On general Eulerian integral of certain products of multivariable

I-functions and a class of polynomials

F.Y. AYANT ${ }^{1}$

1 Teacher in High School, France

ABSTRACT
The object of this paper is to establish an general Eulerian integral involving the product of the I-function defined by Nambisan et al [2], the multivariable I-function defined by Prasad [1], a general class of multivariable polynomials and a generalized hypergeometric function which provide unification and extension of numerous results. We will study the particular case concerning the multivariable H -function defined by Srivastava et al [8] and the Srivastava-Daoust polynomial [5].

Keywords: Lauricella function of several variables, multivariable I-function, generalized hypergeometric function, multivariable H -function, Srivastava-Daoust polynomial

2010 Mathematics Subject Classification. 33C60, 82C31

1.Introduction

In this paper, we evaluate a general Eulerian integral concerning the product of the multivariable \bar{I}-function defined by Nambisan et al [2], the multivariable I-function defined by Prasad [1], a generalized hypergeometric function and a class of multivariable polynomials. We will give a serie expansion of a \bar{I}-function.

First time, we define the multivariable I-function by :
$I\left(z_{1}^{\prime \prime \prime}, \cdots, z_{v}^{\prime \prime \prime}\right)=\begin{gathered}\bar{I}_{P, Q: P_{1}, Q_{1} ; \cdots ; P_{v}, Q_{v}}^{0, N: M_{1}, N_{1} ; \cdots ; M_{v}, N_{v}}\left(\begin{array}{c}\mathrm{z}_{1}^{\prime \prime \prime} \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{z}_{v}^{\prime \prime \prime}\end{array} \quad\left(\mathrm{a}_{j} ; \alpha_{j}^{(1)}, \cdots, \alpha_{j}^{(v)} ; A_{j}\right)_{N+1, P}:\right. \\ \\ \\ \\ \\ \left.\mathrm{b}_{j} ; \beta_{j}^{(1)}, \cdots, \beta_{j}^{(v)} ; B_{j}\right)_{M+1, Q}:\end{gathered}$

$$
\begin{align*}
& \left(\mathrm{c}_{j}^{(1)}, \gamma_{j}^{(1)} ; 1\right)_{1, N_{1}},\left(c_{j}^{(1)}, \gamma_{j}^{(1)} ; C_{j}^{(1)}\right)_{N_{1}+1, P_{1}} ; \cdots ;\left(c_{j}^{(v)}, \gamma_{j}^{(v)} ; 1\right)_{1, N_{u}},\left(c_{j}^{(v)}, \gamma_{j}^{(v)} ; C_{j}^{(v)}\right)_{N_{v}+1, P_{v}} \\
& \left.\left({ }^{(1)}, \delta_{j}^{(1)} ; 1\right)_{1, M_{1}},\left(\bar{d}_{j}^{(1)}, \delta_{j}^{(1)} ; D_{j}^{(1)}\right)_{M_{1}+1, Q_{1}} ; \cdots ;\left(\bar{d}_{j}^{(v)}, \delta_{j}^{(v)} ; 1\right)_{1, M_{v}},\left(\bar{d}_{j}^{(v)}, \delta_{j}^{(v)} ; D_{j}^{(v)}\right)_{M_{v}+1, Q_{v}}\right) \tag{1.1}\\
& \quad=\frac{1}{(2 \pi \omega)^{v}} \int_{L_{1}} \cdots \int_{L_{v}} \phi_{1}\left(s_{1}, \cdots, s_{v}\right) \prod_{i=1}^{v} \xi_{i}^{\prime}\left(s_{i}\right) z_{i}^{\prime \prime \prime s_{i}} \mathrm{~d} s_{1} \cdots \mathrm{~d} s_{v} \tag{1.2}
\end{align*}
$$

where $\phi_{1}\left(s_{1}, \cdots, s_{v}\right), \xi_{i}^{\prime}\left(s_{i}\right), i=1, \cdots, v$ are given by :
$\phi_{1}\left(s_{1}, \cdots, s_{v}\right)=\frac{1}{\prod_{j=N+1}^{P} \Gamma^{A_{j}}\left(a_{j}-\sum_{i=1}^{v} \alpha_{j}^{(i)} s_{j}\right) \prod_{j=M+1}^{Q} \Gamma^{B_{j}}\left(1-b_{j}+\sum_{i=1}^{v} \beta_{j}^{(i)} s_{j}\right)}$
$\xi_{i}^{\prime}\left(s_{i}\right)=\frac{\prod_{j=1}^{N_{i}} \Gamma\left(1-c_{j}^{(i)}+\gamma_{j}^{(i)} s_{i}\right) \prod_{j=1}^{M_{i}} \Gamma\left(\bar{d}_{j}^{(i)}-\delta_{j}^{(i)} s_{i}\right)}{\prod_{j=N_{i}+1}^{P_{i}} \Gamma^{C_{j}^{(i)}}\left(c_{j}^{(i)}-\gamma_{j}^{(i)} s_{i}\right) \prod_{j=M_{i}+1}^{Q_{i}} \Gamma^{D_{j}^{(i)}}\left(1-d^{(i)}{ }_{j}+\delta_{j}^{(i)} s_{i}\right)}$
$i=1, \cdots, v$
Serie representation
If $z_{i}^{\prime \prime \prime} \neq 0 ; i=1, \cdots, v$
$\delta_{h_{i}}^{(i)}\left(\vec{d}_{j}^{(i)}+k_{i}\right) \neq \bar{d}_{j}^{(i)}\left(\delta_{h_{i}}^{(i)}+\eta_{i}\right)$ for $j \neq h_{i}, j, h_{i}=1, \cdots, m_{i}(i=1, \cdots, v), k_{i}, \eta_{i}=0,1,2, \cdots(i=1, \cdots, v)$, then
$\bar{I}\left(z_{1}^{\prime \prime \prime}, \cdots, z_{v}^{\prime \prime \prime}\right)=\sum_{h_{1}=1}^{M_{1}} \cdots \sum_{h_{v}=1}^{M_{v}} \sum_{k_{1}=0}^{\infty} \cdots \sum_{k_{v}=0}^{\infty}\left[\phi_{1}\left(\frac{d h_{1}^{(1)}+k_{1}}{\delta h_{1}^{(1)}}, \cdots, \frac{d h_{v}^{(v)}+k_{v}}{\delta h_{v}^{(v)}}\right)\right] \prod_{j \neq h_{i} i=1}^{r} \frac{(-)^{k_{i}}}{\delta h_{i}^{(i)} k_{i}!} z_{i}^{\prime \prime \prime} \frac{d h_{h^{\prime}}+k_{i}}{\delta h_{i}}$

