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Abstract: The purpose of this paper is to study invariant submanifolds in a

indefinite trans-Sasakian manifold. Necessary and sufficient conditions are given

on an submanifold of a indefinite trans-Sasakian manifold to be invariant and

invariant case is considered. In this case further properties and some

theorems are given related to an invariant submanifolds in a indefinite trans-

Sasakian manifold.
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1. Introduction

Contact structure has most important applications in physics. Many authors gave their

valuable and essential results on differential geometry. In 1976 K.Yano and M.Kon intro-

duced invariant and anti-invariant submanifolds in [1]. J.A.Oubina [2] introduced the notion

of a tran sasakian manifold of type (α, β).Trans sasakian manifold is an important kind of

sasakian manifold such that α = 1 and β = 1.

In [3]A.Bejancu and K.L.Duggal introduced the notion of ε-sasakian manifolds with indefinite

metric. In [5]U.C.De and Avijit Sarkar introduced and studied the notion of ε- Kenmotsu
1
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manifolds with indefinite metric with an example.H.Bayram Karadag and Mehmet Atceken

[4] obtained some results on invariant submanifolds of sasakian manifolds and further prop-

erties are obtained.

In 2010 S.S.Shukla and D.D.Singh [6]Studies ε-Trans sasakian manifolds. In this paper they

have obtained some results on ε-Trans sasakian manifolds and Aysel Turgut Vanli and Ra-

mazan Sari[7] obtained some results on invariant submanifolds of a trans sasakian mani-

folds.Conditions for Indefinite trans sasakian manifolds to be D-totally geodesics, D⊥-totally

geodesics, mixed totally geodesic is given by Arindam Bhattacharya and Bandana Das in [8].

Recently Dae Ho Jin [9]studied Indefinite tran sasakian manifold of quasi constant curvature

with lightlike hypersurfaces.

In this paper necessary and sufficient conditions are given on an submanifold of an indefinite

trans-Sasakian manifold to be invariant and further properties and some theorems are given

related to an invariant submanifolds in a indefinite trans-Sasakian manifold.

2. preliminaries

Let M be an (2n+1)-dimensional indefinite almost contact metric manifold with indefinite

almost contact metric structure (φ, ξ, η, g) then they satisfies

φ2 = −I + η ⊗ ξ(2.1)

η(ξ) = 1, φξ = 0

g(φX, φY ) = g(X, Y )− εη(X)η(Y ),(2.2)

g(φX, Y ) = −g(X,φY )(2.3)

εg(X, ξ) = η(X)

vts-6
Text Box
              International Journal of Mathematics Trends and Technology (IJMTT)  - Volume 41 Number 5- January 2017 

vts-6
Text Box
ISSN: 2231-5373                            http://www.ijmttjournal.org                                 Page 423



Some results on Invariant Submanifolds in an Indefinite Trans-Sasakian Manifold 3

where X, Y are vector fields on M and ε = ±1

An indefinite almost contact metric structure (φ, ξ, η, g) on M is called indefinite trans-

Sasakian if

(∇Xφ)(Y ) = α[g(X, Y )ξ − εη(Y )X] + β[g(φX, Y )ξ − εη(Y )φX](2.4)

where α and β are non zero scalar funtions on M̄of type (α, β). ∇̄ is a Levi-civita connection

on M̄ . In particular, an indefinite trans-Sasakian manifold is normal.

From above formula, one easily obtains

∇Xξ = −αεφX + βεX − εη(X)ξ = ε[−αφX + φ2X],(2.5)

∇Xη(Y ) = −αg(φX, Y ) + β[g(X, Y )− εη(X)η(Y )],(2.6)

Further in an indefinite trans sasakian manifold,the following holds true,

R(X, Y )ξ = (α2 − β2)[η(Y )X − η(X)Y ] + 2αβ[η(Y )φX − η(X)φY ](2.7)

+ε[(Y α)φX − (Xα)φX + (Y β)φ2X − (Xβ)φ2Y ]

Let M be an (2m + 1) dimensional (n > m) manifold imbedded in M . The induced metric

g of M is given

g(X, Y ) = g(X, Y )

for any vector fields X,Y on M .

