined as follows: for $A \subset X, A^*(X,\tau) = \{x \in X \mid U \cap A \notin I, \text{ for every } U \in \tau(x)\}$, where

 $\tau(x) = \{U \in \tau \mid x \in U\}$. A Kuratowski closure operator $cl^*(\cdot)$ for a topology $\tau^*(I,\tau)$ called the $\star - topology$, finer than τ , is defined by $cl^*(A) = A \cup A^*(I,\tau)$ [16]. When there is no confusion we will simply write A^* for $A^*(I,\tau)$ and τ^* for $\tau^*(I,\tau)$. If I is an ideal on X, then (X,τ,I) is called an *ideal space*. A subset A of an ideal space $(X\tau,I)$ is said to be $\star - closed$ [7] $(resp. \star - dense[6])$ if $A^* \subset A$ $(resp.cl^*(A) = X)$. A subset A of an ideal space (X,τ,I) is said to be $I_g - closed$ [2] if $A^* \subset U$ whenever $A \subset U$ and U is open. A subset A of an ideal space (X,τ,I) is said to be $I_g - open$ if (X - A) is $I_g - closed$. An ideal space (X,τ,I) is said to be a $T_I - space$ [2] if every $I_g - closed$ set is $\star - closed$.

By a space, we always mean a topological space (X,τ) with no separation properties assumed. If $A \subset X$, cl(A) and int(A) will respectively, denote the closure and interior of A in (X,τ) and $int^*(A)$ will denote the interior of A in (X,τ^*) . A subset A of a topological space (X,τ) is said to be a g-closed set [9] if $cl(A) \subset U$ whenever $A \subset U$ and U is open. A subset A of a topological space (X,τ) is said to be a g-closed set if X-A is a g-closed set. A space (X,τ) is said to be a $T_{1/2}-space$ [9] if every g-closed set is a closed set.

For a subset A of a space (X,τ) , the θ – interior [17] of A is the union of all open sets of X whose closures contained in A and is denoted by $int_{\theta}(A)$. The subset A is called θ – open if $A = int_{\theta}(A)$. The complement of a θ – open set is called a θ – closed set. Equivalently, $A \subset X$ is called θ – closed [17] if $A = cl_{\theta}(A) = \{x \in X \mid cl(U) \cap A \neq \phi \text{ for all } U \in \tau(x)\}$. The family of all θ – open sets of X forms a topology [17] on X, which is coarser than τ and is denoted by τ_{θ} . A subset A of a topological space (X,τ) is said to be a θ – g – closed set [3] if $cl_{\theta}(A) \subset U$ whenever $A \subset U$ and U is open. A subset A of a space (X,τ) is said to be a θ – g – open set [3] if X – A is a θ – g – closed set.

A subset A of an ideal space (X, τ, I) is said to be $\theta - I - closed$ [1] if $cl_{\theta}^*(A) = A$, where $cl_{\theta}^*(A) = \{x \in X \mid A \cap cl^*(U) \neq \phi \text{ for all } U \in \tau(x)\}$. A is

said to be $\theta - I - open$ if X - A is $\theta - I - closed$. A subset A of an ideal space (X, τ, I) is said to be $\theta - I_g - closed$ [13] if $cl_{\theta}^*(A) \subset U$, whenever $A \subset U$ and U is open. The complement of $\theta - I_g - closed$ is said to be $\theta - I_g - open$. If $I = \{\phi\}, cl_{\theta}^*(A) = cl_{\theta}(A)$. If $I = P(X), cl_{\theta}^*(A) = cl(A)$. For a subset A of X, $int_{\theta}I(A) = \bigcup \{U \in \tau \mid cl^*((U) \subset A\} \ [1]$. We denote this $int_{\theta}I(A)$ by $int_{\theta}^*(A)$. The family of all $\theta - I - open$ sets of (X, τ, I) is a topology and it is denoted by $\tau_{\theta - I}$ (see [1, Theorem 1]).

A subset A of a space (X, τ) is said to be $\Lambda - set(resp.V - set)$ [10,11] if $A = A^{\Lambda}(resp.A = A^{V})$, where $A^{\Lambda} = \cap \{U \in \tau \mid A \subset U\}$ and $A^{V} = \cup \{F \mid F \subset A \text{ and } X - F \in \tau\}$

A subset A of an ideal space (X, τ, I) is said to be an $I.\Lambda - set$ [12] if $A^{\Lambda} \subset F$ whenever $A \subset F$ and F is $\star - closed$. A subset A of a topological space (X, τ) is said to be a $g.\Lambda - set$ [10] if $A^{\Lambda} \subset A$ whenever $A \subset F$ and F is closed. A subset A of an ideal space (X, τ, I) is said to be $\Lambda - \star - closed$ [14], if there exist an open set B and a $\star - closed$ set C such that $A = B \cap C$. If $I = \{\phi\}$, then $\Lambda - \star - closed$ sets coincide with $\Lambda - closed$ sets.

Lemma 1.1. [15, Theorem 2.13]. Let (X, τ, I) be an ideal space. Then every subset of X is I_g – closed if and only if every open set is \star – closed.