This result can be proved on computing the residues at the poles :
$s_{i}=\frac{d h_{i}^{(i)}+k_{i}}{\delta h_{i}^{(i)}},\left(h_{i}=1, \cdots, m_{i}, k_{i}=0,1,2, \cdots\right)$ for $i=1, \cdots, v$
We may establish the the asymptotic expansion in the following convenient form :
$\bar{I}\left(z_{1}^{\prime \prime \prime}, \cdots, z_{v}^{\prime \prime \prime}\right)=0\left(\left|z_{1}^{\prime \prime \prime}\right|^{\alpha_{1}}, \cdots,\left|z_{v}^{\prime \prime \prime}\right|^{\alpha_{v}}\right), \max \left(\left|z_{1}^{\prime \prime \prime}\right|, \cdots,\left|z_{v}^{\prime \prime \prime}\right|\right) \rightarrow 0$
$\bar{I}\left(z_{1}^{\prime \prime \prime}, \cdots, z_{v}^{\prime \prime \prime}\right)=0\left(\left|z_{1}^{\prime \prime \prime}\right|^{\beta_{1}}, \cdots,\left|z_{v}^{\prime \prime \prime}\right|^{\beta_{u}}\right), \min \left(\left|z_{1}^{\prime \prime \prime}\right|, \cdots,\left|z_{v}^{\prime \prime \prime}\right|\right) \rightarrow \infty$
where $k=1, \cdots, v: \alpha_{k}=\min \left[\operatorname{Re}\left(\bar{d}_{j}^{(k)} / \delta_{j}^{(k)}\right)\right], j=1, \cdots, m_{k}$ and

$$
\beta_{k}=\max \left[\operatorname{Re}\left(\left(c_{j}^{(k)}-1\right) / \gamma_{j}^{(k)}\right)\right], j=1, \cdots, n_{k}
$$

We will note $\eta_{h_{i}, k_{i}}=\frac{d h_{i}^{(i)}+k_{i}}{\delta h_{i}},\left(h_{i}=1, \cdots, m_{i}, k_{i}=0,1,2, \cdots\right)$ for $i=1, \cdots, v$
The multivariable I-function of r-variables is defined by Prasad [1] in term of multiple Mellin-Barnes type integral :
$I\left(z_{1}^{\prime}, \cdots, z_{s}^{\prime}\right)=I_{p_{2}, q_{2}, p_{3}, q_{3} ; \cdots ; p_{s}, q_{s}: p^{(1)}, q^{(1)} ; \cdots ; p^{(s)}, q^{(s)}}^{0, n_{2} ;, n_{3} ; \cdots ; 0, m^{(1)}\left(n^{(1)}\right) \cdots ; m^{(s)} n^{(s)}}\left(\begin{array}{c}\mathrm{z}^{\prime}{ }_{1} \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{z}_{s}\end{array}\right)\left(\mathrm{a}_{2 j} ; \alpha_{2 j}^{\prime}, \alpha_{2 j}^{\prime \prime}\right)_{1, p_{2}} ; \cdots ;$
$\left(\mathrm{a}_{s j} ; \alpha_{s j}^{(1)}, \cdots, \alpha_{s j}^{(s)}\right)_{1, p_{s}}:\left(a_{j}^{(1)}, \alpha_{j}^{(1)}\right)_{1, p^{(1)}} ; \cdots ;\left(a_{j}^{(s)}, \alpha_{j}^{(s)}\right)_{1, p^{(s)}}$
$\left(\mathrm{b}_{r j} ; \beta_{s j}^{(1)}, \cdots, \beta_{s j}^{(s)}\right)_{1, q_{s}}:\left(b_{j}^{(1)}, \beta_{j}^{(1)}\right)_{1, q^{(1)}} ; \cdots ;\left(b_{j}^{(s)}, \beta_{j}^{(s)}\right)_{1, q^{(s)}}$

$$
\begin{equation*}
=\frac{1}{(2 \pi \omega)^{s}} \int_{L_{1}^{\prime}} \cdots \int_{L_{s}^{\prime}} \phi\left(t_{1}, \cdots, t_{s}\right) \prod_{i=1}^{s} \zeta_{i}\left(t_{i}\right) z_{i}^{\prime t_{i}} \mathrm{~d} t_{1} \cdots \mathrm{~d} t_{s} \tag{1.9}
\end{equation*}
$$

The defined integral of the above function, the existence and convergence conditions, see Y,N Prasad [1]. Throughout the present document, we assume that the existence and convergence conditions of the multivariable I-function.

The condition for absolute convergence of multiple Mellin-Barnes type contour (1.9) can be obtained by extension of the corresponding conditions for multivariable H -function given by as :
$\left|\arg z_{i}^{\prime}\right|<\frac{1}{2} \Omega_{i} \pi$, where

$$
\begin{align*}
& \Omega_{i}=\sum_{k=1}^{n^{(i)}} \alpha_{k}^{(i)}-\sum_{k=n^{(i)}+1}^{p^{(i)}} \alpha_{k}^{(i)}+\sum_{k=1}^{m^{(i)}} \beta_{k}^{(i)}-\sum_{k=m^{(i)}+1}^{q^{(i)}} \beta_{k}^{(i)}+\left(\sum_{k=1}^{n_{2}} \alpha_{2 k}^{(i)}-\sum_{k=n_{2}+1}^{p_{2}} \alpha_{2 k}^{(i)}\right)+\cdots+ \\
& \left(\sum_{k=1}^{n_{s}} \alpha_{s k}^{(i)}-\sum_{k=n_{s}+1}^{p_{s}} \alpha_{s k}^{(i)}\right)-\left(\sum_{k=1}^{q_{2}} \beta_{2 k}^{(i)}+\sum_{k=1}^{q_{3}} \beta_{3 k}^{(i)}+\cdots+\sum_{k=1}^{q_{s}} \beta_{s k}^{(i)}\right) \tag{1.10}
\end{align*}
$$

where $i=1, \cdots, s$
The complex numbers z_{i} are not zero.Throughout this document, we assume the existence and absolute convergence conditions of the multivariable I-function.

