Selberg integral involving a certain extension of the Hurwitz-Lerch Zeta function, a

class of polynomials the multivariable I-function

and multivariable Aleph-functions

$F.Y. AYANT^1$

1 Teacher in High School , France

ABSTRACT

In the present paper we evaluate the Selberg integral involving, a certain extension of the Hurwitz-Lerch Zeta function a multivariable Alephfunction, the multivariable I-function defined by Prasad [3] and general class of polynomials of several variables. The importance of the result established in this paper lies in the fact they involve the Aleph-function of several variables which is sufficiently general in nature and capable to yielding a large of results merely by specializating the parameters their in.

Keywords:Multivariable Aleph-function, general class of polynomials, Selberg integral, General sequence of functions, multivariable I-function, multivariable H-function

2010 Mathematics Subject Classification. 33C99, 33C60, 44A20

1.Introduction and preliminaries.

The function Aleph of several variables generalize the multivariable I-function recently study by C.K. Sharma and Ahmad [4], itself is an a generalisation of G and H-functions of multiple variables defined by Srivastava et al [6]. The multiple Mellin-Barnes integral occuring in this paper will be referred to as the multivariables Aleph-function throughout our present study and will be defined and represented as follows.

$$\begin{split} & \text{We define}: \aleph(z_1, \cdots, z_r) = \aleph_{P_i, Q_i, \tau_i; R: P_i(1), Q_i(1), \tau_i(1); R^{(1)}; \cdots; P_i(r), Q_i(r); \tau_i(r); R^{(r)} } \begin{pmatrix} \text{y}_1 \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \text{y}_r \end{pmatrix} \\ & [(a_j; \alpha_j^{(1)}, \cdots, \alpha_j^{(r)})_{1,N}] \quad , [\tau_i(a_{ji}; \alpha_{ji}^{(1)}, \cdots, \alpha_{ji}^{(r)})_{N+1, P_i}] : \\ & \dots \\ & , [\tau_i(b_{ji}; \beta_{ji}^{(1)}, \cdots, \beta_{ji}^{(r)})_{M+1, Q_i}] : \end{split}$$

$$\begin{bmatrix} (\mathbf{c}_{j}^{(1)}); \gamma_{j}^{(1)})_{1,N_{1}} \end{bmatrix}, \begin{bmatrix} \tau_{i^{(1)}} (c_{ji^{(1)}}^{(1)}; \gamma_{ji^{(1)}}^{(1)})_{N_{1}+1,P_{i}^{(1)}} \end{bmatrix}; \cdots; \begin{bmatrix} (\mathbf{c}_{j}^{(r)}); \gamma_{j}^{(r)})_{1,N_{r}} \end{bmatrix}, \begin{bmatrix} \tau_{i^{(r)}} (c_{ji^{(r)}}^{(r)}; \gamma_{ji^{(r)}}^{(r)})_{N_{r}+1,P_{i}^{(r)}} \end{bmatrix} \\ \begin{bmatrix} (\mathbf{d}_{j}^{(1)}); \delta_{j}^{(1)})_{1,M_{1}} \end{bmatrix}, \begin{bmatrix} \tau_{i^{(1)}} (d_{ji^{(1)}}^{(1)}; \delta_{ji^{(1)}}^{(1)})_{M_{1}+1,Q_{i}^{(1)}} \end{bmatrix}; \cdots; \begin{bmatrix} (\mathbf{d}_{j}^{(r)}); \delta_{j}^{(r)})_{1,M_{r}} \end{bmatrix}, \begin{bmatrix} \tau_{i^{(r)}} (d_{ji^{(r)}}^{(r)}; \delta_{ji^{(r)}}^{(r)})_{N_{r}+1,Q_{i}^{(r)}} \end{bmatrix} \\ \end{bmatrix}$$

$$=\frac{1}{(2\pi\omega)^r}\int_{L_1}\cdots\int_{L_r}\psi(s_1,\cdots,s_r)\prod_{k=1}^r\theta_k(s_k)y_k^{s_k}\,\mathrm{d}s_1\cdots\mathrm{d}s_r\tag{1.1}$$

with $\omega = \sqrt{-1}$

$$\psi(s_1, \cdots, s_r) = \frac{\prod_{j=1}^N \Gamma(1 - a_j + \sum_{k=1}^r \alpha_j^{(k)} s_k)}{\sum_{i=1}^R [\tau_i \prod_{j=N+1}^{P_i} \Gamma(a_{ji} - \sum_{k=1}^r \alpha_{ji}^{(k)} s_k) \prod_{j=1}^{Q_i} \Gamma(1 - b_{ji} + \sum_{k=1}^r \beta_{ji}^{(k)} s_k)]} \quad (1.2)$$