Let Tx(M) and Tx(M)⊥ denote that tangent and normal bundles of M and x ∈M . Let ∇X

denote the Riemannian connection on M determined by the induced metric g and R denote
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the Riemannian curvature tensor of M . Then Gauss-Weingarten formula is given by

∇XY = ∇XY + B(X, Y ),(2.8)

∇XN = −AN(X) + DXN(2.9)

for any vector fields X,Y tangent to M and any vector field N normal to M , where D is

the operator of covariant differentiation with respect to the linear connection induced in the

normal bundle Tx(M)⊥. Both A and B are called the second fundamental forms of they satisfy

g(B(X, Y ), N) = g(AN(X, Y )).

3. Submanifolds in indefinite trans-Sasakian manifold

Let M be an (m+1)dimensional immersed submanifold of an almost contact metric manifold

(M̄, φ, η̄, ξ, ḡ). where M̄ is(2n + 1)-dimensional.

Let i : M → M̄ be an immersion; we denote by B the differential of i. The induced

Riemannian metric g of M is given by g = i ∗ ḡ.

TM = TxM ⊕ TxM
⊥,

where TxM the tangent space of M at x ∈M, TxM
⊥ the normal space of M in M̄ , respectively.

Moreover, we denote by [N1,N2,N3,.........Nt,] t = 2n−m, an orthonormal basis of the normal

space TxM
⊥. Then

φBX = BϕX +
t∑

l=1

νl(X)Nl l = 1, 2, .....t.(3.1)

For any X ∈ TxM, where ϕ are induced (1,1) tensor and νl are induced 1-forms on M.

Similarly,

φNl = BUl +
t∑

l=1

λlsNs,(3.2)
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where,Ul are vector fields on M and λls are functions on M . Furthermore,the vector field ξ

can be expressed as follows:

ξ = BV +
t∑

l=1

αlNl,(3.3)

where, V is a vectors field on M ,αl are functions on M .Thus

g(ϕX, Y ) = ḡ(BϕX,BY ) = ḡ(φBX −
t∑

l=1

νl(X)Nl, BY ),

= −ḡ(BX, φBY ) = −ḡ(BX, BϕY ) = −g(X, ϕY ).

Hence we get,

g(ϕX, Y ) = −g(X, ϕY ),(3.4)

for any X, Y ∈ Γ(TM).Moreover,from (2.3),

ḡ(φBX,Nl) = −ḡ(BX, φNl),

and

ḡ(φNl, Ns) = −ḡ(Nl, φNs),

we get the equations

νs(X) = −g(X, Us), λls = −λsl.

So λls is skew-symmetric. The following Lemmas will be needed later. This Lemmas provided

that for an immersed submanifold of a Sasakian manifold [4]. But this Lemmas true for an

immersed submanifold of any almost contact metric manifold.

Lemma 3.1. Let M be an immersed submanifold of an almost contact metric manifold M .

Then we have
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φ2 = −I + η ⊗ V −
t∑

l=1

νl ⊗ Ul.(3.5)

νp(ϕX) +
t∑

l=1

νl(X)λlp − αpη(X) = 0,(3.6)

and

ϕUp −
t∑

l=1

λlpUl − αpV = 0.

where η is an induced 1-form on M and η(X) = εg(X, V )

Lemma 3.2. Let M be an immersed submanifold of an almost contact metric manifold M̄ .

Then following equations :

ϕV +
t∑

l=1

αlUl = 0,(3.7)

νk(V ) +
t∑

l=1

αlλlk = 0,(3.8)

and

η(V ) = 1−
t∑

l=1

α2
l .

4. Invariant Submanifolds of an indefinite trans-Sasakian manifold

Let M be an immersed submanifold of an indefinite trans-Sasakian manifold M̄ . If φ(B(TxM)) ⊂

TxM , for any point x ∈ M , then M is called an invariant sbmanifold of M̄ . In this case,we
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have

φBX = BϕX,(4.1)

φNl =
t∑

l=1

λlsNs,(4.2)

ξ = BV +
t∑

l=1

αlNs.(4.3)

Let ∇ be the Levi-civita connection of M with respect to the induced metric g. Then the

Gauss and Weingarten formulas are given by

∇Xξ = ∇Xξ + h(X, Y ),(4.4)

∇XN = ∇⊥XN − ANX.(4.5)

for any X, Y ∈ Γ(TM) and N ∈ Γ(TM)⊥. ∇⊥ is the connection in the normal bundle, h

is the second fundamental form of M and AN is the weigarten endomorhism associated with

N .The second fundamental form h and the shape operator A related by,

g(h(X,Y ), N) = g(ANX, Y ).(4.6)

Lemma 4.3. Let M be an invariant submanifold of a trans sasakian manifold M̄ then we

have

φ2 = −I + η̄ ⊗ V, αlη̄ = 0, l, k = 1, 2, 3, ........t(4.7)

φV = 0,
t∑

l=1

αlλlk = 0.

