Second Hankel Determinant for Analytic Functions Defined By Linear Operator

Sunita M. Patil ${ }^{\text {\#1 }}$, S. M. Khairnar ${ }^{* 2}$
Department Of Applied Sciences, Ssvps B.S. Deore College Of Engineering, Deopur, Dhule, Maharashtra, India

Abstract

Let $S(\lambda, n, m)$ denote the class of analytic and univalent functions in the open unit disk, $D=$ $\{z:|z|<1\}$ with normalized conditions. In the present article an upper bound for the Second Hankel determinant $\left|a_{2} a_{4}-a_{3}^{2}\right|$ is obtained for the analytic functions defined by linear operator.

Keywords : Univalent function, Starlike function, convex function, Hankel derminant, Linear Operator.

1 INTRODUCTION, DEFINITION AND MOTIVATION

Let D be the unit disk $\{z:|z|<1\} . A$ be the class of functions analytic in D, satisfying the conditions,

$$
\begin{equation*}
f(0) \text { and } \quad f^{\prime}(0)=1 \tag{1.1}
\end{equation*}
$$

then each function f in A has the Taylor s expansions,

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \quad Z \in D \tag{1.2}
\end{equation*}
$$

The $\mathrm{q}^{\text {th }}$ determinant for $\mathrm{q} \geq 1$ and $\mathrm{n} \geq$ is stated by Noonan and Thomas [14] as,

$$
H_{q}(n)=\left|\begin{array}{cccc}
a_{n} & a_{n+1} & \cdots & a_{n+q+1} \tag{1.3}\\
a_{n+1} & a_{n+2} & \cdots & a_{n+q} \\
\vdots & & & \\
a_{n+q-1} & a_{n+q} & \cdots & a_{n+2 q-2}
\end{array}\right|
$$

This determinant has also been considered by several authors. For example, Noorin [13] determinant the rate of growth of $\mathrm{H}_{q}(\mathrm{n})$ as $\mathrm{n} \rightarrow \infty$ for function f (1.1) with bounded boundary. Ebrenbary in [3] studied the Hankel determinant of exponential polynomials. The Hankel transform of an integer sequence and some of its properties were deicussed by Layman s article[9]. It is well known that [4] for $\mathrm{f} \in \mathrm{S}$ and given by (1.2) the sharp inequality $\left|a_{3} a_{2}^{2}\right| \leq 1$ holds. This corresponds to the hankel determinant with $\mathrm{q}=2$ and $\mathrm{k}=1$.
After that, Fekete-Szego further generalized the estimate $\left|a_{3}-\mu a_{2}^{2}\right|$ with real μ and $\mathrm{f} \in \mathrm{S}$ for a given class of functions in A the sharp bound for the
non linear function $\left|a_{2} a_{4}-a_{3}^{2}\right|$ is known as the Second Hankel Determinant.

This corresponds to the Hankel determinant $\mathrm{q}=2$ and $\mathrm{k}=2$. In particular sharp bounds of article [8][12][16][17] for different subclass of univalent function.

$$
\left|\begin{array}{ll}
a_{2} & a_{3} \tag{1.4}\\
a_{3} & a_{4}
\end{array}\right|=\left|a_{2} a_{4}-a_{3}^{2}\right|
$$

Motivated by the above mentioned results obtained by different authors in this direction. In this paper we consider a certain subclass of analytic functions and obtain an upper bound to the function $\left|a_{2} a_{4}-a_{3}^{2}\right|$ for the function f belonging to this class defined as follows,