and
$$\theta_k(s_k) = \frac{\prod_{j=1}^{M_k} \Gamma(d_j^{(k)} - \delta_j^{(k)} s_k) \prod_{j=1}^{N_k} \Gamma(1 - c_j^{(k)} + \gamma_j^{(k)} s_k)}{\sum_{i^{(k)}=1}^{R^{(k)}} [\tau_{i^{(k)}} \prod_{j=M_k+1}^{Q_{i^{(k)}}} \Gamma(1 - d_{ji^{(k)}}^{(k)} + \delta_{ji^{(k)}}^{(k)} s_k) \prod_{j=N_k+1}^{P_{i^{(k)}}} \Gamma(c_{ji^{(k)}}^{(k)} - \gamma_{ji^{(k)}}^{(k)} s_k)]}$$
 (1.3)

Suppose, as usual, that the parameters

$$b_{j}, j = 1, \cdots, Q; a_{j}, j = 1, \cdots, P;$$

$$c_{ji^{(k)}}^{(k)}, j = n_{k} + 1, \cdots, P_{i^{(k)}}; c_{j}^{(k)}, j = 1, \cdots, N_{k};$$

$$d_{ji^{(k)}}^{(k)}, j = M_{k} + 1, \cdots, Q_{i^{(k)}}; d_{j}^{(k)}, j = 1, \cdots, M_{k};$$

$$d_{ji^{(k)}}^{(k)}, j = M_{k} + 1, \cdots, Q_{i^{(k)}}; d_{j}^{(k)}, j = 1, \cdots, M_{k};$$

with
$$k=1\cdots,r,i=1,\cdots,R$$
 , $i^{(k)}=1,\cdots,R^{(k)}$

are complex numbers , and the $\alpha's, \beta's, \gamma's$ and $\delta's$ are assumed to be positive real numbers for standardization purpose such that

$$U_{i}^{(k)} = \sum_{j=1}^{N} \alpha_{j}^{(k)} + \tau_{i} \sum_{j=N+1}^{P_{i}} \alpha_{ji}^{(k)} + \sum_{j=1}^{N_{k}} \gamma_{j}^{(k)} + \tau_{i^{(k)}} \sum_{j=n_{k}+1}^{P_{i^{(k)}}} \gamma_{ji^{(k)}}^{(k)} - \tau_{i} \sum_{j=1}^{Q_{i}} \beta_{ji}^{(k)} - \sum_{j=1}^{M_{k}} \delta_{j}^{(k)}$$
$$-\tau_{i^{(k)}} \sum_{j=M_{k}+1}^{Q_{i^{(k)}}} \delta_{ji^{(k)}}^{(k)} \leqslant 0$$
(1.4)

The reals numbers τ_i are positives for i=1 to R , $\tau_{i^{(k)}}$ are positives for $i^{(k)}=1$ to $R^{(k)}$

The contour L_k is in the s_k -p lane and run from $\sigma - i\infty$ to $\sigma + i\infty$ where σ is a real number with loop, if necessary , ensure that the poles of $\Gamma(d_j^{(k)} - \delta_j^{(k)} s_k)$ with j = 1 to m_k are separated from those of $\Gamma(1 - a_j + \sum_{i=1}^r \alpha_j^{(k)} s_k)$ with j = 1 to N and $\Gamma(1 - c_j^{(k)} + \gamma_j^{(k)} s_k)$ with j = 1 to N_k to the left of the contour L_k . The condition for absolute convergence of multiple Mellin-Barnes type contour (1.9) can be obtained by extension of the corresponding conditions for multivariable H-function given by as :

$$|argz_k| < rac{1}{2}A_i^{(k)}\pi$$
 , where

$$A_{i}^{(k)} = \sum_{j=1}^{N} \alpha_{j}^{(k)} - \tau_{i} \sum_{j=N+1}^{P_{i}} \alpha_{ji}^{(k)} - \tau_{i} \sum_{j=1}^{Q_{i}} \beta_{ji}^{(k)} + \sum_{j=1}^{N_{k}} \gamma_{j}^{(k)} - \tau_{i^{(k)}} \sum_{j=N_{k}+1}^{P_{i^{(k)}}} \gamma_{ji^{(k)}}^{(k)} + \sum_{j=1}^{M_{k}} \delta_{j}^{(k)} - \tau_{i^{(k)}} \sum_{j=M_{k}+1}^{Q_{i^{(k)}}} \delta_{ji^{(k)}}^{(k)} > 0, \text{ with } k = 1 \cdots, r, i = 1, \cdots, R, i^{(k)} = 1, \cdots, R^{(k)}$$
(1.5)

The complex numbers z_i are not zero. Throughout this document, we assume the existence and absolute convergence conditions of the multivariable Aleph-function.