Lemma 1.2. [3, Theorem 3.3]. An ideal space (X, τ, I) is T_I – space if and only if every singleton subset of X is open or \star – closed.

Lemma 1.3. Let (X, τ) be a topological space. Then the following properties are valid.

- (a) If B_i is a $\Lambda set(i \in I)$, then $\bigcup_{i \in I} B$ is a X set
- (b) If B_i is a $\Lambda set(i \in I)$, then $\cap_{i \in I} B_i$ is a Λset
- (c) B is a $\Lambda-set$ if and only if X-B is a V-set

(d) For any subset A of $X, A^{\Lambda\Lambda} = A^{\Lambda}$.

Lemma 1.4. [1, Lemma 2.1] For a subset A of a topological space (X, τ) the following are equivalent

- (a) A is a Λ closed
- (b) $A = L \cap cl(A)$, where L is a Λset
- (c) $A = A^{\Lambda} \cap cl(A)$

Lemma 1.5. [13, Theorem 2.20]. A subset A of an ideal space (X, τ, I) is $\theta - I_g - closed$ if and only if $cl_{\theta}^*(A) \subset A^{\Lambda}$.

Lemma 1.6. [13, Theorem 2.6]. If (X, τ, I) is a T_1 -space and A is $\theta - I_g$ -closed then A is a $\theta - I$ - closed set.

2 Locally $\theta - I - closed$ sets

In this section, we define and study a new class of generalized Locally closed sets in an ideal topological space (X, τ, I) . A subset A of an ideal space (X, τ, I) is said to be $locally \theta - I - closed$ if there exist an open set U and a $\theta - I - closed$ set F such the $A = U \cap F$ A subset A of a space (X, τ) is said to be $locally \theta - closed$ there exist open set U and a $\theta - closed$ set F such that $A = U \cap F$.

If $I = \{\phi\}$, then $locally \ \theta - I - closed$ sets coincide with $locally \ \theta - closed$. If I = P(X), then $locally \ \theta - I - closed$ sets coincide with locally closed sets.

Theorem 2.1. Let (X, τ, I) be an ideal space and A be a subset of X. Then the following are equivalent.

- (a) A is locally $\theta I closed$
- (b) $A = U \cap cl^*_{\theta}(A)$, for some open set U
- (c) $cl_{\theta}^*(A) A$ is closed

- (d) $A \cup (X cl_{\theta}^*(A))$ is open
- (e) $A \subset int(A \cup (X cl_{\theta}^*(A)))$

Proof. (a) \Rightarrow (b). If A is locally $\theta - I - closed$, then there exist an open set U and a $\theta - I - closed$ set F such that $A = U \cap F$. Clearly, $A \subset U \cap cl_{\theta}^*(A)$. Since F is $\theta - I - closed$, $cl_{\theta}^*(A) \subset cl_{\theta}^*(F) = F$ and so $U \cap cl_{\theta}^*(A) \subset U \cap F = A$. Therefore, $A = U \cap cl_{\theta}^*(A)$.

$$(b) \Rightarrow (c)$$
. Since, $cl_{\theta}^*(A) - A = cl_{\theta}^*(A) \cap (X - A) = cl_{\theta}^*(A) \cap (X - (U \cap cl_{\theta}^*(A)))$
= $cl_{\theta}^*(A) \cap (X - U)$, it is closed.

- $(c) \Rightarrow (d)$. Since $X (cl_{\theta}^*(A) A) = A \cup (X cl_{\theta}^*(A)), A \cup (X cl_{\theta}^*(A))$ is open.
 - $(d) \Rightarrow (e)$. $A \subset A \cup (X cl_{\theta}^*(A)) = int(A \cup (X cl_{\theta}^*(A)))$
- $(e) \Rightarrow (a). \ X cl_{\theta}^*(A) = int(X cl_{\theta}^*(A)) \subset int(A \cup *(X cl_{\theta}^*(A)))$ Therefore, $A \cup (X cl_{\theta}^*(A)) \subset int(A \cup (X cl_{\theta}^*(A))).$ So $A \cup (X cl_{\theta}^*(A))$ is open. Since, $A = (A \cup (X cl_{\theta}^*(A))) \cap cl_{\theta}^*(A),$ A is $locally \ \theta I closed.$

If we put $I = \{\phi\}$ in Theorem 2.1, we get Corollary 2.2. If we put I = P(X) in Theorem 2.1, we get Corollary 2.3.

Corollary 2.2. Let (X, τ) be a topological space and A be a Subset of X. Then the following are equivalent.

- (a) A is locally θ closed
- (b) $A = U \cap cl_{\theta}(A)$, for some open set U
- (c) $cl_{\theta}(A) A$ is closed
- (d) $A \cup (X cl_{\theta}(A))$ is open
- (e) $A \subset int(A \cup (X cl_{\theta}(A)))$.

Corollary 2.3. Let (X, τ) be a topological space and A be a subset of X. Then the following are equivalent.

- (a) A is locally closed
- (b) $A = U \cap cl(A)$, for some open set U
- (c) cl(A) A is closed
- (d) $A \cup (X cl(A))$ is open
- (e) $A \subset int(A \cup (X cl(A)))$.