Definition 1.1 A function $f \in A$ is said to be in the class,

$$
\begin{align*}
& S^{*}=\left\{f(z) \in S ; \mathfrak{R}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>0 \quad \mathrm{Z} \in 0\right\} \tag{1.5}\\
& C=\left\{f(z) \in S ; \mathfrak{R}\left\{1+\frac{z f^{\prime}(z)}{f(z)}\right\}>0 \quad \mathrm{Z} \in D\right\} \tag{1.6}
\end{align*}
$$

for $\mathrm{f}_{j} \in \mathrm{~A}$ given by,

$$
\begin{equation*}
f_{j}(z)=z+\sum_{k=2}^{\infty} a_{k, j} z^{k} \quad(j=1,2) \tag{1.7}
\end{equation*}
$$

the Hadamard product (on convolution) $\mathrm{f}_{1} * \mathrm{f}_{2}$ of f_{1} and f_{2} is defined by,

$$
\begin{equation*}
\left(f_{1} * f_{2}\right) z=z+\sum_{k=2}^{\infty} a_{k, 1} a_{k, 2} z^{k}(Z \in D) \tag{1.8}
\end{equation*}
$$

recall that a family of the Hurwitz-Lerch zeta function $\Phi_{\mu \nu}^{\rho \sigma}(\mathrm{z}, \mathrm{S}, \mathrm{a})[13]$ is defined by,

$$
\begin{align*}
& \Phi_{\mu, v}^{\rho, \sigma}(z, S, a)=\sum_{n=0}^{\infty} \frac{(\mu)_{\rho, n} z^{n}}{(v)_{\sigma, n}(n+a)^{s}} \tag{1.9}\\
& \left(\mu \in \mathrm{C} ; v \in \mathrm{C} \backslash \mathrm{Z}_{\overline{0}} ; \rho, \sigma \in \mathrm{R}^{+} ; \rho<\sigma \text { and } \quad s, z \in \mathrm{C} ;\right. \\
& \rho=\sigma \text { and } \quad s \in \mathrm{C} \text { when }|z|<1 ; \\
& \rho=\sigma \text { and } \mathfrak{R}(s-\mu+v)>1 \text { when }|z|=1)
\end{align*}
$$

Contains as its special case not only the HurwitzLerch Zeta function,
$\Phi_{\mu, \nu}^{\rho, \sigma}(z, S, a)=\Phi_{\mu, \nu}^{0,0}(z, S, a)=\sum_{n=0}^{\infty} \frac{z^{n}}{(n+a)^{s}}$
(1.10)
but also the following generalized Hurwitz-Zeta function introduced and studied earlier by Goyal and Laddha [22]
$\Phi_{\mu, 1}^{1,1}(z, S, a)=\Phi_{\mu}(z, S, a)=\sum_{n=0}^{\infty} \frac{(\mu)_{n}}{n!} \frac{z^{n}}{(n+a)^{s}}$
(1.11)
which for convenience are called the Goyal-Laddha-Hurwitz-Lerch Zeta function. Here $(\mathrm{x})_{\mathrm{k}}$ is Pochhammer symbol (or the shifted factorial, since $(1)_{k}=\mathrm{k}!$) and $(\mathrm{x})_{k}$ given in terms of the Gamma functions can be written as,
$(x)_{k}=\frac{\Gamma(x+k)}{\Gamma(x)}\left\{\begin{array}{cc}1, & \text { if } k=0 \text { and } x \in \mathrm{C} \backslash\{0\} ; \\ x(x+1) \ldots(x+k-1), & \text { if } k \in \mathrm{~N} \text { and } x \in \mathrm{C} .\end{array}\right.$
Lemma 2.3 The power series of p given in (2.1) converges in δ in to function p if and only if the Toeplitz determinant
$D_{n}=\left|\begin{array}{ccccc}2 & C_{1} & C_{2} & \ldots & C_{n} \\ C-1 & 2 & C_{1} & \ldots & C_{n-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ C-n & C-n+1 & \ldots & \ldots & 2\end{array}\right|$
Where, $n=1,2,3, \ldots \quad \& \quad C_{k}=\bar{C}_{k} \quad \forall$ non-negative They are strictly positive except for
$p(z)=\sum_{k=1}^{m} p_{k} p_{0}\left(e^{i t_{k} z}\right)$
$\mathrm{p}_{k}>0, \mathrm{t}_{k}$ real and $\mathrm{t}_{k} \neq \mathrm{t}_{j}$ for $\mathrm{k} \neq \mathrm{j}$ in this case $\mathrm{D}_{n}>0$ for $\mathrm{n}<\mathrm{m}-1 \& \mathrm{D}_{n}=0$ for $\mathrm{n} \geq \mathrm{m}$