We may establish the the asymptotic expansion in the following convenient form :

$$\Re(y_1, \cdots, y_r) = 0(|y_1|^{\alpha_1} \dots |y_r|^{\alpha_r}), max(|y_1| \dots |y_r|) \to 0$$

$$\Re(y_1, \cdots, y_r) = 0(|y_1|^{\beta_1} \dots |y_r|^{\beta_r}), min(|y_1| \dots |y_r|) \to \infty$$

ISSN: 2231-5373

where, with $k=1,\cdots,r$: $lpha_k=min[Re(d_j^{(k)}/\delta_j^{(k)})], j=1,\cdots,M_k$ and

$$\beta_k = max[Re((c_j^{(k)} - 1)/\gamma_j^{(k)})], j = 1, \cdots, N_k$$

Serie representation of Aleph-function of several variables is given by

$$\aleph(y_1, \cdots, y_r) = \sum_{G_1, \cdots, G_r=0}^{\infty} \sum_{g_1=0}^{M_1} \cdots \sum_{g_r=0}^{M_r} \frac{(-)^{G_1+\dots+G_r}}{\delta_{g_1}G_1! \cdots \delta_{g_r}G_r!} \psi(\eta_{G_1, g_1}, \cdots, \eta_{G_r, g_r})$$

$$\times \ \theta_1(\eta_{G_1,g_1}) \cdots \theta_r(\eta_{G_r,g_r}) y_1^{-\eta_{G_1,g_1}} \cdots y_r^{-\eta_{G_r,g_r}}$$
(1.6)

Where $\psi(.,\cdots,.), heta_i(.), i=1,\cdots,r$ are given respectively in (1.2), (1.3) and

$$\eta_{G_1,g_1} = \frac{d_{g_1}^{(1)} + G_1}{\delta_{g_1}^{(1)}}, \cdots, \quad \eta_{G_r,g_r} = \frac{d_{g_r}^{(r)} + G_r}{\delta_{g_r}^{(r)}}$$

which is valid under the conditions $\delta_{g_i}^{(i)}[d_j^i + p_i] \neq \delta_j^{(i)}[d_{g_i}^i + G_i]$ (1.7)

for
$$j \neq M_i, M_i = 1, \cdots, \eta_{G_i, g_i}; P_i, N_i = 0, 1, 2, \cdots, ; y_i \neq 0, i = 1, \cdots, r$$
 (1.8)

In the document , we will note :

$$G(\eta_{G_1,g_1},\cdots,\eta_{G_r,g_r}) = \phi(\eta_{G_1,g_1},\cdots,\eta_{G_r,g_r})\theta_1(\eta_{G_1,g_1})\cdots\theta_r(\eta_{G_r,g_r})$$
(1.9)

where $\phi(\eta_{G_1,g_1},\cdots,\eta_{G_r,g_r})$, $\theta_1(\eta_{G_1,g_1}),\cdots,\theta_r(\eta_{G_r,g_r})$ are given respectively in (1.2) and (1.3)

We will note the Aleph-function of r variables
$$\aleph_{u:w}^{0,N:v} \begin{pmatrix} z_1 \\ \ddots \\ z_r \end{pmatrix}$$
 (1.10)

The multivariable I-function is defined in term of multiple Mellin-Barnes type integral :

$$I(z_{1}, z_{2}, \dots z_{s}) = I_{p_{2}, q_{2}, p_{3}, q_{3}; \dots; p_{s}, q_{s}: p', q'; \dots; p^{(s)}, q^{(s)}} \begin{pmatrix} z_{1} \\ \cdot \\ \cdot \\ \cdot \\ z_{s} \end{pmatrix} \begin{pmatrix} a_{2j}; \alpha'_{2j}, \alpha''_{2j} \end{pmatrix}_{1, p_{2}}; \dots; \\ (b_{2j}; \beta'_{2j}, \beta''_{2j})_{1, q_{2}}; \dots; \\ (b_{2j}; \beta'_{2j}, \beta''_{2j})_{1, q_{2}}; \dots; \end{pmatrix}$$

$$(\mathbf{a}_{sj}; \alpha'_{sj}, \cdots, \alpha^{(s)}_{sj})_{1, p_s} : (a'_j, \alpha'_j)_{1, p'}; \cdots; (a^{(s)}_j, \alpha^{(s)}_j)_{1, p^{(s)}}$$

$$(\mathbf{b}_{sj}; \beta'_{sj}, \cdots, \beta^{(s)}_{sj})_{1, q_s} : (b'_j, \beta'_j)_{1, q'}; \cdots; (b^{(s)}_j, \beta^{(s)}_j)_{1, q^{(s)}}$$

$$(1.11)$$

ISSN: 2231-5373

http://www.ijmttjournal.org

International Journal of Mathematics Trends and Technology (IJMTT) - Volume 41 Number 4- January 2017

$$=\frac{1}{(2\pi\omega)^s}\int_{L_1}\cdots\int_{L_s}\xi(t_1,\cdots,t_s)\prod_{i=1}^s\phi_i(t_i)z_i^{t_i}\mathrm{d}t_1\cdots\mathrm{d}t_s$$
(1.12)

The defined integral of the above function, the existence and convergence conditions, see Y,N Prasad [4]. Throughout the present document, we assume that the existence and convergence conditions of the multivariable I-function.