Theorem 2.4. Let (X, τ, I) be an ideal space and A be a subset of X. If A is locally $\theta - I$ – closed and I – dense, then A is open.

Proof. If A is locally $\theta - I - closed$, then by Theorem 2.1, $A \subset int(A \cup (X - cl_{\theta}^*(A)))$. Since A is I - dense, $A^* = X$ and hence $cl^*(A) = X$. Since $cl^*(A) \subset cl_{\theta}^*(A)$, we have $cl_{\theta}^*(A) = X$. So $A \subset int(A)$, which implies that A is open.

Corollary 2.5. Let (X, τ, I) be an ideal space and A be an I – dense subset of X. Then, A is locally $\theta - I$ – closed if and only if A is open.

Theorem 2.6. Let (X, τ, I) be an ideal space and A be a $\theta - I_g$ - closed subset of X. Then, A is locally $\theta - I$ - closed if and only if A is $\theta - I$ - closed.

Proof. If A is $\theta - I - closed$, then A is $locally \theta - I - closed$. Conversely, suppose A is $locally \theta - I - closed$ and $\theta - I_g - closed$. By Theorem 2.3 $cl_{\theta}^*(A) - A$ has no nonempty closed set. By, Theorem 2.1 (c), $cl_{\theta}^*(A) - A$ is closed. Therefore, $cl_{\theta}^*(A) - A = \phi$, which implies that $cl_{\theta}^*(A) \subset A$ and so A is $\theta - I - closed$.

If we put $I = \{\phi\}$ in Theorem 2.6, we set the following Corollary 2.7. If we put I = P(X) in Theorem 2.6, we get the Corollary 2.8.

Corollary 2.7. Let (X, τ) be a topological space and A be a $\theta - g$ - closed subset of X. Then, A is locally θ - closed if and only if A is θ - closed.

Corollary 2.8. Let (X, τ) be a topological space and A be a g-closed subset of X. Then, A is locally closed if and only if A is closed.

Theorem 2.9. An ideal space (X, τ, I) is a T_1 – space if and only if every $\theta - I_g$ – closed set is locally $\theta - I$ – closed.

Proof. Suppose, A is any $\theta - I_g - closed$ subset of X. Then by Theorem 2.3 [13], $cl_{\theta}^*(A) - A$ contains no nonempty closed set. By hypothesis, A is $locally \ \theta - I - closed$. So, by Theorem 2.1, $cl_{\theta}^*(A) - A$ is closed. Therefore, $cl_{\theta}^*(A) - A = \phi$ and hence $cl_{\theta}^*(A) = A$. Then A is $\theta - I - closed$ and hence A is $\star - closed$. Therefore, every $\theta - I_g - closed$ set of X is $\star - closed$. By Theorem 3.2 [13], (X, τ, I) is a $T_I - space$. Conversely, suppose A is a $\theta - I_g - closed$ set. Then by Lemma 1.6, A is $\theta - I - closed$ and hence $locally \ \theta - I - closed$.

If we put $I = \{\phi\}$ in Theorem 2.9, we get the Corollary 2.10. If we put I = P(X) in Theorem 2.9, we get the Corollary 2.11.

Corollary 2.10. In a topological space (X, τ) , if every $\theta - g$ - closed set is locally θ - closed, then (X, τ) is a T_1 - space.

Corollary 2.11. In a topological space (X, τ) , if every g – closed set is locally closed, then (X, τ) is a $T_{1/2}$ – space.

Since X is $\theta - I$ - closed, every open set is locally $\theta - I$ - closed. Since X is open, every $\theta - I$ - closed set is locally $\theta - I$ - closed.

Example 2.12, shows that $locally \ \theta - I - closed$ need not be $\theta - I - closed$. Example 2.13, show that a $locally \ \theta - I - closed$ set need not be an open set.

Example 2.12. Let $X = \{a, b, c, d\}, \tau = \{\phi, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}, X\}$ and $I = \{\phi, \{a\}, \{c\}, \{a, c\}\}\}$. Let $A = \{b, c\}$. Then, A is open and hence locally $\theta - I$ - closed. Since, $cl_{\theta}^{*}(A) = X$, A is not $\theta - I$ - closed.

Example 2.13. Let $X = \{a, b, c, d\}, \tau = \{\phi, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}, X\}$ and $I = \{\phi, \{a\}, \{b\}, \{a, b\}\}$. Let $A = \{c\}$. Then A is $\theta - I - closed$. But it is not open.

3 $\Lambda - \theta - I - closed$ sets

A subset A of an ideal space (X, τ, I) is said to be a $\Lambda - \theta - I - closed$ set if $A = B \cap C$, where B is a $\Lambda - set$ and C is $\theta - I - closed$. The complement of a $\Lambda - \theta - I - closed$ set is said to be a $\Lambda - \theta - I - open$ set. A subset A of a topological space (X, τ) is said to be a $\Lambda - \theta - closed$ if $A = B \cap C$, where B is a $\Lambda - set$ and C is a $\theta - closed$ set. The complement of a $\Lambda - \theta - closed$ set is said to be a $\Lambda - \theta - open$ set.