(1.32Main Result

Theorem 3.1

$\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{m^{2}(m+1)^{2}}{3^{2 n}(\lambda+1)^{2}(\lambda+2)^{2}}$
Proof. f $\in \mathrm{S}(\lambda, \mathrm{n}, \mathrm{m})$ there exist on analytic function $\mathrm{p} \in \mathrm{P}$ in the unit disk D with $\mathrm{p}(0)=1$ and I.13 $\{p(z)\}>0$, such that
$z\left\{\frac{\left(\mathrm{~L}_{m}^{\lambda, n} f(z)\right)^{\prime}}{\mathrm{L}_{m}^{\lambda, n} f(z)}\right\}=P(z)=1+p_{1} z+p_{2} z^{2}+\ldots$
$\therefore z\left\{1+\sum_{k=2}^{\infty} \frac{(\lambda+1)_{k-1}}{(m)_{k-1}} k^{n+1} a_{k} z^{k-1}\right\}=p(z)\left[z+\sum_{k=2}^{\infty} \frac{(\lambda+1)_{k-1}}{(m)_{k-1}}\right.$ $\left.k^{n} a_{k} z^{k}\right]$

Equating the Coefficients,

$$
\begin{gather*}
a_{2}=\frac{p_{1} m}{(1+\lambda)^{2 n}} \tag{3.4}\\
a_{3}=\frac{\left(p_{2}+p_{1}^{2}\right) m(m+1)}{2 \times 3^{n}(\lambda+1)(\lambda+2)} \tag{3.5}\\
a_{4}=\frac{\left(2 p_{3}+3 p_{1} p_{2}+p_{1}^{3}\right) m(m+1)(m+2)}{3 \times 4^{n}(\lambda+1)(\lambda+2)(\lambda+3)}
\end{gather*}
$$

using it we get,

$$
\begin{align*}
& \left|a_{2} a_{4}-a_{3}^{2}\right|=A(m \lambda) \mid 2 p_{1} p_{3}+3 p_{1}^{2} p_{2}+p_{1}^{4}-\beta(m \lambda) \\
& \left(p_{2}+p_{1}^{2}\right)^{2} \mid \tag{3.7}
\end{align*}
$$

where,

$$
\begin{aligned}
& A(m, \lambda)=\frac{m^{2}(m+1)(m+2)}{3 \times 2^{n} \times 4^{n}(\lambda+1)^{2}(\lambda+2)(\lambda+3)} \\
& \beta(m, \lambda)=\frac{(m+1)(\lambda+3) \times 3 \times 2^{n} \times 4^{n}}{4 \times 3^{2 n}(\lambda+2)(m+2)}
\end{aligned}
$$

$=A(m, \lambda)\left\{\mid\left[(1-\beta(m \lambda)] p_{1}^{4}+(3-2 \beta(m \lambda)) p_{1}^{2} p_{2}+2 p_{1} p_{3}\right.\right.$
$\left.-\beta(m \lambda) p_{2}^{2} \mid\right\}$
by applying Lemma (2.2) and (2.3),
$=A(m, \lambda)\left\{\left\lvert\,\left[(1-\beta(m \lambda)] p_{1}^{4}+(3-2 \beta(m \lambda)) p_{1}^{2}\left[\frac{p_{1}^{2} x\left(4-p_{1}^{2}\right)}{2}\right]-\right.\right.\right.$
$\beta(m, \lambda)\left[\frac{p_{1}^{2} x\left(4-p_{1}^{2}\right)}{2}\right]^{2}+2 p_{1}\left[\frac{p_{1}^{3}}{4}+\frac{\left(4-p_{1}^{2}\right) x}{2}-\frac{p_{1}\left(4-p_{1}^{2}\right) x}{2}-\right.$
$\left.\left.\frac{p_{1}\left(4-p_{1}^{2}\right) x^{2}}{4}+\frac{\left(4-p_{1}^{2}\left(1-|x|^{2} z\right)\right.}{2}\right] \mid\right\}$