The condition for absolute convergence of multiple Mellin-Barnes type contour (1.9) can be obtained by extension of the corresponding conditions for multivariable H-function given by as :

$$|argz_{k}| < \frac{1}{2} \Omega_{i}^{(k)} \pi, \text{ where}$$

$$\Omega_{i}^{(k)} = \sum_{k=1}^{n^{(i)}} \alpha_{k}^{(i)} - \sum_{k=n^{(i)}+1}^{p^{(i)}} \alpha_{k}^{(i)} + \sum_{k=1}^{m^{(i)}} \beta_{k}^{(i)} - \sum_{k=m^{(i)}+1}^{q^{(i)}} \beta_{k}^{(i)} + \left(\sum_{k=1}^{n_{2}} \alpha_{2k}^{(i)} - \sum_{k=n_{2}+1}^{p_{2}} \alpha_{2k}^{(i)}\right) + \dots + \left(\sum_{k=1}^{n_{s}} \alpha_{sk}^{(i)} - \sum_{k=n_{s}+1}^{p_{s}} \alpha_{sk}^{(i)}\right) - \left(\sum_{k=1}^{q_{2}} \eta_{2k}^{(i)} + \sum_{k=1}^{q_{3}} \eta_{3k}^{(i)} + \dots + \sum_{k=1}^{q_{s}} \eta_{sk}^{(i)}\right)$$

$$(1.13)$$

where $i = 1, \cdots, s$

The complex numbers z_i are not zero. Throughout this document, we assume the existence and absolute convergence conditions of the multivariable Aleph-function.

We may establish the the asymptotic expansion in the following convenient form :

$$\Re(z_1, \cdots, z_s) = 0(|z_1|^{\alpha'_1} \cdots |z_s|^{\alpha'_s}), max(|z_1| \cdots |z_s|) \to 0$$

$$\Re(z_1, \cdots, z_s) = 0(|z_1|^{\beta'_1} \cdots |z_s|^{\beta'_s}), min(|z_1| \cdots |z_s|) \to \infty$$

where, with $k=1,\cdots,z$: $lpha_k'=min[Re(b_j^{(k)}/eta_j^{(k)})], j=1,\cdots,m_k$ and

$$\beta'_k = max[Re((a_j^{(k)} - 1)/\alpha_j^{(k)})], j = 1, \cdots, n_k$$

We will use these following notations in this paper :

$$U = p_2, q_2; p_3, q_3; \cdots; p_{s-1}, q_{s-1}; V = 0, n_2; 0, n_3; \cdots; 0, n_{s-1}$$
(1.14)

$$W = (p', q'); \dots; (p^{(s)}, q^{(s)}); X = (m', n'); \dots; (m^{(s)}, n^{(s)})$$
(1.15)

$$A = (a_{2k}, \alpha'_{2k}, \alpha''_{2k})_{1,p_2}; \cdots; (a_{(s-1)k}, \alpha'_{(s-1)k}, \alpha''_{(s-1)k}, \cdots, \alpha^{(s-1)}_{(s-1)k})_{1,p_{s-1}}$$
(1.16)

$$B = (b_{2k}, \beta'_{2k}, \beta''_{2k})_{1,q_2}; \cdots; (b_{(s-1)k}, \beta'_{(s-1)k}, \beta''_{(s-1)k}, \cdots, \beta^{(s-1)}_{(s-1)k})_{1,q_{s-1}}$$
(1.17)

$$\mathfrak{A} = (a_{sk}; \alpha'_{sk}, \alpha''_{sk}, \cdots, \alpha^s_{sk})_{1, p_s} : \mathfrak{B} = (b_{sk}; \beta'_{sk}, \beta''_{sk}, \cdots, \beta^s_{sk})_{1; q_s}$$
(1.18)

ISSN: 2231-5373

http://www.ijmttjournal.org

Page 398

$$A' = (a'_k, \alpha'_k)_{1,p'}; \cdots; (a^{(s)}_k, \alpha^{(s)}_k)_{1,p^{(s)}}; B' = (b'_k, \beta'_k)_{1,p'}; \cdots; (b^{(s)}_k, \beta^{(s)}_k)_{1,p^{(s)}}$$
(1.19)

