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Abstract — In this paper, we give a characteriz-
ation (optimality system) of a quadratic optimal
control for an ill-posed wave equation without using
the extra hypothesis of Slater (i.e . U;; set of
admissible controls has a non-empty interior). By
using a parabolic regularization we get a missing
data problem where we associate a no-regret
control to obtain a singular optimality system, then
we pass to limit and by a corrector of order zero we
complete the information.
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I. INTRODUCTION

The optimal controls of ill-posed problems are not
generally regular then its characterization may be
different of standard optimal control problems. The
aim of this paper is the optimal control characteriza-
tion for an ill-posed wave problem (instable
problem) without requiring Slater hypothesis i.e. the
set of admissible controls U;: has a non-empty
interior (see [1] and [9]), which is a strong
hypothesis for this we’ll try to avoid this condition
by making another approach it’s the regularization
i.e. approximate the hyperbolic ill-posed problem by
a sequence of parabolic well-posed problems but
with incomplete data and taking control u such that
J(w gl = J(0.g)%g in some Hilbert space
it’s the first idea WhICh leads to the no-regret control
definition (the no-regret control notion has been
used by J.L.Lions in [3] after been introduced by
Savage [7] in statistics) and approximate it by a
sequence of low-regret controls. After backing by
limit to no-regret control we miss information
about the final data v (T} and by a zero order
corrector (see[4]) we recover her .

I1. PRELIMINARIES

Consider an open domain 11 = B¥ with smooth
boundary I, and denote by @ = (. T = 01, and by
I=(0.T)xT, v &Ll (@) It's well known that
the following wave problem:

¥y —Ay=w ing
y(0) =0; ¥'(0) =0 inn 1
y=10 on I

is well-posed with:

1 (0.7: HEQ) nEAO),
v e Lt (0. T; H-t(0))
(see [2] or [5] ). If we substitute the condition
¥ (0} =0 byy (T} = 0 the above system has no
solution (ill-posed).
Counter-example: Consider the one-dimensional

i

1
¥
o

wave equation:
2%y 3%y - -

(;—__—;T-:=u in]0.1[x]0.T1

1 p(x,0) = 0: v(x.T) =0 in]0.1] =
y(0.t) = 0; 1 -\1.2! =0 in]0.T[

where v € 12(0, T: £2(0,1)), with

l2
v{xt) = |— E i, sinnmx

W onzl
and v, € & for every n = 1. The solution ¥ (x. %} if
it exists may be written

- "

qr o= |+| 1 { |
LX, - -u-.

¥ xJ.’ |.‘_| | 7 WL W, LA

nzi

with w, (x} = ,/2/7 sinnmx. Then we obtain the
second order ordinary differential equation for every
n=1:

) ?-_1'?. .
gz TN Ve = Ty (3)
Llwxl:ll —l:l |1-\.-|| '_.I —_ l:l

And by variation of constants we get:

STt
-
. 213, nr(t — T) sin 7
Yo \t) = —— sin 5 —
n=m= [ETI¥y
cos 2
amle—r) S5

but lim,_ . =% sin —=; does not exist,

- oz
i.e. the series diverges and the solutlon does not
exist.
Remark 1: The above problem has a unique
solution but for © in some dense subset of L= (g1,
For{example.,. consider

N N
= jw= y Aywp such that:—Aw; = 4wy :':*:ﬂ;l
o= P ' O 3

I - : 2, '
L wi = 0 on 00 and w; EL(0) !

thereis f € L* iﬂ Iand w & P such that:

s N
l,-":r.tj = |: Z ,-__ul-_ fl:|

for given v = *E<-- 'G J (which is dense in L*(g])).
Just take v of the form v (x. £) = {(t)wix) where

{=1(Z.%....%) solves the following system of
ODEs:
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i '-_ - oo
+ A48 = flt)
ge f i=1 ...
G0 =0:5(T =0
and (2} has a unlque solution. m
For the rest of this paper we shall consider the
following wave equation:

vy —dAy=vw ing
() =0 T} =0 inn (4)
=0 onl

111.THE OPTIMAL CONTROL PROBLEM

Let U.: a non-empty closed convex subset of
L*(Q) the space of controls, with the quadratic cost
function:

;":L-‘._‘_.‘:' = lly — vy

. N . .
2y + Nl 2 L)

= L e L

where € U_: , vz is a desired state in L*(QJ,

A pair (u.z)e U= L*(Q) satisfying (4) i
called a control state feasible pair. We suppose in
what follows that there exists at least an admissible
pair, and we consider the optlmal control problem:
'.:1t ‘_“-'L ¥) (6)

WhICh has a unique solution .z} that we should
characterize.

Lemma 2: The problem (6) has one only solution
{u.z) called the optimal pair.

Proof: J:L*(Q) = L*(@) — R is a lower semi-
continuous function, strictly convex, and coercitive.
Hence there is a unique admissible pair (u.z)
solution to (6). A celebrate classical method to
characterize the optimal control solution of (4)-(6) is
the penalization method, which consists to approxim
-ate (w,z} by the solution of some penalized
problem. More precisely, for z = 0 we define the
penalized cost functioln:

T /111'\- =T a 11‘ -
Jelw vl —J-'\ta.f.,l—7_ y Ay —vllzg

The optimal pair [;.z.) then converges to (u.z)
when z = 0.

The optimality conditions of Euler-Lagrange for
ME z. } are the following:

d

r . A I
o -E' U,z + tly — =2 l,'| =0 wzel-g! 7]
C =0
and
o . i o - . . T o
— Jlug.z + £y — z.)) =0wvrel, 8)
FP ] Mo ad

Theorem 3: Under the Slater hypothesis
U2 has a non-empty interior 9)
there is a unique (u.z.z) € U . = L2(Q) = L2(Q).
solution to the optimal control problem (4) and (5) -
(6). Moreover, this solution is characterized by the
following singular optimality system (SOS):

[z —Az=u p—ldp=z— in @

— P ey - 3 -\.
=0 =0; =z(T) =0, pl0) =0; pT) =0, in2 (10)
LY T = I:I 5 = |:| on l_
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and the variational inequality
p+Nuv—wpamnz0 vrelg, {11)
Proof: Again we introduce the penalized cost
function:

. o 1 . .
s =-'II\U"'II_E 3 —.:'._‘_.‘—L-' E:.:?.'
forand v & Uz and y € D(R) where:
by ={ &ee ~Leel@ 1
Lol =T =0e=0onI) (12)
Rp =¢" —Ap
Let (u..z.) be the sqlutlon of )
ot i e y) = Jelueze) (13)
We have
z; —lAz: =u+vef fllzg =€ Q4
An optimality system is obtained by taking
1 y
g = —t I Z, — |:'| I

then from (7
{Zg =¥ Vg — e RVIzg =0 vy e D(RI(15)
and the variational mequallty
po+ Nugv —ugb2g =0 ve el
Then We shall get the result by passing to limit, if
we prove that

vl = C
By (9) and Remark 1 we can find v, € U,z and
r = [ such that

if lv —vpll = v then v e Uy

and that

there exists v, € D(R) verifies Ry = 17

We have

(o, + Nugw —ugtpg = X + v —uglig
With

X =Ap, + Nugvg — uzdpzg + (Nup v — vodizig
But with taking ¥ = 17 in (15), this yields

': l.-.:'--.-\.—':.:.—‘__-.u-::'

Both takmg ¥ = z;and usmg (14) leads to
p_. J':.-.—'fc.—1..' 1+ fi;._.___.
Therefore

Xl=c

Thus

lpv —vplizm = —C forevery v e Uy with lv— vy

Whence

< |
|

|

The last theorem required to use the hypothesis of
Slater, but some sets like
(177 ={fel*(@Lf =0} that has an empty
interior can be used as a feasible set of controls v,
for this reason we’ll give another approach.

