Some results on Invariant Submanifolds in an Indefinite Trans-Sasakian Manifold

Nanditha S Matad
New Horizon College,
Marathalli, Bangalore-560103
Karnataka, INDIA.

Abstract

The purpose of this paper is to study invariant submanifolds in a indefinite trans-Sasakian manifold. Necessary and sufficient conditions are given on an submanifold of a indefinite trans-Sasakian manifold to be invariant and invariant case is considered. In this case further properties and some theorems are given related to an invariant submanifolds in a indefinite transSasakian manifold.

AMS Subject Classification : 53C15, 53C20, 53C25.
Key Words: Indefinite Trans-Sasakian manifold, Invariant submanifold,Covariant differentiation.

1. Introduction

Contact structure has most important applications in physics. Many authors gave their valuable and essential results on differential geometry. In 1976 K.Yano and M.Kon introduced invariant and anti-invariant submanifolds in [1]. J.A.Oubina [2] introduced the notion of a tran sasakian manifold of type (α, β).Trans sasakian manifold is an important kind of sasakian manifold such that $\alpha=1$ and $\beta=1$.

In [3]A.Bejancu and K.L.Duggal introduced the notion of ϵ-sasakian manifolds with indefinite metric. In 5 U.C.De and Avijit Sarkar introduced and studied the notion of ϵ - Kenmotsu
manifolds with indefinite metric with an example.H.Bayram Karadag and Mehmet Atceken [4] obtained some results on invariant submanifolds of sasakian manifolds and further properties are obtained.

In 2010 S.S.Shukla and D.D.Singh [6]Studies ϵ-Trans sasakian manifolds. In this paper they have obtained some results on ϵ-Trans sasakian manifolds and Aysel Turgut Vanli and Ramazan Sari[7] obtained some results on invariant submanifolds of a trans sasakian manifolds.Conditions for Indefinite trans sasakian manifolds to be D-totally geodesics, D^{\perp}-totally geodesics, mixed totally geodesic is given by Arindam Bhattacharya and Bandana Das in [8]. Recently Dae Ho Jin 9]studied Indefinite tran sasakian manifold of quasi constant curvature with lightlike hypersurfaces.

In this paper necessary and sufficient conditions are given on an submanifold of an indefinite trans-Sasakian manifold to be invariant and further properties and some theorems are given related to an invariant submanifolds in a indefinite trans-Sasakian manifold.

2. preliminaries

Let M be an (2n+1)-dimensional indefinite almost contact metric manifold with indefinite almost contact metric structure (ϕ, ξ, η, g) then they satisfies

$$
\begin{gather*}
\phi^{2}=-I+\eta \otimes \xi \tag{2.1}\\
\eta(\xi)=1, \quad \phi \xi=0 \\
g(\phi X, \phi Y)=g(X, Y)-\epsilon \eta(X) \eta(Y), \tag{2.2}\\
g(\phi X, Y)=-g(X, \phi Y) \tag{2.3}\\
\epsilon g(X, \xi)=\eta(X)
\end{gather*}
$$

where X, Y are vector fields on M and $\epsilon= \pm 1$

An indefinite almost contact metric structure (ϕ, ξ, η, g) on M is called indefinite transSasakian if

$$
\begin{equation*}
\left(\nabla_{X} \phi\right)(Y)=\alpha[g(X, Y) \xi-\epsilon \eta(Y) X]+\beta[g(\phi X, Y) \xi-\epsilon \eta(Y) \phi X] \tag{2.4}
\end{equation*}
$$

where α and β are non zero scalar funtions on \bar{M} of type $(\alpha, \beta) . \bar{\nabla}$ is a Levi-civita connection on \bar{M}. In particular, an indefinite trans-Sasakian manifold is normal.