The multivariable I-function write :

$$I(z_1, \cdots, z_s) = I_{U:p_s, q_s; W}^{V; 0, n_s; X} \begin{pmatrix} z_1 \\ \cdot \\ \cdot \\ \vdots \\ z_s \end{pmatrix} | \mathbf{A}; \mathfrak{A}; \mathbf{A}; \mathbf{A}$$

The generalized polynomials defined by Srivastava [5], is given in the following manner :

$$S_{N_{1}',\cdots,N_{t}'}^{M_{1}',\cdots,M_{t}'}[y_{1},\cdots,y_{t}] = \sum_{K_{1}=0}^{[N_{1}'/M_{1}']} \cdots \sum_{K_{t}=0}^{[N_{t}'/M_{t}']} \frac{(-N_{1}')_{M_{1}'K_{1}}}{K_{1}!} \cdots \frac{(-N_{t}')_{M_{t}'K_{t}}}{K_{t}!}$$

$$A[N_{1}',K_{1};\cdots;N_{t}',K_{t}]y_{1}^{K_{1}}\cdots y_{t}^{K_{t}}$$
(1.21)

Where M'_1, \dots, M'_s are arbitrary positive integers and the coefficients $A[N'_1, K_1; \dots; N'_t, K_t]$ are arbitrary constants, real or complex. In the present paper, we use the following notation

$$a_K = \frac{(-N_1')_{M_1'K_1}}{K_1!} \cdots \frac{(-N_t')_{M_t'K_t}}{K_t!} A[N_1', K_1; \cdots; N_t', K_t]$$
(1.22)

In the document, we note:

$$G(\eta_{G_1,g_1},\cdots,\eta_{G_r,g_r}) = \phi(\eta_{G_1,g_1},\cdots,\eta_{G_r,g_r})\theta_1(\eta_{G_1,g_1})\cdots\theta_r(\eta_{G_r,g_r})$$
(1.23)
where $\phi(\eta_{G_1,g_1},\cdots,\eta_{G_r,g_r}), \theta_1(\eta_{G_1,g_1}),\cdots,\theta_r(\eta_{G_r,g_r})$ are given respectively in (1.2) and (1.3)

2. Generalization of the Hurwitz-Lerch Zeta function

Parmar et al [2] have defined the Generalization of the Hurwitz-Lerch Zeta function

$$\phi_{\lambda,\mu,\nu}(z,s',a) = \sum_{m=0}^{\infty} \frac{(\lambda)_m(\mu)_m}{(\nu)_m m!} \frac{z^m}{(m+a)^{s'}}$$
(2.1)

$$\lambda, \mu \in \mathbb{C}, \upsilon, a \in \mathbb{C} \setminus \mathbb{Z}_0^-; s' \in \mathbb{C} \text{ when } |z| < 1; Re(s' + \upsilon - \lambda - \mu) > 1 \text{ when } |z| = 1$$

3. Required integral

We have the following result, see (Beals et al [1], page 54)

$$S(a,b,c) = \int_0^1 \cdots \int_0^1 \prod_{i=1}^n x_i^{a-1} (1-x_i)^{b-1} \prod_{1 \le j < k \le n} |x_j - x_k|^{2c} \, \mathrm{d}x_1 \cdots \mathrm{d}x_n =$$

ISSN: 2231-5373

$$=\prod_{j=0}^{n-1} \frac{\Gamma(a+jc)\Gamma(b+jc)\Gamma(1+(j+1)c)}{\Gamma(a+b+(n-1+j)c)\Gamma(1+c)}$$
(3.1)

with
$$Re(a) > 0, Re(b) > 0, Re(c) > Max \left\{ -\frac{1}{n}, -\frac{Re(a)}{n-1}, -\frac{Re(b)}{n-1} \right\}$$

 $S(\boldsymbol{a},\boldsymbol{b},\boldsymbol{c})$ is the Selberg integral with three parameters

4. Main integral

Let
$$X_{u,v,w} = \prod_{i=1}^{n} x_i^u (1-x_i)^v \prod_{1 \le j < k \le n} |x_j - x_k|^{2w}$$

we have the following formula

Theorem

$$\int_0^1 \cdots \int_0^1 \prod_{i=1}^n x_i^{a-1} (1-x_i)^{b-1} \prod_{1 \le j < k \le n} |x_j - x_k|^{2c} \phi_{\lambda,\mu,\nu}(z X_{\alpha,\beta,\gamma}, s', a)$$