Since the function $\mathrm{p}\left(\mathrm{e}^{i \theta_{2}}\right),(\theta \in \mathrm{R})$ is also in the class p , we assume that without loss of generality that $\mathrm{p}_{1}>0$. For convenience of notation we take $\mathrm{p}_{1}=\mathrm{p}, \mathrm{p} \in[0,2]$. Applying the triangle inequality with the assumptions $\mathrm{p}_{1}=\mathrm{p} \in[0,2],|x|=\rho$ and $|z| \leq 1$ it is obtained that,

$$
\begin{gathered}
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq A(m, \lambda)\left\{\left[\left(3-\frac{9}{4} \beta(m, \lambda)\right)\right] p^{4}+p^{2}\left(4-p^{2}\right) \rho\right. \\
{\left[\frac{-3}{2}+\frac{3}{2} \beta(m, \lambda)\right]+\frac{p\left(4-p^{2}\right) \rho^{2}}{2}+\frac{\beta(m, \lambda) \rho^{2}\left(4-p^{2}\right)^{2}}{4}} \\
\left.p\left(4-p^{2}\right)\left(1-\rho^{2}\right)\right\}=F(\rho)
\end{gathered}
$$

We now maximize the function $\mathrm{F}(\rho)$ on the closed square $[0,2] \times[0,1]$ since,

$$
\begin{aligned}
F^{\prime}(\rho)= & A(m, \lambda)\left\{p^{2}\left(4-p^{2}\right)\left[\frac{-3}{2}+\frac{3}{2} \beta(m, \lambda)\right]+\frac{2 \rho\left(4-p^{2}\right)}{2}\right. \\
& \left.+\beta(m, \lambda) 2 \rho\left(4-p^{2}\right)+p\left(4-p^{2}\right)(-2 \rho)\right\}
\end{aligned}
$$

with the elementary calculus we can shows that p $'(\rho)>0$ for $\rho>0$ implies that F is an increasing function. Let $\mathrm{F}(1)=\mathrm{G}(\mathrm{p})$,
$\therefore G(p)=A(m, \lambda)\left\{\left(3-\frac{9}{4} \beta(m, \lambda)\right) p^{4}+p^{2}\left(4-p^{2}\right)\left[\frac{-3}{2}+\frac{3}{2} \beta(m, \lambda)\right]\right.$
$\left.+\frac{p\left(4-p^{2}\right)}{2}+\frac{\beta(m, \lambda)}{4}\left(4-p^{2}\right)^{2}\right\}$
$\therefore G^{\prime}(p)=A(m, \lambda)\left\{(12-9 \beta(m, \lambda)) p^{3}+p^{2}\left(4-p^{2}\right)\left[\frac{-3}{2}+\frac{3}{2} \beta(m, \lambda)\right]\right.$
$+\left[\left(4-p^{2}\right) 2 p+p^{2}(-2 p)\right]+\frac{\left(4-p^{2}\right)}{2}+\frac{(-2 p) p}{2}+$
$\left.\frac{\beta(m, \lambda)}{4} 2\left(4-p^{2}\right)(-2 p)\right\}$
upper bound for (3.3), $\mathrm{G}(\mathrm{p})<\mathrm{G}(0)$ for $\rho=1$,

$$
\begin{align*}
\therefore \mid a_{2} a_{4} & -a_{3}^{2} \left\lvert\, \leq A(m, \lambda) \times \frac{\beta(m, \lambda)}{4} \times 16\right. \\
& \leq \frac{m^{2}(m+1)^{2}}{3^{2 n}(\lambda+1)^{2}(\lambda+2)^{2}} \tag{3.12}
\end{align*}
$$

Corollary 3.1 If $m=1, \lambda=0, n=0$ we get,

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq 1
$$

This one coincides with the result in the Janteng et al.