We may establish the the asymptotic expansion in the following convenient form :
$I\left(z_{1}^{\prime}, \cdots, z_{s}^{\prime}\right)=0\left(\left|z_{1}^{\prime}\right|^{\alpha_{1}}, \cdots,\left|z_{s}^{\prime}\right|^{\alpha_{r}}\right), \max \left(\left|z_{1}^{\prime}\right|, \cdots,\left|z_{s}^{\prime}\right|\right) \rightarrow 0$
$I\left(z_{1}^{\prime}, \cdots, z_{s}^{\prime}\right)=0\left(\left|z_{1}^{\prime}\right|^{\beta_{1}}, \cdots,\left|z_{s}^{\prime}\right|^{\beta_{r}}\right), \min \left(\left|z_{1}^{\prime}\right|, \cdots,\left|z_{s}^{\prime}\right|\right) \rightarrow \infty$
where $k=1, \cdots, r: \alpha_{k}^{\prime}=\min \left[\operatorname{Re}\left(b_{j}^{(k)} / \beta_{j}^{(k)}\right)\right], j=1, \cdots, m_{k}$ and

$$
\beta_{k}^{\prime}=\max \left[\operatorname{Re}\left(\left(a_{j}^{(k)}-1\right) / \alpha_{j}^{(k)}\right)\right], j=1, \cdots, n_{k}
$$

Srivastava and Garg [6] introduced and defined a general class of multivariable polynomials as follows

$$
\begin{equation*}
S_{L}^{h_{1}, \cdots, h_{u}}\left[z_{1}, \cdots, z_{u}\right]=\sum_{R_{1}, \cdots, R_{u}=0}^{h_{1} R_{1}+\cdots h_{u} R_{u} \leqslant L}(-L)_{h_{1} R_{1}+\cdots+h_{u} R_{u}} B\left(E ; R_{1}, \cdots, R_{u}\right) \frac{z_{1}^{R_{1}} \cdots z_{u}^{R_{u}}}{R_{1}!\cdots R_{u}!} \tag{1.11}
\end{equation*}
$$

The coefficients are $B\left[E ; R_{1}, \ldots, R_{v}\right]$ arbitrary constants, real or complex.

2. Integral representation of generalized Lauricella function of several variables

The following generalized hypergeometric function in terms of multiple contour integrals is also required [7, page 39 eq .30]
$\frac{\prod_{j=1}^{P} \Gamma\left(A_{j}\right)}{\prod_{j=1}^{Q} \Gamma\left(B_{j}\right)} P F_{Q}\left[\left(A_{P}\right) ;\left(B_{Q}\right) ;-\left(x_{1}+\cdots+x_{r}\right)\right]$
$=\frac{1}{(2 \pi \omega)^{r}} \int_{L_{1}} \cdots \int_{L_{r}} \frac{\prod_{j=1}^{P} \Gamma\left(A_{j}+s_{1}+\cdots+s_{r}\right)}{\prod_{j=1}^{Q} \Gamma\left(B_{j}+s_{1}+\cdots+s_{r}\right)} \Gamma\left(-s_{1}\right) \cdots \Gamma\left(-s_{r}\right) x_{1}^{s_{1}} \cdots x_{r}^{s_{r}} \mathrm{~d} s_{1} \cdots \mathrm{~d} s_{r}$
where the contours are of Barnes type with indentations, if necessary, to ensure that the poles of $\Gamma\left(A_{j}+s_{1}+\cdots+s_{r}\right)$ are separated from those of $\Gamma\left(-s_{j}\right), j=1, \cdots, r$. The above result (1.23) can be easily established by an appeal to the calculus of residues by calculating the residues at the poles of $\Gamma\left(-s_{j}\right), j=1, \cdots, r$

In order to evaluate a number of integrals of multivariable I-function, we first establish the formula
$\int_{a}^{b}(t-a)^{\alpha-1}(b-t)^{\beta-1} \prod_{j=1}^{l}\left[1-\tau_{j}(t-a)^{h_{i}}\right]^{-\lambda_{j}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{\sigma_{j}} \mathrm{~d} t=(b-a)^{\alpha+\beta-1} B(\alpha, \beta) \prod_{j=1}^{k}\left(a f_{j}+g_{j}\right)^{\sigma_{j}}$

| $F_{1: 0, \cdots, 0 ; 0, \cdots, 0}^{1: 1, \cdots, 1 ; 1 \cdots, 1}$ |
| :---: |\(\left(\begin{array}{c}\left(\alpha: h_{1}, \cdots, h_{l}, 1, \cdots, 1\right):\left(\lambda_{1}: 1\right), \cdots,\left(\lambda_{l}: 1\right) ;\left(-\sigma_{1}: 1\right), \cdots,\left(-\sigma_{k}: 1\right)

\cdots

\left(\alpha+\beta: h_{1}, \cdots, h_{l}, 1, \cdots, 1\right):-, \cdots,-;-, \cdots,-\end{array}\right.\)
$\left.; \tau_{1}(b-a)^{h_{1}}, \cdots, \tau_{l}(b-a)^{h_{l}},-\frac{(b-a) f_{1}}{a f_{1}+g_{1}}, \cdots,-\frac{(b-a) f_{k}}{a f_{k}+g_{k}}\right)$
where $a, b \in \mathbb{R}(a<b), \alpha, \beta, f_{i}, g_{i}, \sigma_{i}, \tau_{j}, h_{j} \in \mathbb{C}, \lambda_{j} \in \mathbb{R}^{+}(i=1, \cdots, k ; j=1, \cdots, l)$
$\min (\operatorname{Re}(\alpha), \operatorname{Re}(\beta))>0, \max _{1 \leqslant j \leqslant l}\left\{\left|\tau_{j}(b-a)^{h_{j}}\right|\right\}<1, \max _{1 \leqslant j \leqslant k}\left\{\left|\frac{(b-a) f_{i}}{a f_{i}+g_{i}}\right|\right\}<1$,
and $F_{1: 0, \cdots, 0 ; 0, \cdots, 0}^{1: 1, \cdots, 1 ; 1}$ is a particular case of the generalized Lauricella function introduced by Srivastava-Daoust[5,page 454] given by :
$\underset{\substack{1: 0, \cdots, 0 ; 0, \cdots, 0}}{1: 1, \cdots, 1 ; 1 \cdots, 1}\left(\begin{array}{c}\left(\alpha: h_{1}, \cdots, h_{l}, 1, \cdots, 1\right):\left(\lambda_{1}: 1\right), \cdots,\left(\lambda_{l}: 1\right) ;\left(-\sigma_{1}: 1\right), \cdots,\left(-\sigma_{k}: 1\right) \\ \\ \left(\alpha+\beta: h_{1}, \cdots, h_{l}, 1, \cdots, 1\right):-, \cdots,-;-, \cdots,-\end{array}\right.$
$\left.; \tau_{1}(b-a)^{h_{1}}, \cdots, \tau_{l}(b-a)^{h_{l}},-\frac{(b-a) f_{1}}{a f_{1}+g_{1}}, \cdots,-\frac{(b-a) f_{k}}{a f_{k}+g_{k}}\right)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \prod_{j=1}^{l} \Gamma\left(\lambda_{j}\right) \prod_{j=1}^{k} \Gamma\left(-\sigma_{j}\right)}$
$\frac{1}{(2 \pi \omega)^{l+k}} \int_{L_{1}} \cdots \int_{L_{l+k}} \frac{\Gamma\left(\alpha+\sum_{j=1}^{l} h_{j} s_{j}+\sum_{j=1}^{k} s_{l+j}\right)}{\Gamma\left(\alpha+\beta+\sum_{j=1}^{l} h_{j} s_{j}+\sum_{j=1}^{k} s_{l+j}\right)} \prod_{j=1}^{l} \Gamma\left(\lambda_{j}+s_{j}\right) \prod_{j=1}^{k} \Gamma\left(-\sigma_{j}+s_{l+j}\right)$
$\prod_{j=1}^{l+k} \Gamma\left(-s_{j}\right) z_{1}^{s_{1}} \cdots z_{l}^{s_{l}} z_{l+1}^{s_{l+1}} \cdots, z_{l+k}^{s_{l+k}} \mathrm{~d} s_{1} \cdots \mathrm{~d} s_{l+k}$
Here the contour $L_{j}^{\prime} s$ are defined by $L_{j}=L_{w \zeta_{j} \infty}\left(\operatorname{Re}\left(\zeta_{j}\right)=v_{j}^{\prime \prime}\right)$ starting at the point $v_{j}^{\prime \prime}-\omega \infty$ and terminating at the point $v_{j}^{\prime \prime}+\omega \infty$ with $v_{j}^{\prime \prime} \in \mathbb{R}(j=1, \cdots, l)$ and each of the remaining contour L_{l+1}, \cdots, L_{l+k} run from $-\omega \infty$ to $\omega \infty$
(2.2) can be easily established by expanding $\prod_{j=1}^{l}\left[1-\tau_{j}(t-a)^{h_{i}}\right]^{-\lambda_{j}}$ by means of the formula :
$(1-z)^{-\alpha}=\sum_{r=0}^{\infty} \frac{(\alpha)_{r}}{r!} z^{r}(|z|<1)$
integrating term by term with the help of the integral given by Saigo and Saxena [3, page 93, eq.(3.2)] and applying the definition of the generalized Lauricella function [5, page 454].

