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Abstract: Let S( , n, m) denote the class of analytic 

and univalent functions in the open unit disk, D = 

1}|<:|{ zz  with normalized conditions. In the 

present article an upper bound for the Second Hankel 

determinant || 2

342 aaa   is obtained for the analytic 

functions defined by linear operator.  
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1 INTRODUCTION, DEFINITION AND 

MOTIVATION 

Let D be the unit disk 1}|<:|{ zz . A be 

the class of functions analytic in D, satisfying the 

conditions, 

1=(0)(0) fandf           (1.1) 

 then each function f in A has the Taylor s 

expansions, 
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The q
th

 determinant for q   1 and n   is stated by 

Noonan and Thomas [14] as, 
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This determinant has also been considered by 

several authors. For example, Noorin [13] 

determinant the rate of growth of H q (n) as n   

for function f (1.1) with bounded boundary. 

Ebrenbary in [3] studied the Hankel determinant of 

exponential polynomials. The Hankel transform of 

an integer sequence and some of its properties were 

deicussed by Layman s article[9]. It is well known 

that [4] for f   S and given by (1.2) the sharp 

inequality 1|| 2

23 aa  holds. This corresponds to 

the hankel determinant with q = 2 and k = 1. 

After that, Fekete-Szego further generalized the 

estimate || 2

23 aa   with real   and f   S for a 

given class of functions in A the sharp bound for the 

non linear function || 2

342 aaa   is known as the 

Second Hankel Determinant. 

This corresponds to the Hankel determinant 

q = 2 and k = 2. In particular sharp bounds of article 

[8][12][16][17] for different subclass of univalent 

function. 
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Motivated by the above mentioned results 

obtained by different authors in this direction. In this 

paper we consider a certain subclass of analytic 

functions and obtain an upper bound to the function 

|| 2

342 aaa   for the function f belonging to this 

class defined as follows, 

 

Definition 1.1 A function f   A is said to be in 

the class, 
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for f j    A given by, 

1,2)=(=)( ,
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the Hadamard product (on convolution) f 1    f 2  of 

f 1  and f 2  is defined by, 
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recall that a family of the Hurwitz-Lerch zeta 

function 

 (z,S,a) [13] is defined by, 

s

n

n

n

n an

z
aSz

)()(

)(
=),,(

,

,

0=

,

,


 











                    

(1.9) 

1)|=|1>)(=

1;|<|=

;,<;,;\;(
0

zwhensand

zwhensand

zsand











 

C

CRZCC
 

Contains as its special case not only the Hurwitz-

Lerch Zeta function, 
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(1.10) 

but also the following generalized Hurwitz-Zeta 

function introduced and studied earlier by Goyal and 

Laddha [22] 
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which for convenience are called the Goyal-Laddha-

Hurwitz-Lerch Zeta function. Here (x)k 
is 

Pochhammer symbol (or the shifted factorial, since 

(1) k  = k!) and (x) k  given in terms of the Gamma 

functions can be written as, 
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 (1.12) 

It follows that the Aabed Mohammed et al. [1] 

introduced the linear operator, 
n

m

,L f(z) as the 

following. For   = 1, in (1.11), we consider the 

function,
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Thus, 
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For s = n,     0N  and   = m, we define the 

linear operator 
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Definition 1.2 The function f(z)   A is said to be in 

the class S( , n, m)if it satisfies the inequality, 
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2  Preliminaries & Notations 

  

Lemma 2.1 If the function p   P is given by the 

series,  

 2

211=)( zCzCzp  

 then the following sharp estimate holds,  

         
1,2,=2|| kpk   

 Lemma 2.2 If the function p   p is given by the 

series then,  
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 for some x,z, || x  1, || z  1. 

Lemma 2.3 The power series of p given in (2.1) 

converges in   in to function p if and only if the 

Toeplitz determinant 
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 They are strictly positive except for  
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 p >k 0 , t k  real and t k    t j  for k   j in this case 

D >n  0 for n <  m - 1 & D n  =0 for n   m 

3  Main Result 

Theorem 3.1  
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 Proof. f   S(  , n, m) there exist on analytic 

function p   P in the unit disk D with p(0) = 1 and 

)}({ zp  >  0, such that 
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Equating the Coefficients, 
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 using it we get, 
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where, 
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by applying Lemma (2.2) and (2.3), 
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       Since the function p(e 2
i

), ( R ) is also in 

the class p, we assume that without loss of generality 

that p 1  >  0. For convenience of notation we take     

p 1  = p, p   [0,2]. Applying the triangle inequality 

with the assumptions p 1  = p   [0,2], || x  =   and 

|| z    1 it is obtained that, 
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We now maximize the function F(  ) on the closed 

square [0,2]   [0,1] since, 
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with the elementary calculus we can shows that p

)('   >  0 for   >  0 implies that F is an 

increasing function. Let F(1) = G(p), 
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 upper bound for (3.3), G(p) <  G(0) for   = 1, 
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Corollary 3.1 If m = 1,   = 0, n = 0 we get,  

1|| 2

342  aaa   

 This one coincides with the result in the Janteng et 

al. 

Corollary 3.2 After necessary calculation it is 

obtained that,  
0<(1)0,>(0)0=(1)0,=(0) GGandGG   

 If G(p) has maximum at p = 1, hence we get,  

           ),(),(
2

9
|| 2

342  mAmaaa   

                                   If   = 0, m = 1, n = 1. 
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 which also stated in Janteng et al. 
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