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Abstract — In this paper, we give a characteriz- 

ation (optimality system) of a quadratic optimal 

control for an ill-posed wave equation without using 

the extra hypothesis of Slater (i.e .  set of 

admissible controls has a non-empty interior). By 

using a parabolic regularization we get a missing 

data problem where we associate a no-regret 

control to obtain a singular optimality system, then 

we pass to limit and by a corrector of order zero we 

complete the information.  
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I. INTRODUCTION  

    The optimal controls of ill-posed problems are not 

generally regular then its characterization may be 

different of standard optimal control problems. The 

aim of this paper is the optimal control characteriza- 

tion for an ill-posed wave problem (instable  

problem) without requiring Slater hypothesis i.e. the 

set of admissible controls  has a non-empty 

interior (see [1] and [9]), which is a strong 

hypothesis for this we’ll try to avoid this condition 

by making another approach it’s the regularization 

i.e. approximate the hyperbolic ill-posed problem by 

a sequence of parabolic well-posed problems but 

with incomplete data and taking control  such that 

  in some Hilbert space 

it’s the first idea which leads to the no-regret control 

definition (the no-regret control notion has been 

used by J.L.Lions in [3] after been introduced by 

Savage [7] in statistics) and approximate it by a 

sequence of low-regret controls. After backing by 

limit to no-regret control we miss information 

about the final data  and by a zero order 

corrector (see[4]) we recover her . 

II. PRELIMINARIES  

    Consider an open domain  with smooth 

boundary , and denote by  , and by 

,  It’s well known that 

the following wave problem: 

              

is well-posed with: 

 
  

(see [2] or [5] ). If we substitute the condition 

 by  the above system has no 

solution (ill-posed). 

    Counter-example: Consider the one-dimensional 

wave equation:  

 

where , with 

 
and  for every . The solution  if 

it exists may be written 

 
with . Then we obtain the 

second order ordinary differential equation for every 

: 

                     

And by variation of constants we get: 

 

but  does not exist, 

i.e. the series diverges and the solution does not 

exist. 

    Remark 1: The above problem has a unique 

solution but for  in some dense subset of . 

    For example, consider 

 
there is  and  such that: 

 
for given  (which is dense in ). 

Just take  of the form  where 

 solves the following system of 

ODEs: 
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and  has a unique solution.  

    For the rest of this paper we shall consider the 

following wave equation: 

                  

III. THE OPTIMAL CONTROL PROBLEM 

    Let  a non-empty closed convex subset of 

 the space of controls, with the quadratic cost 

function: 

 
where  ,  is a desired state in , 

. 

    A pair  satisfying (4) is 

called a control-state feasible pair. We suppose in 

what follows that there exists at least an admissible 

pair, and we consider the optimal control problem: 

 
    which has a unique solution  that we should 

characterize. 

    Lemma 2: The problem (6) has one only solution 

 called the optimal pair. 

    Proof:   is a lower semi-

continuous function, strictly convex, and coercitive. 

Hence there is a unique admissible pair  

solution to (6). A celebrate classical method to 

characterize the optimal control solution of (4)-(6) is 

the penalization method, which consists to approxim 

-ate  by the solution of some penalized 

problem. More precisely, for  we define the 

penalized cost function: 

 
    The optimal pair  then converges to   

when  0. 

    The optimality conditions of Euler-Lagrange for 

 are the following: 

 
and 

 

 
    Theorem 3: Under the Slater hypothesis 

                 has a non-empty interior             (9) 

there is a unique  

solution to the optimal control problem (4) and (5) - 

(6). Moreover, this solution is characterized by the 

following singular optimality system (SOS): 

 

and the variational inequality 

 
    Proof: Again we introduce the penalized cost 

function: 

 
for and  and  where: 

 
Let  be the solution of 

 
We have 

 
An optimality system is obtained by taking 

 
then from  

 
and the variational inequality 

 
Then, We shall get the result by passing to limit, if 

we prove that 

 
By (9) and Remark 1 we can find  and 

 such that 

 
and that 

 
We have  

 
With 

 
But with taking  in (15), this yields 

 
 Both taking and using (14) leads to 

 
Therefore 

 
Thus 

 
Whence 

    

    The last theorem required to use the hypothesis of 

Slater, but some sets like 

  that has an empty 

interior can be used as a feasible set of controls , 

for this reason we’ll give another approach. 

IV. APPROXIMATION BY A PARABOLIC 

EQUATION WITH INCOMPLETE DATA 

    Let’s approximate the problem (4) by: 
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where is an unknown function in , ε > 0. For 

any data  there exists a unique solution 

 for the parabolic equation (16) (see 

[4]).  