IV.APPROXIMATION BY A PARABOLIC
EQUATION WITH INCOMPLETE DATA

Let’s approximate the problem (4) by:

Yo — Ay —cldy =v in Q
P
v:=0 on X (18}

v (0) =3 (T) =0,v.'(0) = g inn
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where g is an unknown function in L*{22}, £ > 0. For
any data (v.g) there exists a unique solution
v: = v:(1 g} for the parabolic equation (16) (see

[4]).
Consider the quadratic cost functlon
Jelwg) =ly:(v.g) = yalliz g + Nlivllzg (17
We want
inf J-'Ew g) for every g € L*(01)
If G = L7 is finite (17) has a sense, else it has
no sense.

A natural idea is to take

nf |I sup Je(v. gJ |I
ad \ gez? () /
We could get sup J.(v. g) =+, Another idea
ger2ind

put forward by J.L.Lions : looking for controls such
that:
J:(v.g) =].(0.g) vg
In other word
Jlu gl —J.(0,g) =0 vg e LMD

Definition 4: We say that v £ I_ 2 is a no-regret
control for (16) (17) if u is the solution of:

LIl
Lo11)

m

R

L=

p
inf |I sup 'jsuf g} —].(0 " | (1
VEUad \ gEL- L

They called no-regret controls because they are
doing better than v = 0 (domg nothing).

Lemma 5: For every v € U_. and g € L1} we

have:
Jelwg) — 00,90 = J v, 00 — J00.00 + 205000, gz oy
(19)
With
EU— AP, + 20, = viv. g) in
=10 onI (20)
.’_'-'iu 1=, £ T =10 in 1
Proof: By a S|mple calculus we find:
,'E'\L-‘ PI_'E\I:I pl_J.EI\L, _'slkl:l —{'EI:L"":I:I':"

and by using Green formula we get
(e o, 00, 3.0, g W 20y = (E,(00 ghpzem
where £ is given by (20). |
The problem (18) is defined only for v = U, that
verify
sup (J (v g) — ].(0. g)) exists
eIz
i.e. ifand only if v £ K where )
K= {1 £ gz {E___{II': wh g = 0.vg € L7(0)}
The main difficulty arises here is that this set is hard
to characterize, to eliminate this difficulty we relax
our problem and we define the low-regret control.
Definition 6: We say that u £ [/,s is a low-regret
control for (16)- (17) if u is a solution of:

E"_-'..ll—' '|:' .4| |:-3|:: n.Jl ':_.Elrl

=1
PEL 4 '-.ji
where =10,

Use (19) to remark that:

- U

L

il i 3 4
sup 'JE'\I.» g -10g-7lg .n.,,.‘:JI‘E'\V.U‘—;‘E'\Uﬂl— sup 'WE\Ul gz~ 7lglzg)
geA(n get*(f)

1
=160 -,00) +- fitnl

to get a classical control problem

nf J‘ékbl (2
with
Vo I g I3 e 1 P 2 . 9
J:‘é ) = J:'_._I\__'__'Ilzl__l —_Il-___"_l:l.lzl_J + = _)r_._l\[l__l 2o (23}

We see that (22) - (23) is a standard control problem.
We replace (21) by (22)-(23) for the low-regret
control problem.

Lemma 7: The problem (16)-(22)-(23) has a
unique solution ; called the approximate low-regret

control.
Proof: We have J: (v} = —].(0.00 = =yl = o
for every v e Uz, this means d = inf j ()

exists. Let (1] be a minimizing sequence with
d=lim,_..J. (v,) then

% I S P " - - o “ 112 -
—lye iz =7 ) = [, 0) = 000+ =15 0w ey =d +1
¥

R S

which gives the bounds

1

. - - -

Uplltig = C—=l{ v M, =G
: Wy E el 4]

Ve (1, 00 — G =0
where C isa constant independent of =:

There exists =, such that v, — u weakly in Usg
(closed), also i.it_lf,,,.[lj—*:‘i.‘ ".0) because of
continuity w.r.t. the data. Since ,‘;\b' is strictly
CoNnvex i unique. [