From above formula, one easily obtains

$$
\begin{align*}
\nabla_{X} \xi & =-\alpha \epsilon \phi X+\beta \epsilon X-\epsilon \eta(X) \xi=\epsilon\left[-\alpha \phi X+\phi^{2} X\right], \tag{2.5}\\
\nabla_{X} \eta(Y) & =-\alpha g(\phi X, Y)+\beta[g(X, Y)-\epsilon \eta(X) \eta(Y)], \tag{2.6}
\end{align*}
$$

Further in an indefinite trans sasakian manifold, the following holds true,

$$
\begin{align*}
R(X, Y) \xi & =\left(\alpha^{2}-\beta^{2}\right)[\eta(Y) X-\eta(X) Y]+2 \alpha \beta[\eta(Y) \phi X-\eta(X) \phi Y] \tag{2.7}\\
& +\epsilon\left[(Y \alpha) \phi X-(X \alpha) \phi X+(Y \beta) \phi^{2} X-(X \beta) \phi^{2} Y\right]
\end{align*}
$$

Let M be an $(2 m+1)$ dimensional $(n>m)$ manifold imbedded in \bar{M}. The induced metric g of M is given

$$
g(X, Y)=\bar{g}(\bar{X}, \bar{Y})
$$

for any vector fields X, Y on M.

Let $T_{x}(M)$ and $T_{x}(M)^{\perp}$ denote that tangent and normal bundles of M and $x \in M$. Let ∇_{X} denote the Riemannian connection on M determined by the induced metric g and R denote
the Riemannian curvature tensor of M. Then Gauss-Weingarten formula is given by

$$
\begin{align*}
& \bar{\nabla}_{X} Y=\nabla_{X} Y+B(X, Y) \tag{2.8}\\
& \bar{\nabla}_{X} N=-A_{N}(X)+D_{X} N \tag{2.9}
\end{align*}
$$

for any vector fields X, Y tangent to M and any vector field N normal to M, where D is the operator of covariant differentiation with respect to the linear connection induced in the normal bundle $T_{x}(M)^{\perp}$. Both A and B are called the second fundamental forms of they satisfy

$$
g(B(X, Y), N)=g\left(A_{N}(X, Y)\right)
$$

3. Submanifolds in indefinite trans-Sasakian manifold

Let M be an ($\mathrm{m}+1$) dimensional immersed submanifold of an almost contact metric manifold $(\bar{M}, \phi, \bar{\eta}, \xi, \bar{g})$. where \bar{M} is $(2 n+1)$-dimensional.

Let $i: M \rightarrow \bar{M}$ be an immersion; we denote by B the differential of i. The induced Riemannian metric g of M is given by $g=i * \bar{g}$.

$$
T M=T_{x} M \oplus T_{x} M^{\perp}
$$

where $T_{x} M$ the tangent space of M at $x \in M, T_{x} M^{\perp}$ the normal space of M in \bar{M}, respectively. Moreover, we denote by $\left[N_{1}, N_{2}, N_{3, \ldots \ldots \ldots .} N_{t}\right] t=2 n-m$, an orthonormal basis of the normal space $T_{x} M^{\perp}$. Then

$$
\begin{equation*}
\phi B X=B \varphi X+\sum_{l=1}^{t} \nu_{l}(X) N_{l} \quad l=1,2, \ldots . . t . \tag{3.1}
\end{equation*}
$$

For any $X \in T_{x} M$, where φ are induced (1,1) tensor and ν_{l} are induced 1-forms on M. Similarly,

$$
\begin{equation*}
\phi N_{l}=B U_{l}+\sum_{l=1}^{t} \lambda_{l s} N_{s} \tag{3.2}
\end{equation*}
$$

where, U_{l} are vector fields on M and $\lambda_{l s}$ are functions on M. Furthermore,the vector field ξ can be expressed as follows:

$$
\begin{equation*}
\xi=B V+\sum_{l=1}^{t} \alpha_{l} N_{l} \tag{3.3}
\end{equation*}
$$

where, V is a vectors field on M, α_{l} are functions on M.Thus

$$
\begin{array}{r}
g(\varphi X, Y)=\bar{g}(B \varphi X, B Y)=\bar{g}\left(\phi B X-\sum_{l=1}^{t} \nu_{l}(X) N_{l}, B Y\right), \\
=-\bar{g}(B X, \phi B Y)=-\bar{g}(B X, B \varphi Y)=-g(X, \varphi Y) .
\end{array}
$$