3. Eulerian integral

In this section, we evaluate a general Eulerian integral with the product of the multivariable I-functions of Prasad, the multivariable \bar{I}-function of Nambisan, a class of multivariable polynomials and generalized hypergeometric function; We note
$B_{u}=\frac{(-L)_{h_{1} R_{1}+\cdots+h_{u} R_{u}} B\left(E ; R_{1}, \cdots, R_{u}\right)}{R_{1}!\cdots R_{u}!}$
and $B_{u, v}=(b-a)^{\sum_{i=1}^{v}\left(a_{i}^{\prime}+b_{i}^{\prime}\right) \eta_{G_{i}, g_{i}}+\sum_{i=1}^{u}\left(a_{i}+b_{i}\right) R_{i}}\left\{\prod_{j=1}^{h}\left(a f_{j}+g_{j}\right)^{-\sum_{i=1}^{v} \lambda_{i}^{\prime \prime \prime} \eta_{g_{i}, h_{i}}-\sum_{i=1}^{u} \lambda_{i}^{\prime \prime} R_{i}}\right\}$
$\theta_{i}=\prod_{j=1}^{l}\left[1-\tau_{j}(t-a)^{h_{i}}\right]^{-\zeta_{j}^{(i)}}, \zeta_{j}^{(i)}>0(i=1, \cdots, r) ; \theta_{i}^{\prime}=\prod_{j=1}^{l}\left[1-\tau_{j}(t-a)^{h_{i}}\right]^{-\zeta_{j}^{\prime(i)}}, \zeta_{j}^{\prime(i)}>0(i=1, \cdots, s)$
$\theta_{i}^{\prime \prime}=\prod_{j=1}^{l}\left[1-\tau_{j}(t-a)^{h_{i}}\right]^{-\zeta_{j}^{\prime \prime(i)}}, \zeta_{j}^{\prime \prime(i)}>0(i=1, \cdots, u)$
$\theta_{i}^{\prime \prime \prime}=\prod_{j=1}^{l}\left[1-\tau_{j}(t-a)^{h_{i}}\right]^{-\zeta_{j}^{\prime \prime \prime(i)}}, \zeta_{j}^{\prime \prime \prime(i)}>0(i=1, \cdots, v)$
$U=p_{2}, q_{2} ; p_{3}, q_{3} ; \cdots ; p_{s-1}, q_{s-1} ; 0,0 ; \cdots ; 0,0 ; 0,0 ; \cdots ; 0,0 ; 0,0 ; \cdots ; 0,0$
$V=0, n_{2} ; 0, n_{3} ; \cdots ; 0, n_{s-1} ; 0,0 ; \cdots ; 0,0 ; 0,0 ; \cdots ; 0,0 ; 0,0 ; \cdots ; 0,0$
$X=m^{(1)}, n^{(1)} ; \cdots ; m^{(s)}, n^{(s)} ; 1,0 ; \cdots ; 1,0 ; 1,0 ; \cdots ; 1,0 ; 1,0 ; \cdots ; 1,0$
$Y=p^{(1)}, q^{(1)} ; \cdots ; p^{(s)}, q^{(s)} ; 0,1 ; \cdots ; 0,1 ; 0,1 ; \cdots ; 0,1 ; 0,1 ; \cdots ; 0,1$
$A=\left(a_{2 k} ; \alpha_{2 k}^{(1)}, \alpha_{2 k}^{(2)}\right)_{1, p_{2}} ; \cdots ;\left(a_{(s-1) k} ; \alpha_{(s-1) k}^{(1)}, \alpha_{(s-1) k}^{(2)}, \cdots, \alpha_{(s-1) k}^{(s-1)}\right)_{1, p_{s-1}}$
$B=\left(b_{2 k} ; \beta_{2 k}^{(1)}, \beta_{2 k}^{(2)}\right)_{1, q_{2}} ; \cdots ;\left(b_{(s-1) k} ; \beta_{(s-1) k}^{(1)}, \beta_{(s-1) k}^{(2)}, \cdots, \beta_{(s-1) k}^{(s-1)}\right)_{1, q_{s-1}}$
$\mathfrak{A}=\left(a_{s k} ; \alpha_{s k}^{(1)}, \alpha_{s k}^{(2)}, \cdots, \alpha_{s k}^{(s)}, 0, \cdots, 0,0 \cdots, 0,0, \cdots, 0\right)_{1, p_{s}}$
$\mathfrak{B}=\left(b_{s k} ; \beta_{s k}^{(1)}, \beta_{s k}^{(2)}, \cdots, \beta_{s k}^{(s)}, 0, \cdots, 0,0, \cdots, 0,0, \cdots, 0\right)_{1, q_{s}}$
$A^{\prime}=\left(a_{k}^{(1)}, \alpha_{k}^{(1)}\right)_{1, p^{(1)}} ; \cdots ;\left(a_{k}^{(s)}, \alpha_{k}^{(s)}\right)_{1, p^{(s)}} ;(1,0) ; \cdots ;(1,0) ;$
$(1,0) ; \cdots ;(1,0) ;(1,0) ; \cdots ;(1,0)$

$$
B^{\prime}=\left(b_{k}^{(1)}, \beta_{k}^{(1)}\right)_{1, q^{(1)}} ; \cdots ;\left(b_{k}^{(s)}, \beta_{k}^{(s)}\right)_{1, q^{(s)}} ;(0,1) ; \cdots ;(0,1)
$$

$$
\begin{equation*}
(0,1) ; \cdots ;(0,1) ;(0,1) ; \cdots ;(0,1) \tag{3.14}
\end{equation*}
$$