If $I = \{\phi\}$, then the $\Lambda - \theta - I - closed$ sets coincide with $\Lambda - \theta - closed$ sets. If I = P(X), then the $\Lambda - \theta - I - closed$ sets coincide with $\Lambda - closed$ sets.

Theorem 3.1. If A is a subset of an ideal space (X, τ, I) , then the following are equivalent.

- (a) A is $\Lambda \theta I closed$
- (b) $A = L \cap cl^*_{\theta}(A)$, where L is a Λset
- (c) $A = A^{\Lambda} \cap cl_{\theta}^*(A)$.

Proof. $(a) \Rightarrow (b)$. Suppose A is a $\Lambda - \theta - I - closed$ set. Then $A = L \cap B$, where L is a $\Lambda - set$ and B is a $\theta - I - closed$ set. Since, $cl_{\theta}^* \subset cl_{\theta}^*(B) = B$, we have $L \cap cl_{\theta}^*(A) \subset L \cap B = A$. On the other hand, $A \subset L \cap cl_{\theta}^*(A)$. Therefore, $A = L \cap cl_{\theta}^*(A)$.

 $(b) \Rightarrow (c)$. Suppose $A = L \cap cl_{\theta}^*(A)$, where L is a $\Lambda - set$. Clearly, $A \subset A^{\Lambda} \cap cl_{\theta}^*(A)$. Since $A \subset L$, $A^{\Lambda} \subset L^{\Lambda} = L$. Hence, $A^{\Lambda} \cap cl_{\theta}^*(A) \subset L \cap cl_{\theta}^*(A) = A$. Therefore, $A = A^{\Lambda} \cap cl_{\theta}^*(A)$.

 $(c) \Rightarrow (a)$ follows from the fact that A^{Λ} is a $\Lambda - set$ for every subset A of X. If we put $I = \{\phi\}$ in Theorem 3.1, we get Corollary 3.2. If we put I = P(X) in Theorem 3.1, we get Corollary 3.3.

Corollary 3.2. If A is a subset of a topological space (X, τ) , then the following are equivalent.

- (a) A is $\Lambda \theta closed$
- (b) $A = L \cap cl_{\theta}(A)$, where L is a Λset
- (c) $A = A^{\Lambda} \cap cl_{\theta}(A)$.

Corollary 3.3. If A is a subset of a topological space (X, τ) , then the following are equivalent.

- (a) A is $\Lambda closed$
- (b) $A = L \cap cl(A)$, where L is a Λ set
- (c) $A = A^{\Lambda} \cap cl(A)$

Theorem 3.4. A \star -dense subset A of an ideal space (X, τ, I) is $\Lambda - \theta - I$ -closed if and only if it is a Λ -set

Proof. If A is a $\Lambda - set$ then it is $\Lambda - \theta - I - closed$. Conversely, suppose A is $\Lambda - \theta - I - closed$ and $\star - dense$. Then $A = A^{\Lambda} \cap cl_{\theta}^{*}(A)$. Since A is $\star - dense$, we have $cl^{*}(A) = X$. Since $cl^{*}(A) \subset cl_{\theta}^{*}(A)$, we have $cl_{\theta}^{*}(A) = X$. Therefore, $A^{\Lambda} \cap cl_{\theta}^{*}(A) = A^{\Lambda} \cap X = A^{\Lambda}$. Therefore, $A = A^{\Lambda}$. Therefore A is a $\Lambda - set$.

If we put $I = \{\phi\}$ in Theorem 3.4, we get Corollary 3.5. If we put I = P(X) in Theorem 3.4, we get Corollary 3.6.

Corollary 3.5. A dense subset A of a space (X, τ) is $\Lambda - \theta$ – closed if and only if it is a Λ – set.

Corollary 3.6. A dense subset A of a space (X, τ) is Λ – closed if and only if it is a Λ – set

Since X is a $\theta - I - closed$ set, every $\Lambda - set$ is a $\Lambda - \theta - I - closed$ set. Since X is a $\Lambda - set$, every $\theta - I - closed$ set is a $\Lambda - \theta - I - closed$ set. Example 3.7 show that a $\Lambda - \theta - I - closed$ set need not be $\Lambda - set$. Example 3.8 shows that a $\Lambda - \theta - I - closed$ set need not be a $\theta - I - closed$ set.

Example 3.7. Let $X = \{a, b, c, d\}, \tau = \{\phi, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}, X\}$ and $I = \{\phi, \{b\}, \{c\}, \{d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{b, c, d\}\}.$

Let $A = \{a, c, d\}$. Then $cl_{\theta}^*(A) = A$. Therefore, A is $\theta - I - closed$ and hence $\Lambda - \theta - I - closed$. But $A^{\Lambda} = X \neq A$. Therefore, A is not a $\Lambda - set$.

Example 3.8. Let (X, τ, I) be same as in Example 3.7. Let $A = \{a, b, c\}$. Since A is an open set, A is $\Lambda - \theta - I - closed$. But $cl_{\theta}^*(A) = X \neq A$. Therefore, A is not $\theta - I - closed$.

Since every $\theta-I-closed$ set is a $\star-closed$ set, every $\Lambda-\theta-I-closed$ set is $\Lambda-\star-closed$ set. Example 3.9 shows that a $\Lambda-\star-closed$ set need not be a $\Lambda-\theta-I-closed$ set.