$$S_{N_{1},\cdots,N_{t}}^{M_{1},\cdots,M_{t}} \begin{pmatrix} y_{1}X_{\alpha_{1},\beta_{1},\gamma_{1}} \\ \ddots \\ y_{t}X_{\alpha_{t},\beta_{t},\gamma_{t}} \end{pmatrix} \aleph_{u:w}^{0,N:v} \begin{pmatrix} z_{1}X_{\delta_{1},\psi_{1},\phi_{1}} \\ \ddots \\ z_{r}X_{\delta_{r},\psi_{r},\phi_{r}} \end{pmatrix} I_{U:p_{s},q_{s};W}^{V;0,n_{s};X} \begin{pmatrix} Z_{1}X_{\epsilon_{1},\eta_{1},\zeta_{1}} \\ \ddots \\ Z_{s}X_{\epsilon_{s},\eta_{s},\zeta_{s}} \end{pmatrix} dx_{1}\cdots dx_{n} =$$

$$\sum_{m=0}^{\infty} \sum_{G_1,\cdots,G_r=0}^{\infty} \sum_{g_1=0}^{M_1} \cdots \sum_{g_r=0}^{M_r} \sum_{K_1=0}^{[N_1'/M_1']} \cdots \sum_{K_t=0}^{[N_t'/M_t']} a_K \frac{(-)^{G_1+\cdots+G_r}}{\delta_{g_1}G_1!\cdots\delta_{g_r}G_r!} \frac{(\lambda)_m(\mu)_m}{(\upsilon)_m m!} \frac{z^m}{(m+a)^{s'}}$$

$$G(\eta_{G_1,g_1},\cdots\eta_{G_r,g_r}) y_1^{K_1}\cdots y_t^{K_t} z_1^{\eta_{G_1,g_1}}\cdots z_r^{\eta_{G_r,g_r}} I_{U:p_s+3n,q_s+2n;W}^{V;0,n_s+3n;X} \begin{pmatrix} Z_1 & A; \\ \ddots & \\ \ddots & \\ Z_s & Z_s \end{pmatrix}$$

$$[1-a-\alpha m - \sum_{i=1}^{t} K_{i}\alpha_{i} - \sum_{i=1}^{r} \eta_{G_{i},g_{i}}\delta_{i} - j(c+\gamma m + \sum_{i=1}^{t} \gamma_{i}K_{i} + \sum_{i=1}^{r} \phi_{i}\eta_{G_{i},g_{i}}), \epsilon_{1} + j\zeta_{1}, \cdots, \epsilon_{s} + j\zeta_{s}]_{0,n-1}$$

$$(-c-\gamma m + \sum_{i=1}^{t} K_{i}\gamma_{i} - \sum_{i=1}^{r} \phi_{i}\eta_{G_{i},g_{i}}, \zeta_{1}, \cdots, \zeta_{s}), \cdots,$$

$$[1-b-\beta m - \sum_{i=1}^{t} K_{i}\beta_{i} - \sum_{i=1}^{r} \eta_{G_{i},g_{i}}\psi_{i} - j(c+\gamma m + \sum_{i=1}^{t} \gamma_{i}K_{i} + \sum_{i=1}^{r} \phi_{i}\eta_{G_{i},g_{i}}); \eta_{1} + j\zeta_{1}, \cdots, \eta_{s} + j\zeta_{s}]_{0,n-1}$$

$$(-c-\gamma m - \sum_{i=1}^{t} \gamma_{i}K_{i} - \sum_{i=1}^{r} \phi_{i}\eta_{G_{i},g_{i}}; \zeta_{1}, \cdots, \zeta_{s}), B_{1}$$

ISSN: 2231-5373

http://www.ijmttjournal.org

Page 400

$$-(j+1)(c+\gamma m + \sum_{i=1}^{t} \gamma_i K_i + \sum_{i=1}^{r} \phi_i \eta_{G_i,g_i}), j\zeta_1, \cdots, j\zeta_s)]_{0,n-1}, \mathfrak{A}: A'$$

$$\vdots$$

$$\mathfrak{B}: \mathsf{B}'$$

$$(4.1)$$

where
$$B_1 = [1 - a - b - (\alpha + \beta)m - \sum_{i=1}^t K_i(\alpha_i + \beta_i) - \sum_{i=1}^r (\delta_i + \phi_i)\eta_{G_i,g_i} - (n - 1 + j) \times (c + \gamma m + \sum_{i=1}^t K_i\gamma_i + \sum_{i=1}^r \phi_i\eta_{G_i,g_i});\epsilon_1 + \eta_1 + j\zeta_1, \cdots, \epsilon_s + \eta_s + j\zeta_s]_{0,n-1}$$

(4.2)