Corollary 3.2 After necessary calculation it is obtained that,
$G^{\prime}(0)=0, \quad G^{\prime}(1)=0 \quad$ and $\quad G^{\prime \prime}(0)>0, \quad G^{\prime \prime}(1)<0$ If $G(p)$ has maximum at $p=1$, hence we get,

$$
\begin{aligned}
&\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{9}{2} \beta(m, \lambda) A(m, \lambda) \\
& \text { If } \lambda=0, \mathrm{~m}=1, \mathrm{n}=1 \\
&\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{1}{8}
\end{aligned}
$$

which also stated in Janteng et al.

References

[1]. P. L. Duren, Univalent Functions, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983.
[2]. R. Ehrenborg, The Hankel determinant of exponantial polynomials, American Mathematical Monthly, 107 (2000), 557-560.
[3]. M. Fekete and G. Szego, Eine Bemerkung uber ungerade schlichte Funktionen, J. London Math. Soc, 8 (1933), 85-89.
[4]. U. Grenander and G. Szego, Toeplitz forms and their application, Univ. of Calofornia Press,Berkely and Los Angeles, (1958).
[5]. T. Hayami and S. Owa, Hankel determinant for pvalently starlike and convex functions of order α, General Math., 17 (2009), 29-44.
[6]. T. Hayami and S. Owa, Generalized Hankel determinant for certain classes, Int. J. Math. Anal., 4 (2010), 2573-2585.
[7]. A. Janteng, S. A. Halim, and M. Darus, Coeficient inequality for a function whose derivative has positive real part, J. Ineq. Pure and Appl. Math, 7 (2) (2006), 1-5.
[8]. A. Janteng, Halim, S. A. and Darus M., Hankel Determinant For Starlike and Convex Functions, Int. Journal of Math. Analysis, I (13) (2007), 619-625.
[9]. J. W. Layman, The Hankel transform and some of its properties, J . of integer sequences, 4 (2001), 1-11.
[10]. R.J. Libera, and E.J. Zlotkiewicz, Early coeficients of the inverse of a regular convex function, Proc. Amer. Math. Soc., 85(2) (1982), 225-230.
[11]. R.J. Libera, and E.J. Zlotkiewicz, Coeficient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc., 87(2) (1983), 251-289.
[12]. G. Murugusundaramoorthy and N. Magesh, Coeficient Inequalities For Certain Classes of Analytic Functions Associated with Hankel Determinant, Bulletin of Math. Anal. Appl., I (3) (2009), 85-89.
[13]. J. W. Noonan and D. K. Thomas, On the second Hankel Determinant of a really mean p valent functions, Trans. Amer. Math. Soc, 223 (2) (1976), 337-346.
[14]. K. I. Noor, Hankel determinant problem for the class of functions with bounded boundary rotation, Rev. Roum. Math. Pures Et Appl, 28 (8) (1983), 731-739.
[15]. S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975) 109-115.
[16]. S. Goyal, R. K. Laddha, On the generalized Riemann zeta function and the generalized Lambert transform, Ganita Sandesh, 11(1997), 99-108.
[17]. C. Soh and D. Mohamad, Coeficient Bounds For Certain Classes of Close-to-Convex Functions, Int. Journal of Math. Analysis, 2 (27) (2008), 1343-1351.
[18]. T. Yavuz, Second hankel determinant problem for a certain subclass of univalent functions, International Journal of Mathematical Analysis Vol. 9(10), (2015), 493-498.