Hence we get,

$$
\begin{equation*}
g(\varphi X, Y)=-g(X, \varphi Y) \tag{3.4}
\end{equation*}
$$

for any $X, Y \in \Gamma(T M)$.Moreover,from (2.3),

$$
\bar{g}\left(\phi B X, N_{l}\right)=-\bar{g}\left(B X, \phi N_{l}\right),
$$

and

$$
\bar{g}\left(\phi N_{l}, N_{s}\right)=-\bar{g}\left(N_{l}, \phi N_{s}\right),
$$

we get the equations

$$
\nu_{s}(X)=-g\left(X, U_{s}\right), \quad \lambda_{l s}=-\lambda_{s l} .
$$

So $\lambda_{l s}$ is skew-symmetric. The following Lemmas will be needed later. This Lemmas provided that for an immersed submanifold of a Sasakian manifold [4]. But this Lemmas true for an immersed submanifold of any almost contact metric manifold.

Lemma 3.1. Let M be an immersed submanifold of an almost contact metric manifold M. Then we have

$$
\begin{align*}
\phi^{2} & =-I+\eta \otimes V-\sum_{l=1}^{t} \nu_{l} \otimes U_{l} . \tag{3.5}\\
\nu_{p}(\varphi X)+\sum_{l=1}^{t} \nu_{l}(X) \lambda_{l p}-\alpha_{p} \eta(X) & =0 \tag{3.6}
\end{align*}
$$

and

$$
\varphi U_{p}-\sum_{l=1}^{t} \lambda_{l p} U_{l}-\alpha_{p} V=0
$$

where η is an induced 1-form on M and $\eta(X)=\epsilon g(X, V)$

Lemma 3.2. Let M be an immersed submanifold of an almost contact metric manifold \bar{M}.
Then following equations :

$$
\begin{align*}
\varphi V+\sum_{l=1}^{t} \alpha_{l} U_{l} & =0, \tag{3.7}\\
\nu_{k}(V)+\sum_{l=1}^{t} \alpha_{l} \lambda_{l k} & =0, \tag{3.8}
\end{align*}
$$

and

$$
\eta(V)=1-\sum_{l=1}^{t} \alpha_{l}^{2}
$$

4. Invariant Submanifolds of an indefinite trans-Sasakian manifold

Let M be an immersed submanifold of an indefinite trans-Sasakian manifold \bar{M}. If $\phi\left(B\left(T_{x} M\right)\right) \subset$ $T_{x} M$, for any point $x \in M$, then M is called an invariant sbmanifold of \bar{M}. In this case, we
have

$$
\begin{align*}
\phi B X & =B \varphi X \tag{4.1}\\
\phi N_{l} & =\sum_{l=1}^{t} \lambda_{l s} N_{s} \tag{4.2}\\
\xi & =B V+\sum_{l=1}^{t} \alpha_{l} N_{s} . \tag{4.3}
\end{align*}
$$

Let ∇ be the Levi-civita connection of M with respect to the induced metric g. Then the Gauss and Weingarten formulas are given by

$$
\begin{align*}
\bar{\nabla}_{X} \xi & =\nabla_{X} \xi+h(X, Y), \tag{4.4}\\
\bar{\nabla}_{X} N & =\nabla_{X}^{\perp} N-A_{N} X \tag{4.5}
\end{align*}
$$

for any $X, Y \in \Gamma(T M)$ and $N \in \Gamma(T M)^{\perp} . \nabla^{\perp}$ is the connection in the normal bundle, h is the second fundamental form of M and A_{N} is the weigarten endomorhism associated with N.The second fundamental form h and the shape operator A related by,

$$
\begin{equation*}
g(h(X, Y), N)=g\left(A_{N} X, Y\right) \tag{4.6}
\end{equation*}
$$