Example 3.9. Let (X, τ, I) be same as in Example 3.7. Let $A = \{b, c, d\}$. Then $A^* = \phi \subset A$. So A is $\star - closed$. and hence $\Lambda - \star - closed$. Now $A^{\Lambda} = X$ and $cl_{\theta}^*(A) = X$. So $A^{\Lambda} \cap cl_{\theta}^*(A) = X \neq A$. Therefore, by Theorem 3.1, A is not $\Lambda - \theta - I - closed$.

Theorem 3.10. Let (X, τ, I) be an ideal space and A be a \star – dense subset of X. Then A is $\Lambda - \star$ – closed if and only if it is $\Lambda - \theta - I$ – closed.

Proof. Every $\Lambda - \theta - I - closed$ is $\Lambda - \star - closed$. Conversely, suppose A is $\Lambda - \star - closed$ and a $\star - dense$ subset of X. Then, $A = A^{\Lambda} \cap cl^*(A)$. Since

X is $\star - dense$, $cl^*(A) = X$. But $cl^*(A) \subset cl^*_{\theta}(A)$. Therefore $Cl^*_{\theta}(A) = X$. So, $A = A^{\Lambda} \cap X$ and hence A is $\Lambda - \theta - I - closed$.

A subset A of an ideal space (X, τ, I) is said to be $\theta - I.\Lambda - set$ if $A^{\Lambda} \subset F$ whenever $A \subset F$ and F is $\theta - I - closed$. A subset A of (X, τ, I) is said to be $\theta - g.\Lambda - set$ if $A^{\Lambda} \subset F$ whenever $A \subset F$ and A is $\theta - closed$.

Theorem 3.11. A $\Lambda - \theta - I - closed$ set of an ideal space (X, τ, I) is a $\Lambda - set$. if and only if it is a $\theta - I \cdot \Lambda - set$

Proof. Let A be a $\Lambda - \theta - I - closed$ set. If A is a $\Lambda - set$, then A is $\theta - I \cdot \Lambda - set$. Conversely, suppose A is a $\theta - I \cdot \Lambda - set$. Then, by Lemma 1.5, $cl_{\theta}^*(A) \subset A^{\Lambda}$. So $A^{\Lambda} \cap cl_{\theta}^*(A) = A^{\Lambda}$. Since A is a $\Lambda - \theta - I - closed$ set, $A^{\Lambda} \cap cl_{\theta}^*(A) = A$. Therefore, $A = A^{\Lambda}$ and hence A is a $\Lambda - set$.

If we put $I = \{\phi\}$ in Theorem 3.11, we get Corollary 3.12. If we put I = P(X) in Theorem 3.11, we get Corollary 3.13.

Corollary 3.12. A $\Lambda - \theta - closed$ set of a topological space (X, τ) is a $\Lambda - set$ if and only if it is a $\theta - g.\Lambda - set$.

Corollary 3.13. A Λ -closed set of a topological space (X, τ) is a Λ -set if and only if it is a $g.\Lambda$ -set.

Theorem 3.14. For a subset A of an ideal space (X, τ, I) , the following are equivalent.

- (a) A is $\Lambda \theta I closed$.
- (b) $cl_{\theta}^*(A) A$ is a V set

Proof. $(a) \Rightarrow (b)$. Suppose, A is a $\Lambda - \theta - I - closed$ set. Then $A = L \cap cl_{\theta}^*(A)$, for some $\Lambda - set$ L. Now $cl_{\theta}^*(A) - A = cl_{\theta}^*(A) \cap (X - A) = cl_{\theta}^*(A) \cap (X - (L \cap cl_{\theta}^*(A))) = cl_{\theta}^*(A) \cap ((X - L) \cup (X - cl_{\theta}^*(A))) = cl_{\theta}^*(A) \cap (X - L)$. Since $cl_{\theta}^*(A)$ is closed, it

is a V-set. Therefore $cl_{\theta}^*(A)\cap (X-L)$ is a V-set and hence $cl_{\theta}^*(A)-A$ is a V-set.

 $(b) \Rightarrow (c)$ Suppose $cl_{\theta}^*(A) - A$ is a V - set. Then $X - (cl_{\theta}^*(A) - A) = A \cup (X - cl_{\theta}^*(A))$ is a $\Lambda - set$. Now, $(A \cup (X - cl_{\theta}^*(A)) \cap cl_{\theta}^*(A) = (A \cap cl_{\theta}^*(A)) \cup (X - cl_{\theta}^*(A)) \cap cl_{\theta}^*(A)) = A \cap cl_{\theta}^*(A) = A$. Therefore, A is a $\Lambda - \theta - I - closed$ set. If we put $I = \{\phi\}$ and I = P(X) in Theorem 3.14, respectively, we get Corollary 3.15 and Corollary 3.16.

Corollary 3.15. For a subset A of a topological space (X, τ) , the following are equivalent.

(a) A is
$$\Lambda - \theta - closed$$

(b)
$$cl_{\theta}(A) - A$$
 is a $V - set$

Corollary 3.16. For a subset A of a topological space (X, τ) , the following equivalent.