Proposition 8: The approximate low-regret
control u; is characterized by the unique

[ .&1. o] defined by: )
[ ;; — oyl —any! = u!
£ -0 +ebE] =y
{80020 'Ts - ':".-'-7':;" - E.i'..-:i" =0 )
P; T Ap; T ehp, = -"i. __,'_"d +p inQ
e ='3-fg =0.p =0, p/=00onr
() =y! (0) =0
‘fi.,\1 )= ‘fs 'u =0
e A 1 Vo
SE I\I:I"I = I:I"gi INI:I?I =;§E le:l.-l
\ p!M) =p!' M) =0 inn
and the variational inequality:
':_52-'_-.,..1 [.-—,_J}_E,U Wi e [ .-A

Proof: First order Euler condition for (22) and
(23) gives:

=y velw, 0z g + A Nug whzeg =8 000 E w0z =
: N

with ~.~3":;.~in::u3".n::n, and = (uln). Let
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pl" - .j,,,i —ztp] =0ingQ and by using Gronwall lemma we obtain the first
Y—0 onT part of (25).
3 7 1 By integrating over 21 we obtain
7000 = A0 =—F (0 v 0 - - e = LI | b

LHE 03 =0.p, (0)=24.50) in =8| Ve '” n i T |3'f' g | P
Agaln by using Green formula _ .. I” -

=&l ¥e LL _ sy

~(or#zim)

(ol e Gw 00) iz g = (o] (@)L £ (002
The estimates (26),(27) and (28) are the same.

- "; £ (0. €. (w. 0102 Theorem 10 The approximate no-regret control

Introduce ». = », .;'u;', o) with: u; = lim.._, u; for the ill-posed wave equatlon 4)
(Es _apl 4 -.imi =y g +5 im0 Lsycharacterlzed by the unique {y..f fooc.pep given
w = T .
l . e “::I!c:n_ r v = Ay — shy = u,
pe Al =p, W0)=0inlk £ —AE_+e0E =,
ThIS gives £ LB
(vt — + o8 v lw, 0,2 =’ Wi g — ':"'-'s —&ldp, =10
Ve T TR Ve Wi = R WA b —Ap, +ehp. = Yo — Va4 +p. inQ
Finally: ' : ' oo -
L ve=0f =0p=0p.=0onl
{pl + Nulwlzim =0 Ywely PP
" . = v (0} =4."(0) =0
Now we give a smgular optimality system for the ‘rir-—‘. _ f.l,l_xl — 0
approximate no-regret control solution of (16} (17] Rane T
(18], Before doing this we give some a priori 2: '\D,'z_=‘ 0. 2. «U' =1.(0)
estimates as follows: . p.(T)=p,/T) =0 in0
Proposition 9: The following a priori estimates with the foIIowmg limits: )
hold for some € = 0 ug = Hmug .y, = limy! .f_ =lim#’,
, . 1 y=oTE T =g
ofll . Wlpg 2Oz 2028 5= limpl . pe = lim .
R Rk - and the varlatlonal inequality:
7= 1@ (o) SE 'ﬁ'_: rag () = Cpe + Nugow — ug g = 0 wrel,
£ "'I.'i:..l. ;-ﬂ:l.: _-':H!.E."- i ¢ I:ES:I Wlth T P T
2 az ug¥e £oppe € 17(Q) 4, (00 e L7(0)
Sl mforareny T ey ra) =€ Proof: By the above proposition [ . =¢
el o =c (26) and from (26) we see that £/ (resp. 7; ) satisfies
£ N® om0 ) — } z 7
.z W 0 N =
i | TR N | VLY | v = e lp=(pra? (0] relp®(pradim) =
Fe Wp=|pratind) Fe llp=(pmudim) = - .
: ' - S respectively
= P L= (27 ¥l 2 g _
e Ny rmpem) = € = 2l e foraz ey + 128 Ui o gy = €
P Nl o ez o) F 1Pe o tp goastcnyy = € then £ —f (respectlvely p! —w::u) weakly in
|l L =c (28 ---l:] 1:..153“”“ by com_paan{ess EE - £
e = (ot ) (respectively »T — »_) strongly in L= 0. T: L= (1))
Proof: u, is the approximate low-regret control Also »7 — p_ strongly in 1*(0,T: L2 ().
then Finally it follows /(o) —.(0) in L7(Q).
Jelug) =2J:0w) wv e Ugg
in particular when u =0 ) u _
_ 1o Finally, all those results leads to the following
(ul.0) - J:(0, ':"+ |~.-é":' o =5 1500 theorem that characterize the no-regret control for
but £.(0.0) in T % G.I]so (4) -(6).
o - z ol 1, . . . Theorem 11: The no-regret control u = lim, ., u,
Yeltig, 0) =y llz g + Nlluglla g + 71 000z g = ligoor thenanégwwave RUAKTEHNA) © Characterized
we obtain (24). by the unique {y. £. 2. »} given by:

For (25), multiply by v and integrate over
(0.t} = 0 to obtain:

L
2 1 - r . 7 .
:.||1.i-.| + =l o, = ||'.'i-'-~r| + |t =), o | E5
’ i 2 ¥ Ha(Mh) : I*(00) 2
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order corrector which is introduced by Lions in [4].
First, we make the regularity hypothesis
v,y e 20T Hi()) (29)
Definition 12: We say that
corrector if

is a zero order

G otz + 8 VEL Vel + (V6. Vel 2
=izf, —\Ef qa} 1m T e '”'f“'l
EE ___IE = '-Jrflxqal
6.0 =060 +6(T =0
with
felz(oramrm) =€
felzforamrm) =€

Remark 13: If is a zero order corrector then
mis also a zero order corrector, then we’ll take the

corrector with
_ |1 in the neighberhood of ¢

Oin the neighborhood of t
Theorem 14: Let & be a corrector of order 0
defined by (30) and (31), then

vy = (8 +y) =oratm) T 8-ty = (ora?
8. — (8. + v = 0weakly in [} 0.7 He () I
Proof: Let w, =y, — (5, —;.{I then for every

w e Hi ()

by taking sup on [0.T]

s vy —Ay =u
I A= Nk T2
’ —iﬁn =0 e l-“ (0.72%(m) * b l;“":.‘-H'g.“ * el 0.T: 2310 =

5 —Ap=y—ys+ping which gives (32) and

y=0f=0p=0p=0onk |”‘i|;--:.'-.u.= V=€
y(0) = ' (0) =0 we deduce (33) with
(M =¢m=o0 Welly2po 7 gy = €
p(0) =0.p'(0) = 4(0) "

\ p(T} =p'TI =0 inN By using zero order corrector with (32) and (33)

with the followmg limits: we can complete information about y and announce
v _LT'E"-'_E':I:' D_ETJ J:!;.Z‘I:.ﬂi the next theorem:

and the variational mequallty. Theorem 15: The quadruplet {y.Z. 0.z} satisfies

o4 . M by the mean of zero order corrector:

': Nu, v -ul.:l = 0 VI = Ugg P

= ‘I‘ - VvV — U

where o T AF =
U.‘:‘.-E-_S-_E E |-||:|I .4."'.], e L) : ,:l,\.'n—l:l

Proof: See [4] . [ - - .

p—Ap=y—yy +pinQ

V. CORRECTOR OF ORDERO0 y=04{=0p=0p=0onl

We remark that the passage to limit in the last ylr =y ol =
theorem gives no information about ¥ (T}, to ) {'w' f=i)=0
recover this value we shall use the notion of zero pll) =0, 0000 = A00)

L su )= 5":1_:' = in [}

and the variational inequality:
g =0 vre Uy,

{p+ Nu

VI1.CONCLUSIONS

In this work we avoided requiring the Slater
hypothesis (9) to characterize the optimal control of
(4)-(5) by using the regularization technique that
gives another approach for studying an optimal
control of singular distributed problem.
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