    Consider the quadratic cost function: 

 
We want 

 
    If    is finite (17) has a sense, else it has 

no sense. 

    A natural idea is to take 

 
We could get . Another idea 

put forward by J.L.Lions : looking for controls such 

that: 

 
In other word 

 
    Definition 4: We say that  2 is a no-regret 

control for (16) (17) if u is the solution of: 

      

They called no-regret controls because they are 

doing better than  (doing nothing). 

    Lemma 5: For every  and  we 

have: 

 

 
With 

 

Proof: By a simple calculus we find: 

 
and by using Green formula we get 

 
where  is given by (20).  

    The problem (18) is defined only for   that 

verify 

 
i.e.  if and only if  where 

  
 The main difficulty arises here is that this set is hard 

to characterize, to eliminate this difficulty we relax 

our problem and we define the low-regret control. 

    Definition 6: We say that  is a low-regret 

control for (16)- (17) if  is a solution of: 

 
where  

Use (19) to remark that: 

 
to get a classical control problem : 

                             

with 

 
We see that (22) - (23) is a standard control problem. 

We replace (21) by (22)-(23) for the low-regret 

control problem. 

    Lemma 7: The problem (16)-(22)-(23) has a 

unique solution  called the approximate low-regret 

control. 

    Proof: We have  

for every , this means   

exists.  Let  be a minimizing sequence with  

  then 

 
which gives the bounds 

 

 
where  is a constant independent of : 

    There exists  such that weakly in  

(closed), also  because of 

continuity w.r.t. the data. Since  is strictly 

convex  unique.  

    Proposition 8: The approximate low-regret 

control  is characterized by the unique 

 defined by: 

 
and the variational inequality: 

 
    Proof: First order Euler condition for (22) and 

(23) gives: 

 

 
with , and . Let 

 be the solution of: 
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Again by using Green formula: 

 

 
    Introduce  with: 

 
This gives 

 
    Finally: 

                

Now we give a singular optimality system for the 

approximate no-regret control solution of  

. Before doing this we give some a priori 

estimates as follows: 

    Proposition 9: The following a priori estimates 

hold for some  

 

  

 

                                                       

 

  

 

  

 

    Proof:  is the approximate low-regret control 

then 

 
in particular when  

 
but  in  so 

 
we obtain (24). 

For (25), multiply by  and integrate over 

  to obtain: 

 

 

and by using Gronwall lemma we obtain the first 

part of (25). 

By integrating over  we obtain 

 

 
    The estimates (26),(27) and (28) are the same.  

    Theorem 10: The approximate no-regret control 

 for the ill-posed wave equation (4) 

is characterized by the unique  given 

by: 

 
with the following limits: 

 

 
and the variational inequality: 

 
with 

 
    Proof: By the above proposition  

and from (26) we see that  (resp. ) satisfies 

 
respectively 

 
then  (respectively ) weakly in 

 by compactness  

(respectively ) strongly in . 

    Also  strongly in . 

Finally it follows  in . 

 

    Finally, all those results leads to the following 

theorem that characterize the no-regret control for 

(4) -(6). 

    Theorem 11: The no-regret control   

for the ill-posed wave equation (4) is characterized 

by the unique  given by: 
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    with the following limits: 

 
    and the variational inequality: 

 
    where 

 
    Proof: See [4] .  

V. CORRECTOR OF ORDER 0  

    We remark that the passage to limit in the last 

theorem gives no information about , to 

recover this value we shall use the notion of zero 

order corrector which is introduced by Lions in [4]. 

First, we make the regularity hypothesis 

 
Definition 12: We say that is a zero order 

corrector if 

 
    with 

 
 

Remark 13: If  is a zero order corrector then 

is also a zero order corrector, then we’ll take the 

corrector with 

 
     Theorem 14: Let  be a corrector of order 0 

defined by (30) and (31), then 

 

 
    Proof:  Let  then for every 

 

 
put  , then 

 
by integration over  

 

by taking sup on  

 
    which gives (32) and 

 
we deduce (33), with 

 

 
    By using zero order corrector with (32) and (33) 

we can complete information about y and announce 

the next theorem: 

    Theorem 15: The quadruplet  satisfies 

by the mean of zero order corrector: 

 
    and the variational inequality: 

 

VI. CONCLUSIONS 

 

    In this work we avoided requiring the Slater 

hypothesis (9) to characterize the optimal control of 

(4)-(5) by using the regularization technique that 

gives another approach for studying an optimal 

control of singular distributed problem. 
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