(a) A is
$$\Lambda - closed$$

(b)
$$cl(A) - A$$
 is a $V - set$.

Theorem 3.17. For a subset A of an ideal space (X, τ, I) , the following are equivalent.

(a) A is
$$\Lambda - \theta - I - closed$$

(b)
$$A \cup (X - cl_{\theta}^*(A))$$
 is $\Lambda - \theta - I - closed$.

Proof. $(a) \Rightarrow (b)$. If A is $\Lambda - \theta - I - closed$, then by Theorem 3.14, $A \cup (X - cl_{\theta}^*(A)) = X - (cl_{\theta}^*(A) - A)$ is a $\Lambda - set$ and hence a $\Lambda - \theta - I - closed$ set.

$$(b)\Rightarrow (a)$$
. If $A\cup (X-cl^*_{\theta}(A))$ is a $\Lambda-\theta-I-closed$ set, then by Theorem 3.14, $cl^*_{\theta}(A\cup (X-cl^*_{\theta}(A)))-(A\cup (X-cl^*_{\theta}(A)))=X-(A\cup (X-cl^*_{\theta}(A)))=cl^*_{\theta}(A)-A$ is a $V-set$. Again by Theorem 3.14, A is $\Lambda-\theta-I-closed$.

If we $I = \{\phi\}$ and I = P(X) in Theorem 3.17, respectively we get Corollary 3.18 and Corollary 3.19.

Corollary 3.18. For a subset A of a topological space (X, τ) , the following are equivalent.

- (a) A is $\Lambda \theta closed$
- (b) $A \cup (X cl_{\theta}(A))$ is $\Lambda \theta closed$.

Corollary 3.19. For a subset A of a topological space (X, τ) , the following are equivalent.

- (a) A is $\Lambda closed$
- (b) $A \cup (X cl(A))$ is $\Lambda closed$.

Theorem 3.20. For a subset A of an ideal space (X, τ, I) , the following are equivalent.

- (a) A is $\theta I closed$
- (b) A is $\theta I_g closed$ and locally $\theta I closed$.
- (c) A is $\theta I_q closed$ and $\Lambda \theta I closed$.

Proof. (a) \Rightarrow (b) follows from the fact that every $\theta - I - closed$ set is both $\theta - I_g - closed$ and locally $\theta - I - closed$.

- $(b)\Rightarrow (c)$ follows from the fact that every locally $\theta-I-closed$ is $\Lambda-\theta-I-closed$.
- $(c)\Rightarrow (a).$ Let A be a $\Lambda-\theta-I-closed$ set. Then $A=A^{\Lambda}\cap cl_{\theta}^*(A).$ Since A is $\theta-I_g-closed$, by Lemma 1.5, $cl_{\theta}^*(A)\subset A^{\Lambda}.$ So $A=A^{\Lambda}\cap cl_{\theta}^*(A)=cl_{\theta}^*(A).$ Hence A is $\theta-I-closed$.

If we put $I = \{\phi\}$ and I = P(X) in Theorem 3.20, respectively we get Corollary 3.21 and Corollary 3.22.

Corollary 3.21. For a subset A of a space (X,τ) , the following are equivalent.

- (a) A is θ closed
- (b) A is θg closed and locally θ closed
- (c) A is $\theta g closed$ and $\Lambda \theta closed$.

Corollary 3.22. For a subset A of a space (X,τ) , the following are equivalent

- (a) A is closed
- (b) A is g-closed and locally closed
- (c) A is g-closed and $\Lambda-closed$.

Theorem 3.23. Let (X, τ, I) be an ideal space and (X, τ) is a T_1 – space. Then the following are equivalent.

- (a) (X, τ, I) is a T_I space
- (b) Every $\theta I_g closed$ set is a locally $\theta I closed$ set.
- (c) Every $\theta I_g closed$ set is $\Lambda \theta I closed$
- (d) For each $x \in X$, $\{x\}$ is either closed or $\Lambda \theta I open$.
- (e) For each $x \in X$, $\{x\}$ is either closed or $\theta I open$.

Proof. (a) \Rightarrow (b) follows from the Theorem 2.8

- $(b) \Rightarrow (c)$ follows from the fact that every locally $\theta I closed$ is $\Lambda \theta I closed$.
- $(c)\Rightarrow (d).$ Suppose $\{x\}$ is not closed. Then $X-\{x\}$ is not open and hence $\theta-I_g-closed.$ By $(c),\ X-\{x\}$ is $\Lambda-\theta-I-closed.$ Hence $\{x\}$ is $\Lambda-\theta-I-open.$
- $(d)\Rightarrow (e).$ Suppose $\{x\}$ is not closed. Then by (d), $\{x\}$ is $\Lambda-\theta-I-open$. Therefore, $X-\{x\}$ is $\Lambda-\theta-I-closed$. Since $\{x\}$ is not closed, $X-\{x\}$ is $\theta-I_g-closed$. By Theorem 3.20, $X-\{x\}$ is $\theta-I-closed$. Therefore, $\{x\}$ is $\theta-I-open$.