Proof: For any X ∈ Γ(TM̄),we have,

Bφ2X = φ2BX

= −BX + η(BX)ξ,

= −BX + η(BX)BV + η(BX)
t∑

l=1

αlNl
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Then we get,

φ2X = −X + η̄(X)V,

t∑
l=1

η̄(X)αlNl = 0,

or

φ2 = −I + η̄ ⊗ V, αlη̄ = 0.

furthermore, from φξ = 0 we get

BφV +
t∑

l=1

αl

t∑
k=1

λlkNk = 0.

Thus we have the following theorems.

Theorem 4.1. Let M be an invariant submanifold of a indefinite trans sasakian manifold M̄ .

Then ξ is tangent to M iff then the induced structure (φ, V, η, g) on M is a indefinite trans

sasakian structure.

Proof: ξ is tangent to M . V 6= 0 that is αl = 0, then from (3,3) we have

ξ = BV.(4.8)

From (3.1) we have

ḡ(φX, Y ) = ḡ(BφX, Y ) +
t∑

l=1

νl(X)ḡ(Nl, Y ) = g(φX, Y ),(4.9)

Then,from (2.4)we get

(∇Xφ)Y = α(ḡ(X, Y )ξ − εη̄(Y )X) + β(ḡ(φX, Y )ξ − εη̄(Y )φX),

BY using (4.8) and (2.3), we obtain,

(∇Xφ)Y = α[ḡ(X, Y )BV − ε2ḡ(Y, ξ)X] + β[ḡ(φX, Y )BV − ε2ḡ(Y, ξ)φX],

(∇Xφ)Y = α[ḡ(X, Y )BV − ε2ḡ(Y,BV )X] + β[ḡ(φX, Y )BV − ε2ḡ(Y, BV )φX].
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from (4.9), we get

(∇Xφ)Y = α[g(X,Y )V − ε2g(Y, V )X] + β[g(φX, Y )V − ε2g(Y, V )φX],

(∇Xφ)Y = α[g(X,Y )V − εη(Y )X] + β[g(φX, Y )V − εη(Y )φX],

(∇Xφ)Y = (∇Xφ)Y,

Hence by using (2.5) and (4.6),we have

∇Xξ = ∇XBV,

ε(−αφX − βφ2X) = ∇XV,

ε(−αφBX − βφ2BX) = ∇BXV.

Hence by using (2.1) and (3.1)it follows that

∇BXV = ε[−α(BφX +
t∑

l=1

νl(X)Nl) + β(Bφ2X +
t∑

l=1

νl(φX)Nl +
t∑

i=1

νi(X)BUi +
t∑

i=1

νi(X)
t∑

l=1

λlsNs)],

Thus,we have

∇BXV = ε[−α(BφX)− β(Bφ2X)],

∇XV = ε[−α(φX) + β(X − η(X)V )].

Then M is an indefinite trans sasakian manifolds with Indefinite Trans sasakian structure

(φ, V, η, g).

Theorem 4.2. LetM be an immersed submanifolds of an indefinite transsasakian manifold

M̄ .Then M is an invariant submanifold of an indefinite transsasakian manifold M̄ iff the

induced structure (φ, V, η, g) on M is an indefinite trans sasakian structure.
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Proof:Let M be an invariant submanifold of an indefinite transsasakian manifold M̄ then,

from (3.5)and (4.7)we get

t∑
l=1

νl(X)Ul = 0⇒ νl(X) = 0,

By using (3.6) it follows that

νp(φX) = αpη(X), −g(φX, Up) = αpεg(X, V ),

Thus we have

g(X, φUp) = αpεg(X, V ),

That is

g(φUp − εαpV, X)

Since g is non degenere, we have φUp = εαpV. Thus we get,αp = 0 Then, from(3.3)it follows

that ξ = BV, that is ξ ∈ TxM.
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