Provided that

a) $min\{\alpha, \beta, \gamma, \alpha_i, \beta_i, \gamma_i, \delta_j, \psi_j, \phi_j, \epsilon_k, \eta_k, \zeta_k\} > 0, i = 1, \cdots, t, j = 1, \cdots, r, k = 1, \cdots, s$,

b)
$$A = Re[a + \alpha m + \sum_{i=1}^{r} \delta_{i} \min_{1 \le j \le M_{i}} \frac{d_{j}^{(i)}}{\delta_{j}^{(i)}} + \sum_{i=1}^{s} \epsilon_{i} \min_{1 \le j \le m^{(i)}} \frac{b_{j}^{(i)}}{\beta_{j}^{(i)}}] > 0$$

c)
$$B = Re[b + \beta m + \sum_{i=1}^{r} \psi_{i} \min_{1 \le j \le M_{i}} \frac{d_{j}^{(i)}}{\delta_{j}^{(i)}} + \sum_{i=1}^{s} \eta_{i} \min_{1 \le j \le m^{(i)}} \frac{b_{j}^{(i)}}{\beta_{j}^{(i)}}] > 0$$

$$d) C = Re[c + \gamma m + \sum_{i=1}^{r} \phi_i \min_{1 \leqslant j \leqslant M_i} \frac{d_j^{(i)}}{\delta_j^{(i)}} + \sum_{i=1}^{s} \zeta_i \min_{1 \leqslant j \leqslant m^{(i)}} \frac{b_j^{(i)}}{\beta_j^{(i)}}] > Max \left\{ -\frac{1}{n}, -\frac{A}{n-1}, -\frac{B}{n-1} \right\}$$

e) $|argz_k|<rac{1}{2}A_i^{(k)}\pi$, where $A_i^{(k)}$ is defined by (1.5) ; $i=1,\cdots,r$

f)
$$|argZ_k| < rac{1}{2}\Omega_i^{(k)}\pi$$
 , where $\Omega_i^{(k)}$ is defined by (1.13) ; $i=1,\cdots,s$

g) The multiple series occuring on the right-hand side of (4.1) is absolutely and uniformly convergent.

$$\mathbf{h)} \quad \lambda, \mu \in \mathbb{C}, \upsilon, a \in \mathbb{C} \setminus \mathbb{Z}_0^-; s' \in \mathbb{C} \text{ when } |z| < 1; Re(s' + \upsilon - \lambda - \mu) > 1 \text{ when } |z| = 1$$

Proof

First, expressing the generalized the sequence of functions $\phi_{\lambda,\mu,\upsilon}(.,s',a)$ in serie with the help of equation (2.1), the Aleph-function of r variables in series with the help of equation (1.6), the general class of polynomial of several variables $S_{N'_1,\cdots,N'_t}^{M'_1,\cdots,M'_t}[y_1,\cdots,y_t]$ with the help of equation (1.21) and the I-function of s variables in defined by Prasad [4] in Mellin-Barnes contour integral with the help of equation (1.12), changing the order of integration ans summation (which is easily seen to be justified due to the absolute convergence of the integral and the summations involved in the process). Now evaluating the resulting Selberg integral with the help of equation (3.1). Finally interpreting the result thus obtained with the Mellin-barnes contour integral, we arrive at the desired result.

5. Particular case

If U = V = A = B = 0, the multivariable I-function defined by Prasad degenere in multivariable H-function defined by Srivastava et al [6]. We have the following result.

Corollary

$$\int_0^1 \cdots \int_0^1 \prod_{i=1}^n x_i^{a-1} (1-x_i)^{b-1} \prod_{1 \le j < k \le n} |x_j - x_k|^{2c} \phi_{\lambda,\mu,\nu}(z X_{\alpha,\beta,\gamma}, s', a)$$

$$S_{N_{1},\cdots,N_{t}}^{M_{1},\cdots,M_{t}} \begin{pmatrix} y_{1}X_{\alpha_{1},\beta_{1},\gamma_{1}} \\ \vdots \\ y_{t}X_{\alpha_{t},\beta_{t},\gamma_{t}} \end{pmatrix} \aleph_{u:w}^{0,N:v} \begin{pmatrix} z_{1}X_{\delta_{1},\psi_{1},\phi_{1}} \\ \vdots \\ z_{r}X_{\delta_{r},\psi_{r},\phi_{r}} \end{pmatrix} I_{U:p_{s},q_{s};W}^{V;0,n_{s};X} \begin{pmatrix} Z_{1}X_{\epsilon_{1},\eta_{1},\zeta_{1}} \\ \vdots \\ Z_{s}X_{\epsilon_{s},\eta_{s},\zeta_{s}} \end{pmatrix} dx_{1}\cdots dx_{n} =$$