$K_{1}=\left(1-\alpha-\sum_{i=1}^{u} R_{i} a_{i}-\sum_{i=1}^{v} \eta_{G_{i}, g_{i}} a_{i}^{\prime} ; \mu_{1}, \cdots, \mu_{r}, \mu_{1}^{\prime}, \cdots, \mu_{s}^{\prime}, h_{1}, \cdots, h_{l}, 1, \cdots, 1\right)$
$K_{2}=\left(1-\beta-\sum_{i=1}^{u} R_{i} b_{i}-\sum_{i=1}^{v} \eta_{G_{i}, g_{i}} b_{i}^{\prime} ; \rho_{1}, \cdots, \rho_{r}, \rho_{1}^{\prime}, \cdots, \rho_{s}^{\prime}, 0, \cdots, 0,0 \cdots, 0\right)$
$K_{P}=\left[1-A_{j} ; 0, \cdots, 0,1, \cdots, 1,0, \cdots, 0,0, \cdots, 0\right]_{1, P}$
$K_{j}=\left[1-\lambda_{j}-\sum_{i=1}^{u} R_{i} \zeta_{j}^{\prime \prime(i)}-\sum_{i=1}^{v} \eta_{G_{i}, g_{i}} \zeta_{j}^{\prime \prime \prime(i)} ; \zeta_{j}^{(1)}, \cdots, \zeta_{j}^{(r)}, \zeta_{j}^{\prime(1)} \cdots, \zeta_{j}^{\prime(s)}\right.$,
$0, \cdots, 1, \cdots, 0,0 \cdots, 0]_{1, l}$
$K_{j}^{\prime}=\left[1+\sigma_{j}-\sum_{i=1}^{u} R_{i} \lambda_{j}^{\prime \prime(i)}-\sum_{i=1}^{v} \eta_{G_{i}, g_{i}} \lambda_{j}^{\prime \prime \prime(i)} ; \lambda_{j}^{(1)}, \cdots, \lambda_{j}^{(r)}, \lambda_{j}^{\prime(1)} \cdots, \lambda_{j}^{\prime(s)}\right.$,
$0, \cdots, 0,0 \cdots, 1, \cdots, 0]_{1, k}$
$L_{1}=\left(1-\alpha-\beta-\sum_{i=1}^{u} R_{i}\left(a_{i}+b_{i}\right)-\sum_{i=1}^{v}\left(a_{i}^{\prime}+b_{i}^{\prime}\right) \eta_{G_{i}, g_{i}} ; \mu_{1}+\rho_{1}, \cdots, \mu_{r}+\rho_{r}, \mu_{1}^{\prime}+\rho_{1}^{\prime}, \cdots, \mu_{r}^{\prime}+\rho_{r}^{\prime}\right.$,
$\left.h_{1}, \cdots, h_{l}, 1, \cdots, 1\right)$
$L_{Q}=\left[1-B_{j} ; 0, \cdots, 0,1, \cdots, 1,0, \cdots, 0,0 \cdots, 0\right]_{1, Q}$
$L_{j}=\left[1-\lambda_{j}-\sum_{i=1}^{u} R_{i} \zeta_{j}^{\prime \prime(i)}-\sum_{i=1}^{s} \zeta_{j}^{\prime \prime \prime(i)} \eta_{G_{i}, g_{i}} ; \zeta_{j}^{(1)}, \cdots, \zeta_{j}^{(r)}, \zeta_{j}^{(1)} \cdots, \zeta_{j}^{\prime(s)}, 0, \cdots, 0,0 \cdots, 0\right]_{1, l}$
$L_{j}^{\prime}=\left[1+\sigma_{j}-\sum_{i=1}^{u} R_{i} \lambda_{j}^{\prime \prime(i)}-\sum_{i=1}^{v} \lambda_{j}^{\prime \prime \prime(i)} \eta_{G_{i}, g_{i}} ; \lambda_{j}^{(1)}, \cdots, \lambda_{j}^{(r)}, \lambda_{j}^{\prime(1)} \cdots, \lambda_{j}^{\prime(s)}, 0, \cdots, 0,0, \cdots, 0\right]_{1, k}$
We have the general Eulerian integral
$\int_{a}^{b}(t-a)^{\alpha-1}(b-t)^{\beta-1} \prod_{j=1}^{l}\left[1-\tau_{j}(t-a)^{h_{i}}\right]^{-\lambda_{j}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{\sigma_{j}}$
$S_{L}^{h_{1}, \cdots, h_{u}}\left(\begin{array}{c}\mathrm{z}_{1}^{\prime \prime} \theta_{1}^{\prime \prime}(t-a)^{a_{1}}(b-t)^{b_{1}} \\ \cdot \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime \prime(1)}} \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{z}_{u}^{\prime \prime} \theta_{u}^{\prime \prime}(t-a)^{a_{u}}(b-t)^{b_{u}} \\ \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime \prime}(u)}\end{array}\right)$

$$
\bar{I}\left(\begin{array}{c}
\mathrm{z}_{1}^{\prime \prime \prime} \theta_{1}^{\prime \prime \prime}(t-a)^{a_{1}^{\prime}}(b-t)^{b_{1}^{\prime}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime \prime \prime}(1)} \\
\cdot \\
\cdot \\
\cdot \\
\mathrm{z}_{v}^{\prime \prime \prime} \theta_{v}^{\prime \prime \prime}(t-a)^{a_{v}^{\prime}}(b-t)^{b_{v}^{\prime}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime \prime \prime}(v)}
\end{array}\right) I\left(\begin{array}{c}
\mathrm{z}_{1} \theta_{1}(t-a)^{\mu_{1}}(b-t)^{\rho_{1}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{(1)}} \\
\cdot \\
\cdot \\
\cdot \\
\mathrm{z}_{r} \theta_{r}(t-a)^{\mu_{r}}(b-t)^{\rho_{r}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{(r)}}
\end{array}\right)
$$

$$
{ }_{P} F_{Q}\left[\left(A_{P}\right) ;\left(B_{Q}\right) ;-\sum_{i=1}^{s} z_{i}^{\prime} \theta_{i}^{\prime}(t-a)^{\mu_{i}^{\prime}}(b-t)^{\rho_{i}^{\prime}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime(i)}}\right] \mathrm{d} t=(b-a)^{\alpha+\beta-1} \frac{\prod_{j=1}^{Q} \Gamma\left(B_{j}\right)}{\prod_{j=1}^{P} \Gamma\left(A_{j}\right)} \prod_{j=1}\left(a f_{j}+g_{j}\right)^{\sigma_{j}}
$$