 $(e) \Rightarrow (a)$. Suppose $\{x\}$ is not closed. Then by hypothesis, $\{x\}$ is $\theta-I-open$. Therefore, $\{x\}$ is open and hence $\star-open$. By Lemma 1.2, (X,τ,I) is a $T_I-space$. This proves (a)

If we put $I = \{\phi\}$ in Theorem 3.23, we get Corollary 3.24.

Corollary 3.24. In a T_1 - topological space (X, τ) , the following are equivalent.

- (a) (X, τ) is a $T_{1/2}$ space
- (b) Every θg closed set is locally θ closed set.
- (c) Every $\theta g closed$ set is $\Lambda \theta closed$.
- (d) For each $x \in X$, $\{x\}$ is either closed or $\Lambda \theta$ open
- (e) For each $x \in X$, $\{x\}$ is either closed or θ open

Theorem 3.25. In an ideal space (X, τ, I) the following are equivalent

- (a) Every $\Lambda \theta I closed$ set is $\theta I closed$
- (b) Every open set is $\theta I closed$
- (c) Every subset of X is $\theta I_g closed$.

Proof. $(a) \Rightarrow (b)$. Suppose U is an open set. Then U is a Λ -set and hence is $\Lambda - \theta - I$ - closed. By (a), U is a $\theta - I$ - closed.

- $(b)\Rightarrow (c).$ Suppose A is a subset of X and U is an open set containing A. Then $cl_{\theta}^*(A)\subset cl_{\theta}^*(U)$. By $(b),\ cl_{\theta}^*(A)\subset U$. Therefore, A is $\theta-I_g-closed$.
- $(c) \Rightarrow (a)$. Suppose A is $\Lambda \theta I closed$. By (c), A is $\theta I_g closed$. Therefore, by Theorem 3.19, A is $\theta I closed$.

If we put $I = \{\phi\}$ and I = P(X) in Theorem 3.25, respectively we get Corollary 3.26 and Corollary 3.27.

Corollary 3.26. In a topological space (X,τ) , the following are equivalent

(a) Every $\Lambda - \theta - closed$ set is $\theta - closed$

- (b) Every open set is θ closed
- (c) Every subset of X is $\theta g closed$

Corollary 3.27. In a topological space (X,τ) , the following are equivalent

- (a) Every Λ closed set is closed
- (b) Every open set is closed
- (c) Every subset of X is g-closed.

The proof of the following Theorem 3.28, follows from the fact that arbitrary intersection of Λ – sets is a Λ – set.

Theorem 3.28. Arbitrary intersection of $\Lambda - \theta - I$ -closed sets is $\Lambda - \theta - I$ -closed.

The following Theorem 3.30, gives the characterization of $\Lambda - \theta - I$ – open sets.

Theorem 3.29. For a subset A of an ideal space (X, τ, I) the following are equivalent.

- (a) A is $\Lambda \theta I open$
- (b) $A = M \cup W$, where M is a V set and W is a $\theta I open$ set.

Proof. (a) \Rightarrow (b). Suppose A is $\Lambda - \theta - I - Open$. Then X - A is $\Lambda - \theta - I - closed$. So $X = B \cap C$, where B is a $\Lambda - set$ and C is $\theta - I - closed$. So, $A = M \cup W$, where M = X - B is a V - set and W = X - C is $\theta - I - open$.

(b) ⇒ (a). Suppose, A = M∪W, where M is a V-set and W is θ-I-open.
Then X - A = (X - M) ∩ (X - W), where X - A is a Λ - set and X - W is θ-I-closed. Therefore, X-A is Λ-θ-I-closed and hence A is Λ-θ-I-open.
If we I = {φ} and I = P(X) in Theorem 3.29, respectively we get Corollary 3.30 and Corollary 3.31.

Corollary 3.30. For a subset A of a topological space (X, τ) , the following are equivalent.

- (a) A is $\Lambda \theta open$
- (b) $A = M \cup W$, where M is a V set and W is $\theta open$

Corollary 3.31. For a subset A of a topological space (X, τ) , the following are equivalent

- (a) A is Λ open
- (b) $A = M \cup W$, where M is a V set and W is open.

Theorem 3.32. For a subset A of an ideal space (X, τ, I) , the following are equivalent.

- (a) A is $\Lambda \theta I open$
- (b) $A = M \cup int_{\theta}^*(A)$, where M is a V set
- (c) $A = A^{\Lambda} \cup int_{\theta}^{*}(A)$

Proof. (a) \Rightarrow (b). Suppose, A is $\Lambda - \theta - I - open$. Then X - A is $\Lambda - \theta - I - closed$. Therefore, $X - A = L \cup cl_{\theta}^*(X - A)$, where L is a $\Lambda - set$. So, $A = (X - L) \cup (X - cl_{\theta}^*(X - A)) = M \cup int_{\theta}^*(A)$, where M = X - L is a V - set.

- $(b)\Rightarrow (c).$ Suppose, $A=M\cup int_{\theta}^*(A),$ where M is a V-set. Since $M\subset A,$ $M=M^V\subset A^V.$ Therefore, $A=M^V\cup int_{\theta}^*(A)\subset A^*\cup int_{\theta}^*(A).$ Hence, $A=A^V\cup int_{\theta}^*(A).$
- $(c) \Rightarrow (a)$ follows from the fact that A^V is a V-set and $int_{\theta}^*(A)$ is $\theta-I-open$.