Lemma 4.3. Let M be an invariant submanifold of a trans sasakian manifold \bar{M} then we have

$$
\begin{gather*}
\phi^{2}=-I+\bar{\eta} \otimes V, \quad \alpha_{l} \bar{\eta}=0, \quad l, k=1,2,3, \ldots \ldots . t \tag{4.7}\\
\phi V=0, \sum_{l=1}^{t} \alpha_{l} \lambda_{l k}=0
\end{gather*}
$$

Proof: For any $X \in \Gamma(T \bar{M})$, we have,

$$
\begin{array}{r}
B \phi^{2} X=\phi^{2} B X \\
=-B X+\eta(B X) \xi, \\
=-B X+\eta(B X) B V+\eta(B X) \sum_{l=1}^{t} \alpha_{l} N_{l}
\end{array}
$$

Then we get,

$$
\phi^{2} X=-X+\bar{\eta}(X) V, \quad \sum_{l=1}^{t} \bar{\eta}(X) \alpha_{l} N_{l}=0
$$

or

$$
\phi^{2}=-I+\bar{\eta} \otimes V, \quad \alpha_{l} \bar{\eta}=0
$$

furthermore, from $\phi \xi=0$ we get

$$
B \phi V+\sum_{l=1}^{t} \alpha_{l} \sum_{k=1}^{t} \lambda_{l k} N_{k}=0
$$

Thus we have the following theorems.

Theorem 4.1. Let M be an invariant submanifold of a indefinite trans sasakian manifold \bar{M}. Then ξ is tangent to M iff then the induced structure (ϕ, V, η, g) on M is a indefinite trans sasakian structure.

Proof: ξ is tangent to $M . V \neq 0$ that is $\alpha_{l}=0$, then from (3,3) we have

$$
\begin{equation*}
\xi=B V \tag{4.8}
\end{equation*}
$$

From (3.1) we have

$$
\begin{equation*}
\bar{g}(\phi X, Y)=\bar{g}(B \phi X, Y)+\sum_{l=1}^{t} \nu_{l}(X) \bar{g}\left(N_{l}, Y\right)=g(\phi X, Y), \tag{4.9}
\end{equation*}
$$

Then,from (2.4)we get

$$
\left(\bar{\nabla}_{X} \phi\right) Y=\alpha(\bar{g}(X, Y) \xi-\epsilon \bar{\eta}(Y) X)+\beta(\bar{g}(\phi X, Y) \xi-\epsilon \bar{\eta}(Y) \phi X)
$$

BY using (4.8) and (2.3), we obtain,

$$
\begin{array}{r}
\left(\bar{\nabla}_{X} \phi\right) Y=\alpha\left[\bar{g}(X, Y) B V-\epsilon^{2} \bar{g}(Y, \xi) X\right]+\beta\left[\bar{g}(\phi X, Y) B V-\epsilon^{2} \bar{g}(Y, \xi) \phi X\right] \\
\left(\bar{\nabla}_{X} \phi\right) Y=\alpha\left[\bar{g}(X, Y) B V-\epsilon^{2} \bar{g}(Y, B V) X\right]+\beta\left[\bar{g}(\phi X, Y) B V-\epsilon^{2} \bar{g}(Y, B V) \phi X\right] .
\end{array}
$$

from (4.9), we get

$$
\begin{array}{r}
\left(\bar{\nabla}_{X} \phi\right) Y=\alpha\left[g(X, Y) V-\epsilon^{2} g(Y, V) X\right]+\beta\left[g(\phi X, Y) V-\epsilon^{2} g(Y, V) \phi X\right] \\
\left(\bar{\nabla}_{X} \phi\right) Y=\alpha[g(X, Y) V-\epsilon \eta(Y) X]+\beta[g(\phi X, Y) V-\epsilon \eta(Y) \phi X] \\
\left(\bar{\nabla}_{X} \phi\right) Y=\left(\nabla_{X} \phi\right) Y,
\end{array}
$$

Hence by using (2.5) and (4.6), we have

$$
\begin{aligned}
\bar{\nabla}_{X} \xi & =\bar{\nabla}_{X} B V \\
\epsilon\left(-\alpha \phi X-\beta \phi^{2} X\right) & =\nabla_{X} V \\
\epsilon\left(-\alpha \phi B X-\beta \phi^{2} B X\right) & =\nabla_{B X} V .
\end{aligned}
$$