$$
\sum_{h_{1}=1}^{M_{1}} \cdots \sum_{h_{v}=1}^{M_{v}} \sum_{k_{1}=0}^{\infty} \cdots \sum_{k_{v}=0}^{\infty} \sum_{R_{1}, \cdots, R_{u}=0}^{h_{1} R_{1}+\cdots h_{u} R_{u} \leqslant L} \prod_{i=1}^{v} \frac{(-)^{k_{i}}}{\delta h_{i}^{(i)} k_{i}!} z_{i}^{\prime \prime \prime} \eta_{h_{i}, k_{i}} \prod_{k=1}^{u} z^{\prime \prime R_{k}} B_{u} B_{u, v}\left[\phi_{1}\left(\eta_{h_{1}, k_{1}}, \cdots, \eta_{h_{r}, k_{r}}\right)\right]_{j \neq h_{i}}
$$

This result is an extansion the formula given by Saxena et al [4].
Provided that
(A) $a, b \in \mathbb{R}(a<b) ; \mu_{i}, \rho_{i}, \mu_{j}^{\prime}, \rho_{j}^{\prime} \lambda_{v}^{(i)} ; \lambda_{v}^{\prime(i)} \in \mathbb{R}^{+}, f_{i}, g_{j}, \tau_{v}, \sigma_{j} \in \mathbb{C}(i=1, \cdots, s ; j=1, \cdots ; u ; v=1, \cdots, k)$ $\zeta_{j}^{(i)}>0(i=1, \cdots, l ; j=1, \cdots, k)$
(B) $a_{i j}, b_{i k}, \in \mathbb{C}\left(i=1, \cdots, s ; j=1, \cdots, p_{i} ; k=1, \cdots, q_{i}\right) ; a_{j}^{(i)}, b_{j}^{(k)} \in \mathbb{C}$
$\left(i=1, \cdots, s ; j=1, \cdots, p^{(i)} ; k=1, \cdots, q^{(i)}\right)$
$\alpha_{i j}^{(k)}, \beta_{i j}^{(k)} \in \mathbb{R}^{+}\left(i=1, \cdots, s, j=1, \cdots, p_{i}, k=1, \cdots, s\right) ; \alpha_{j}^{(i)}, \beta_{i}^{(i)} \in \mathbb{R}^{+}\left(i=1, \cdots, s ; j=1, \cdots, p_{i}\right)$
(C) $\max _{1 \leqslant j \leqslant k}\left\{\left|\frac{(b-a) f_{i}}{a f_{i}+g_{i}}\right|\right\}<1$
(D) $R e\left[\alpha+\sum_{i=1}^{v} a_{i}^{\prime} \min _{1 \leqslant j \leqslant M_{i}} \frac{\bar{d}_{j}^{(i)}}{\delta_{j}^{(i)}}+\sum_{i=1}^{r} \mu_{i} \min _{1 \leqslant j \leqslant m^{(i)}} \frac{b_{j}^{(i)}}{\beta_{j}^{(i)}}\right]>0$ and
$R e\left[\beta+\sum_{i=1}^{v} b_{i}^{\prime} \min _{1 \leqslant j \leqslant M_{i}} \frac{\bar{d}_{j}^{(i)}}{\delta_{j}^{(i)}}+\sum_{i=1}^{r} \rho_{i} \min _{1 \leqslant j \leqslant m^{(i)}} \frac{b_{j}^{(i)}}{\beta_{j}^{(i)}}\right]>0$
(E) $R e\left(\alpha+\sum_{i=1}^{v} \eta_{G_{i}, g_{i}} a_{i}^{\prime}+\sum_{i=1}^{u} R_{i} a_{i}+\sum_{i=1}^{r} \mu_{i} s_{i}+\sum_{i=1}^{l} h_{i} w_{i}\right)>0 ; R e\left(\beta+\sum_{i=1}^{v} \eta_{G_{i}, g_{i}} b_{i}^{\prime}+\sum_{i=1}^{u} R_{i} b_{i}+\sum_{i=1}^{r} \rho_{i} s_{i}\right)>0$
$R e\left(\lambda_{j}+\sum_{i=1}^{v} \eta_{G_{i}, g_{i}} \lambda_{j}^{\prime \prime \prime(i)}+\sum_{i=1}^{u} R_{i} \lambda_{j}^{\prime \prime(i)}+\sum_{i=1}^{r} s_{i} \zeta_{j}^{(i)}\right)>0(j=1, \cdots, l)$
$R e\left(-\sigma_{j}+\sum_{i=1}^{v} \eta_{G_{i}, g_{i}} \lambda^{\prime \prime \prime(i)}+\sum_{i=1}^{u} R_{i} \lambda_{j}^{\prime \prime(i)}+\sum_{i=1}^{r} s_{i} \lambda_{j}^{(i)}\right)>0(j=1, \cdots, k)$
(E) $\Omega_{i}=\sum_{k=1}^{n^{(i)}} \alpha_{k}^{(i)}-\sum_{k=n^{(i)}+1}^{p^{(i)}} \alpha_{k}^{(i)}+\sum_{k=1}^{m^{(i)}} \beta_{k}^{(i)}-\sum_{k=m^{(i)}+1}^{q^{(i)}} \beta_{k}^{(i)}+\left(\sum_{k=1}^{n_{2}} \alpha_{2 k}^{(i)}-\sum_{k=n_{2}+1}^{p_{2}} \alpha_{2 k}^{(i)}\right)+\cdots+$

$$
\left(\sum_{k=1}^{n_{s}} \alpha_{s k}^{(i)}-\sum_{k=n_{s}+1}^{p_{s}} \alpha_{s k}^{(i)}\right)-\left(\sum_{k=1}^{q_{2}} \beta_{2 k}^{(i)}+\sum_{k=1}^{q_{3}} \beta_{3 k}^{(i)}+\cdots+\sum_{k=1}^{q_{s}} \beta_{s k}^{(i)}\right)-\mu_{i}-\rho_{i}
$$

$-\sum_{j=1}^{k} \lambda_{j}^{(i)}>0 \quad(i=1, \cdots, s)$
(F) $\left|\arg \left(z_{i} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{(i)}}\right)\right|<\frac{1}{2} \Omega_{i} \pi \quad(a \leqslant t \leqslant b ; i=1, \cdots, s)$
(G) $P \leqslant Q+1$. The equality holds, when , in addition,
either $P>Q$ and $\left|\left(z_{i}^{\prime} \sum_{i=1}^{l}\left[1-\tau_{j}(t-a)^{h_{i}}\right]^{-\zeta_{j}^{\prime(i)}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime(i)}}\right)\right|^{\frac{1}{Q-P}}<1(a \leqslant t \leqslant b)$
or $P \leqslant Q$ and $\max _{1 \leqslant i \leqslant k}\left[\left|\left(z_{i}^{\prime} \sum_{j=1}^{l}\left[1-\tau_{j}(t-a)^{h_{i}}\right]^{-\zeta_{j}^{\prime(i)}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime(i)}}\right)\right|\right]<1(a \leqslant t \leqslant b)$
(\boldsymbol{H}) The multiple series occuring on the right-hand side of (3.24) is absolutely and uniformly convergent.