$$\sum_{m=0}^{\infty} \sum_{G_1,\cdots,G_r=0}^{\infty} \sum_{g_1=0}^{M_1} \cdots \sum_{g_r=0}^{M_r} \sum_{K_1=0}^{[N_1'/M_1']} \cdots \sum_{K_t=0}^{[N_t'/M_t']} a_K \frac{(-)^{G_1+\cdots+G_r}}{\delta_{g_1}G_1!\cdots\delta_{g_r}G_r!} \frac{(\lambda)_m(\mu)_m}{(\upsilon)_m m!} \frac{z^m}{(m+a)^{s'}}$$

$$G(\eta_{G_{1},g_{1}},\cdots\eta_{G_{r},g_{r}}) y_{1}^{K_{1}}\cdots y_{t}^{K_{t}} z_{1}^{\eta_{G_{1},g_{1}}}\cdots z_{r}^{\eta_{G_{r},g_{r}}} H_{p_{s}+3n,q_{s}+2n;W}^{0,n_{s}+3n;X} \begin{pmatrix} Z_{1} \\ \ddots \\ \ddots \\ Z_{s} \end{pmatrix}$$

$$[1-a-\alpha m - \sum_{i=1}^{t} K_{i}\alpha_{i} - \sum_{i=1}^{r} \eta_{G_{i},g_{i}}\delta_{i} - j(c+\gamma m + \sum_{i=1}^{t} \gamma_{i}K_{i} + \sum_{i=1}^{r} \phi_{i}\eta_{G_{i},g_{i}}), \epsilon_{1} + j\zeta_{1}, \cdots, \epsilon_{s} + j\zeta_{s}]_{0,n-1}$$

$$[1-b-\beta m - \sum_{i=1}^{t} K_{i}\beta_{i} - \sum_{i=1}^{r} \eta_{G_{i},g_{i}}\psi_{i} - j(c+\gamma s' + \sum_{i=1}^{t} \gamma_{i}K_{i} + \sum_{i=1}^{r} \phi_{i}\eta_{G_{i},g_{i}}); \eta_{1} + j\zeta_{1}, \cdots, \eta_{s} + j\zeta_{s}]_{0,n-1}$$

$$(-c-\gamma s' - \sum_{i=1}^{t} \gamma_{i}K_{i} - \sum_{i=1}^{r} \phi_{i}\eta_{G_{i},g_{i}}; \zeta_{1}, \cdots, \zeta_{s}), B_{1}$$

$$-(i+1)(c+\gamma m + \sum_{i=1}^{t} \gamma_{i}K_{i} + \sum_{i=1}^{r} \phi_{i}\eta_{G_{i},g_{i}}; \zeta_{1}, \cdots, \zeta_{s})]_{0,n-1} 2(i+A')$$

$$(5.1)$$
$$(c+\gamma m + \sum_{i=1}^{t} \gamma_i K_i + \sum_{i=1}^{r} \phi_i \eta_{G_i,g_i}), j\zeta_1, \cdots, j\zeta_s)]_{0,n-1}, \mathfrak{A}: A'$$
$$(5.1)$$
$$\mathfrak{B}: B'$$

under the same notations and conditions that (4.1) with U = V = A = B = 0

6. Conclusion

In this paper we have evaluated a Selberg integral involving the multivariable Aleph-function, the multivariable I-function defined by Prasad [2], a class of polynomials of several variables and a certain extension of the Hurwitz-Lerch Zeta function .The integral established in this paper is of very general nature as it contains multivariable Aleph-function, and multivariable I-function defined by Prasad [3] which is a general function of several variables studied so far. Thus, the integral established in this research work would serve as a key formula from which, upon specializing the parameters, as many as desired results involving the special functions of one and several variables can be obtained.

REFERENCES

ISSN: 2231-5373

http://www.ijmttjournal.org

[1] Beals Richard and Roderick Wong. Special functions. Cambridge University Press 2010

[2] Parmar K.P and Raina R.K. On a certain extension of the Hurwitz-Lerch Zeta function. Analele Universitatii de Vest. Timosoara. Seria Matematica- informatica 2014, 52(2), page 157-170.

[3] Y.N. Prasad, Multivariable I-function, Vijnana Parishad Anusandhan Patrika 29 (1986), page 231-237

[4] Sharma C.K.and Ahmad S.S.: On the multivariable I-function. Acta ciencia Indica Math , 1994 vol 20,no2, p 113-116.

[5] Srivastava H.M. A multilinear generating function for the Konhauser set of biorthogonal polynomials suggested by Laguerre polynomial, Pacific. J. Math. 177(1985), page183-191.

[6] H.M. Srivastava And R.Panda. Some expansion theorems and generating relations for the H-function of several complex variables. Comment. Math. Univ. St. Paul. 24(1975), p.119-137.

Personal adress : 411 Avenue Joseph Raynaud Le parc Fleuri , Bat B 83140 , Six-Fours les plages Tel : 06-83-12-49-68 Department : VAR Country : FRANCE