Hence by using (2.1) and (3.1)it follows that

$$
\nabla_{B X} V=\epsilon\left[-\alpha\left(B \phi X+\sum_{l=1}^{t} \nu_{l}(X) N_{l}\right)+\beta\left(B \phi^{2} X+\sum_{l=1}^{t} \nu_{l}(\phi X) N_{l}+\sum_{i=1}^{t} \nu_{i}(X) B U_{i}+\sum_{i=1}^{t} \nu_{i}(X) \sum_{l=1}^{t} \lambda_{l s} N_{s}\right)\right]
$$

Thus, we have

$$
\begin{aligned}
\nabla_{B X} V & =\epsilon\left[-\alpha(B \phi X)-\beta\left(B \phi^{2} X\right)\right] \\
\nabla_{X} V & =\epsilon[-\alpha(\phi X)+\beta(X-\eta(X) V)] .
\end{aligned}
$$

Then M is an indefinite trans sasakian manifolds with Indefinite Trans sasakian structure (ϕ, V, η, g).

Theorem 4.2. LetM be an immersed submanifolds of an indefinite transsasakian manifold \bar{M}.Then Mis an invariant submanifold of an indefinite transsasakian manifold \bar{M} iff the induced structure (ϕ, V, η, g) on M is an indefinite trans sasakian structure.

Proof:Let M be an invariant submanifold of an indefinite transsasakian manifold \bar{M} then, from (3.5) and (4.7)we get

$$
\sum_{l=1}^{t} \nu_{l}(X) U_{l}=0 \Rightarrow \nu_{l}(X)=0
$$

By using (3.6) it follows that

$$
\nu_{p}(\phi X)=\alpha_{p} \eta(X), \quad-g\left(\phi X, U_{p}\right)=\alpha_{p} \epsilon g(X, V)
$$

Thus we have

$$
g\left(X, \phi U_{p}\right)=\alpha_{p} \epsilon g(X, V)
$$

That is

$$
g\left(\phi U_{p}-\epsilon \alpha_{p} V, X\right)
$$

Since g is non degenere, we have $\phi U_{p}=\epsilon \alpha_{p} V$. Thus we get, $\alpha_{p}=0$ Then, from(3.3)it follows that $\xi=B V$, that is $\xi \in T_{x} M$.

References

[1] K.Yano and M.Kon, Anti invariant submanifolds Marcel Dekker Inc., New York,(1976).
[2] J.A.Oubina, New classes of almost contact metric structures, Publ.Math.Debrecen.,32,(1985),187-193.
[3] A.Bejancu and K.L.Duggal, Real hypersurfaces of indefinite Kaehler manifolds, Int.J.Math.Sci., 16(3) (1993) 545-556.
[4] H.Bayram Karadag and Mehmet Atceken , Invariant submanifolds of sasakian manifolds, Balkan.Journal of geometry and itsapplications.,12,1(2007), 68-75.
[5] U.C.De and Avijit Sarkar, On ϵ Kenmotsu manifolds, Hadronic Journal., 32(2009), 231-242.
[6] S.S.Shukla and D.D.Singh , On ϵ-Trans sasakian manifolds, Int.Journal.,32,(2009), 231-242.
[7] Aysel Turgut Vanli and Ramazan Sari, On invariant submanifolds of a trans sasakian manifolds, Differ. Geom. Dyn.Syst.,12,(2010),277-288.
[8] ArindamBhattacharya and Bandana Das, Contact CR-Submanifolds of an Indefinite trans sasakian manifolds, Int.J.Contemp.Math.Science.,Volume.6,no.26,(2011), 1271-1282.
[9] Dae Ho Jin, Studied Indefinite trans sasakian manifold of quasi constant curvature with lightlike hypersurfaces, Balkan Journal of Geometry and Its applications.,Volume 20, issue 1,(2015), 65-75.
[10] Blair.D.E., Riemannian Geometry of Contact and Symplectic Manifold, Boston,Berlin,(2002).