Proof

To prove (3.24), first, we express in serie the multivariable I-function defined by Nambisan et al [2] with the help of (1.5), a class of multivariable polynomials defined by Srivastava et al [6] $S_{L}^{h_{1}, \cdots, h_{u}}[$.$] in serie with the help of (1.11),$ the I-functions of r-variables defined by Prasad [1] and in terms of Mellin-Barnes type contour integral with the help of (1.9), the generalized hypergeometric function $P_{Q}($.$) in Mellin-Barnes contour integral with the help of (2.1).Now$ collect the power of $\left[1-\tau_{j}(t-a)^{h_{i}}\right]$ with $(i=1, \cdots, r ; j=1, \cdots, l)$ and collect the power of $\left(f_{j} t+g_{j}\right)$ with $j=1, \cdots, k$. Use the equations (2.2) and (2.3) and express the result in Mellin-Barnes contour integral. Interpreting the $(r+s+k+l)$ dimensional Mellin-Barnes integral to multivariable I-function, we obtain the equation (3.24).

4. Multivariable H -function

If $A=B=U=V=0$, the multivariable I -function reduces to the multivariable H -function and we obtain

$$
\int_{a}^{b}(t-a)^{\alpha-1}(b-t)^{\beta-1} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{\sigma_{j}} S_{L}^{h_{1}, \cdots, h_{u}}\left(\begin{array}{c}
\mathrm{z}_{1}^{\prime \prime} \theta_{1}^{\prime \prime}(t-a)^{a_{1}}(b-t)^{b_{1}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime \prime(1)}} \\
\cdot \\
\cdot \\
\cdot \\
\mathrm{z}_{u}^{\prime \prime} \theta_{u}^{\prime \prime}(t-a)^{a_{u}}(b-t)^{b_{u}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime \prime(u)}}
\end{array}\right)
$$

$$
\bar{I}\left(\begin{array}{c}
\mathrm{z}_{1}^{\prime \prime \prime} \theta_{1}^{\prime \prime \prime}(t-a)^{a_{1}^{\prime}}(b-t)^{b_{1}^{\prime}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime \prime \prime(1)}} \\
\cdot \\
\cdot \\
\cdot \\
\mathrm{z}_{v}^{\prime \prime \prime} \theta_{v}^{\prime \prime \prime}(t-a)^{a_{v}^{\prime}}(b-t)^{b_{v}^{\prime}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime \prime \prime(v)}}
\end{array}\right)
$$

$$
I\left(\begin{array}{c}
\mathrm{z}_{1} \theta_{1}(t-a)^{\mu_{1}}(b-t)^{\rho_{1}} \\
\cdot
\end{array} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{(1)}}\right)
$$

${ }_{P} F_{Q}\left[\left(A_{P}\right) ;\left(B_{Q}\right) ;-\sum_{i=1}^{s} z_{i}^{\prime} \theta_{i}^{\prime}(t-a)^{\mu_{i}^{\prime}}(b-t)^{\rho_{i}^{\prime}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime(i)}}\right] \mathrm{d} t=(b-a)^{\alpha+\beta-1} \frac{\prod_{j=1}^{Q} \Gamma\left(B_{j}\right)}{\prod_{j=1}^{P} \Gamma\left(A_{j}\right)} \prod_{j=1}\left(a f_{j}+g_{j}\right)^{\sigma_{j}}$
$\sum_{h_{1}=1}^{M_{1}} \cdots \sum_{h_{v}=1}^{M_{v}} \sum_{k_{1}=0}^{\infty} \cdots \sum_{k_{v}=0}^{\infty} \sum_{R_{1}, \cdots, R_{u}=0}^{h_{1} R_{1}+\cdots h_{u} R_{u} \leqslant L} \prod_{i=1}^{v} \frac{(-)^{k_{i}}}{\delta h_{i}^{(i)} k_{i}!} z_{i}^{\prime \prime \prime \eta_{h_{i}, k_{i}}} \prod_{k=1}^{u} z^{\prime \prime R_{k}} B_{u} B_{u, v}\left[\phi_{1}\left(\eta_{h_{1}, k_{1}}, \cdots, \eta_{h_{r}, k_{r}}\right)\right]_{j \neq h_{i}}$

under the same notations and conditions that (3.24) with $A=B=U=V=0$
b) If $B\left(L ; R_{1}, \cdots, R_{r}\right)=\frac{\prod_{j=1}^{\bar{A}}\left(a_{j}\right)_{R_{1} \theta_{j}^{\prime}+\cdots+R_{u} \theta_{j}^{(u)}} \prod_{j=1}^{B^{\prime}}\left(b_{j}^{\prime}\right)_{R_{1} \phi_{j}^{\prime}} \cdots \prod_{j=1}^{B^{(u)}}\left(b_{j}^{(u)}\right)_{R_{r} \phi_{j}^{(u)}}}{\prod_{j=1}^{\bar{C}}\left(c_{j}\right)_{R_{1} \psi_{j}^{\prime}+\cdots+R_{u} \psi_{j}^{(u)}} \prod_{j=1}^{D^{\prime}}\left(d_{j}^{\prime}\right)_{R_{1} \delta_{j}^{\prime}} \cdots \prod_{j=1}^{D^{(u)}}\left(d_{j}^{(u)}\right)_{R_{u} \delta_{j}^{(u)}}}$
then the general class of multivariable polynomial $S_{L}^{h_{1}, \cdots, h_{u}}\left[z_{1}, \cdots, z_{u}\right]$ reduces to generalized Lauricella function defined by Srivastava et al [5].
$F_{\bar{C}: D^{\prime} ; \cdots ; D^{(u)}}^{1+\bar{A} ; B^{\prime} ; \cdots ; B^{(u)}}\left(\begin{array}{c|c}\mathrm{y}_{1} & \\ \cdots & \left.\left[(\mathrm{~L}) ; \mathrm{R}_{1}, \cdots, R_{u}\right]\left[(a) ; \theta^{\prime}, \cdots, \theta^{(u)}\right]:\left[\left(b^{\prime}\right) ; \phi^{\prime}\right] ; \cdots ;\left[\left(b^{(u)}\right) ; \phi^{(u)}\right]\right) \\ \cdots & \left.\left[(\mathrm{c}) ; \psi^{\prime}, \cdots, \psi^{\prime}\right)\right]:\left[\left(d^{\prime}\right) ; \delta^{\prime}\right] ; \cdots ;\left[\left(d^{(u)}\right) ; \delta^{(u)}\right] \\ \mathrm{y}_{u} & \end{array}\right.$