If we put $I = \{\phi\}$ and I = P(X) in Theorem 3.32, respectively we get corollary 3.33 and Corollary 3.34.

Corollary 3.33. For a subset A of a topological space (X, τ) , the following are equivalent.

- (a) A is $\Lambda \theta open$
- (b) $M \cup int_{\theta}(A)$, where M is a V set
- (c) $A = A^V \cup int_{\theta}(A)$.

Corollary 3.34. For a subset A of a topological space (X, τ) , the following are equivalent.

- (a) A is Λ open
- (b) $A = M \cup int(A)$, where M is a V set
- (c) $A = A^V \cup int(A)$

The following Theorem 3.35, gives characterization of $\Lambda - \theta - I$ – open sets in terms $\theta - I_q$ – closed sets.

Theorem 3.35. Let (X, τ, I) be an ideal space. Then for each $x \in X$, either $\{x\}$ is $\Lambda - \theta - I$ open or $X - \{x\}$ is $\theta - I_g$ closed.

Proof. Suppose, $\{x\}$ is not $\Lambda - \theta - I - open$. Then $A = X - \{x\}$ is not $\Lambda - \theta - I - closed$. So, $A^{\Lambda} \cup cl_{\theta}^{*}(A) \neq A$. But $A = X - \{x\} \subset A^{\Lambda} \cup cl_{\theta}^{*}(A)$. Therefore, $A^{\Lambda} \cup cl_{\theta}^{*}(A) = X$ and hence $A^{\Lambda} = cl_{\theta}^{*}(A) = X$. Therefore, X is the only open set containing A. Hence A is $\theta - I_g - closed$.

If we put $I = \{\phi\}$ and I = P(X) in Theorem 3.35, respectively we get the Corollary 3.36 and Corollary 3.37.

Corollary 3.36. Let (X, τ) be a topological space. Then for each $x \in X$, either $\{x\}$ is $\Lambda - \theta - open$ or $X - \{x\}$ is $\theta - g - closed$.

Corollary 3.37. Let (X, τ) be a topological space. Then for each $x \in X$, either $\{x\}$ is Λ – open or $X - \{x\}$ is g – closed.

References

- [1] M.Akdag, θI open sets, Kochi Journal of Mathematics, vol.3, pp.217-229, 2008.
- [2] J.Dontchev, M.Ganster and T.Noiri, Unified Operation approach of generalized closed sets via topological ideals, Mathematica Japonica, vol.49, no.3, pp.395-401,1999.
- [3] J.Dontchev and H.Maki, On θ-generalized closed sets, International Journal of Mathematics and Mathematical Sciences, vol.22, no.2, pp.239-249, 1999.
- [4] J.Dontchev and M.Ganster, On δ generalized closed sets and $T_{3/4}$ spaces, Mem. Fac. Sci. Kochi Univ. Ser. A Math, 17(1996), 15-31.
- [5] W.Dunham and N.Levine, Further results on generalized closed sets in topology, Kyungpook Mathematical Journal, vol.20, no.2, pp.169-175, 1980.
- [6] W.Dunham, $T_{1/2}$ -spaces, Kyunpook Mathematical Journal, vol.17, no.2, pp.161-169, 1977.
- [7] D.Jankovic and T.R.Hamlett, New topologies from old via ideals, the American Mathematical Monthly, vol.97, no.4, pp.295-310, 1990.
- [8] K.Kuratowski, Topology, vol 1, Academic press, New york, NY, USA, 1966.
- [9] N.Levine, Generalized closed sets in topology, Rendiconti del circolo Mathematics di Palermo, vol 19, no.2, pp.89-96, 1970.
- [10] H.Maki, J.Umehara, and K.Yamamura, Characterizations of T_{1/2}-spaces using generalized V-sets, Indian Journal of Pure and Applied Mathematics, vol.19, no.7, pp.634-640, 1988.

- [11] M.Mrsevic, On pairwise R and pairwise R_{∞} bitopological spaces, Bulletin Mathematique de la societe des Sciences Mathematiques de la Republique Socialiste de Roumanie, vol.30(78), no.22, pp.141-148, 1986.
- [12] M.Navaneethakrishnan and D.Sivaraj, Generalized locally closed sets in ideal topological spaces, Bulletin of the Allahabad Mathematical Society, vol.24, No.1, pp.13-19,2009.
- [13] M.Navaneethakrishnan and S.Alwarsamy, $\theta I_g closed$ sets, ISRN Geometry, volume 2012, pp.1-9.
- [14] M.Navaneethakrishnan and S.Alwarsamy, $\Lambda \star closed$ sets, International Journal of Mathematics Trends and Technology, pp.18-33.
- [15] M.Navaneethakrishnan and J.Paulraj Joseph, g closed sets In Ideal to Topological Spaces, Acta. Math. Hungar, 119(4) (2008), 365-371.
- [16] R. Vaidyanathaswamy, Set Topology, Chelsea Publishing, New York, NY, USA, 1946.
- [17] N.V. Velicko, H-closed topological spaces, Mathematical Sbornik, vol. 70, no. 112, pp. 98-112, 1966.