We have the following integral

$$
\left.\begin{array}{l}
\int_{a}^{b}(t-a)^{\alpha-1}(b-t)^{\beta-1} \prod_{j=1}^{l}\left[1-\tau_{j}(t-a)^{h_{i}}\right]^{-\lambda_{j}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{\sigma_{j}} \\
F_{\bar{C}: D^{\prime} ; \cdots ; B^{(u)}}^{1+\bar{A} ; B^{\prime}}\left(\begin{array}{c}
\mathrm{z}_{1}^{\prime \prime} \theta_{1}^{\prime \prime}(t-a)^{a_{1}}(b-t)^{b_{1}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime \prime(1)}} \\
\cdot \\
\cdot \\
\mathrm{z}_{u}^{\prime \prime} \theta_{u}^{\prime \prime}(t-a)^{a_{u}}(b-t)^{b_{u}} \\
\cdot
\end{array} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime \prime(u)}}\right.
\end{array}\right) .
$$

$$
\left[\begin{array}{c}
{\left[(-\mathrm{L}) ; \mathrm{R}_{1}, \cdots, R_{u}\right]\left[(a) ; \theta^{\prime}, \cdots, \theta^{(u)}\right]:\left[\left(b^{\prime}\right) ; \phi^{\prime}\right] ; \cdots ;\left[\left(b^{(u)}\right) ; \phi^{(u)}\right]} \\
{\left[(\mathrm{c}) ; \psi^{\prime}, \cdots, \psi^{(u)}\right]:\left[\left(d^{\prime}\right) ; \delta^{\prime}\right] ; \cdots ;\left[\left(d^{(u)}\right) ; \delta^{(u)}\right]}
\end{array}\right)
$$

$$
\bar{I}\left(\begin{array}{c}
\mathrm{z}_{1}^{\prime \prime \prime} \theta_{1}^{\prime \prime \prime}(t-a)^{a_{1}^{\prime}}(b-t)^{b_{1}^{\prime}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime \prime \prime(1)}} \\
\cdot \\
\cdot \\
\mathrm{z}_{v}^{\prime \prime \prime} \theta_{v}^{\prime \prime \prime}(t-a)^{a_{v}^{\prime}}(b-t)^{b_{v}^{\prime}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime \prime \prime(v)}}
\end{array}\right)
$$

$$
I\left(\begin{array}{c}
\mathrm{z}_{1} \theta_{1}(t-a)^{\mu_{1}}(b-t)^{\rho_{1}} \\
\cdot
\end{array} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{(1)}}\right)
$$

${ }_{P} F_{Q}\left[\left(A_{P}\right) ;\left(B_{Q}\right) ;-\sum_{i=1}^{s} z_{i}^{\prime} \theta_{i}^{\prime}(t-a)^{\mu_{i}^{\prime}}(b-t)^{\rho_{i}^{\prime}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime(i)}}\right] \mathrm{d} t=(b-a)^{\alpha+\beta-1} \frac{\prod_{j=1}^{Q} \Gamma\left(B_{j}\right)}{\prod_{j=1}^{P} \Gamma\left(A_{j}\right)} \prod_{j=1}\left(a f_{j}+g_{j}\right)^{\sigma_{j}}$

$$
\sum_{h_{1}=1}^{M_{1}} \cdots \sum_{h_{v}=1}^{M_{v}} \sum_{k_{1}=0}^{\infty} \cdots \sum_{k_{v}=0}^{\infty} \sum_{R_{1}, \cdots, R_{u}=0}^{h_{1} R_{1}+\cdots h_{u} R_{u} \leqslant L} \prod_{i=1}^{v} \frac{(-)^{k_{i}}}{\delta h_{i}^{(i)} k_{i}!} z_{i}^{\prime \prime \prime} \eta_{h_{i}, k_{i}}^{u} \prod_{k=1}^{u} z^{\prime \prime R_{k}} B_{u}^{\prime} B_{u, v}\left[\phi_{1}\left(\eta_{h_{1}, k_{1}}, \cdots, \eta_{h_{r}, k_{r}}\right)\right]_{j \neq h_{i}}
$$

under the same notations and conditions that (3.24)

Remark:

By the following similar procedure, the results of this document can be extented to product of any finite number of multivariable I-functions and a class of multivariable polynomials defined by Srivastava et al [6].

5. Conclusion

In this paper we have evaluated a generalized Eulerian integral involving the product of the multivariable I-function, defined by Prasad [1], the multivariable I-function defined by Nambisan et al [2], a class of multivariable polynomials and generalized hypergeometric function with general arguments. The formulae established in this paper is very general nature. Thus, the results established in this research work would serve as a key formula from which, upon specializing the parameters, as many as desired results involving the special functions of one and several variables can be obtained.

REFERENCES

[1] Y.N. Prasad , Multivariable I-function, Vijnana Parishad Anusandhan Patrika 29 (1986) , page 231-237.
[2] Prathima J. Nambisan V. and Kurumujji S.K. A Study of I-function of Several Complex Variables, International

Journal of Engineering Mathematics $\operatorname{Vol}(2014)$, 2014 page 1-12
[3] Saigo M. and Saxena R.K. Unified fractional integral formulas for the multivariable H-function I. J.Fractional Calculus 15 (1999), page 91-107.
[4] Saigo M. and Saxena R.K. Unified fractional integral formulas for the multivariable H-function III. J.Fractional Calculus 20 (2001), page 45-68.
[5] Srivastava H.M. and Daoust M.C. Certain generalized Neumann expansions associated with Kampé de Fériet function. Nederl. Akad. Wetensch. Proc. Ser A72 = Indag Math 31(1969) page 449-457.
[6] Srivastava H.M. And Garg M. Some integral involving a general class of polynomials and multivariable H-function. Rev. Roumaine Phys. 32(1987), page 685-692.
[7] Srivastava H.M. and Karlsson P.W. Multiple Gaussian Hypergeometric series. Ellis.Horwood. Limited. New-York, Chichester. Brisbane. Toronto , 1985.
[8] H.M. Srivastava And R.Panda. Some expansion theorems and generating relations for the H-function of several complex variables. Comment. Math. Univ. St. Paul. 24(1975), p.119-137.

Personal adress : 411 Avenue Joseph Raynaud
Le parc Fleuri , Bat B
83140 , Six-Fours les plages
Tel : 06-83-12-49-68
Department : VAR
Country : FRANCE

