On A Type Of Conformal φ-Recurrent Trans-Sasakian Manifolds

Abhishek Singh ${ }^{1, *}$, Sachin Khare ${ }^{1}$, C. K. Mishra ${ }^{2}$ and N. B. Singh 2
1*, 1 Department of Mathematics, Babu Banarasi Das University, Lucknow, U.P., India.
${ }^{2}$ Department of Mathematics and Statistics, Dr. RML Avadh University, Faizabad, U.P., India.

Abstract

The object of the present paper is to study on a type of conformal φ-recurrent trans-Sasakian manifolds.

Keywords: Trans-Sasakian manifold, Conformal curvature tensor, Locally φ-symmetric trans-Sasakian manifold, Characteristic vector field.

I. Introduction

The notion of locally φ-symmetric Sasakian manifold was introduced by T. Takahashi [11] in 1977. φ-recurrent Sasakian manifold was studied by the author [12]. Also J. A. Oubinain 1985 introduced a new class of almost contact metric structures which was a generalization of Sasakian [2], $\alpha-$ Sasakian [5], Kenmotsu [5], β-Kenmotsu [5] and cosympletic [5] manifolds, which was called trans-Sasakian manifold [6]. After him many authors ([3], [4], [5], [6], [8], [9], [10]) have studied various type of properties in trans-Sasakian manifold.

The paper is organized as follows. Section-2 is concerned with preliminaries. Section-3 is devoted to the study of conformal φ-recurrent trans-Sasakian manifold which satisfies the condition $\varphi \operatorname{grad}(\alpha)=$ $(2 n-1) \operatorname{grad} \beta$, and proved that such a manifold is an Einstein manifold.

It is shown that in a conformal φ-recurrent trans-Sasakian manifold ($M^{2 n+1}, g$), $n \geq 1$, the characteristic vector field ξ and the vector field ρ associated to the 1 -form A are opposite directional.

II. Preliminaries

A $(2 n+1)$ dimensional, ($n \geq 1$) almost contact metric manifold M with almost contact metric structure ($\varphi, \xi, \eta, \mathrm{g}$), where φ is a $(1,1)$ tensor field, ξ is a vector field, η is a 1 -form and g is a compatible Riemannian metric such that

$$
\begin{align*}
& \varphi^{2}=-\mathrm{I}+\eta \otimes \xi, \eta(\xi)=1, \varphi(\xi)=0, \eta \circ \varphi=0, \tag{2.1}\\
& \mathrm{~g}(\varphi \mathrm{X}, \varphi \mathrm{Y})=\mathrm{g}(\mathrm{X}, \mathrm{Y})-\eta(\mathrm{X}) \eta(\mathrm{Y}), \tag{2.2}\\
& \mathrm{g}(\mathrm{X}, \varphi \mathrm{Y})=-\mathrm{g}(\varphi \mathrm{X}, \mathrm{Y}), \quad \mathrm{g}(\mathrm{X}, \xi)=\eta(\mathrm{X}),
\end{align*}
$$

for all $\mathrm{X}, \mathrm{Y} \in \chi(\mathrm{M})$, is called trans-Sasakian manifold [1] if and only if

$$
\begin{equation*}
\left(\nabla_{\mathrm{X}} \varphi\right) \mathrm{Y}=\alpha(\mathrm{g}(\mathrm{X}, \mathrm{Y}) \xi-\eta(\mathrm{Y}) \mathrm{X})+\beta(\mathrm{g}(\varphi \mathrm{X}, \mathrm{Y}) \xi-\eta(\mathrm{Y}) \varphi(\mathrm{X}) \tag{2.4}
\end{equation*}
$$

for some smooth functions α and β on M. From (2.4) it follows that

$$
\begin{equation*}
\nabla_{X} \xi=-\alpha \varphi X+\beta(X-\eta(X) \xi), \tag{2.5}
\end{equation*}
$$

$$
\begin{equation*}
\left(\nabla_{X} \eta\right) Y=-\alpha g(\varphi X, Y)+\beta g(\varphi X, \varphi Y) \tag{2.6}
\end{equation*}
$$

In [10], the authors obtained some results which shall be useful for next section. They are

$$
\begin{gather*}
\mathrm{R}(\mathrm{X}, \mathrm{Y}) \xi=\left(\alpha^{2}-\beta^{2}\right)(\eta(\mathrm{Y}) \mathrm{X}-\eta(\mathrm{X}) \mathrm{Y}) \\
+2 \alpha \beta(\eta(\mathrm{Y}) \varphi \mathrm{X}-\eta(\mathrm{X}) \varphi \mathrm{Y})+(\mathrm{Y} \alpha) \varphi \mathrm{X} \\
-(\mathrm{X} \alpha) \varphi \mathrm{Y}+(\mathrm{Y} \beta) \varphi^{2} \mathrm{X}-(\mathrm{X} \beta) \varphi^{2} \mathrm{Y}, \tag{2.7}\\
\mathrm{R}(\xi, \mathrm{X}) \xi=\left(\alpha^{2}-\beta^{2}-\xi \beta\right)(\eta(\mathrm{X}) \xi-\mathrm{X}), \tag{2.8}\\
2 \alpha \beta+\xi \alpha=0, \tag{2.9}
\end{gather*}
$$

$$
\begin{align*}
& S(X, \xi)=\left(2 \mathrm{n}\left(\alpha^{2}-\beta^{2}\right)-\xi \beta\right) \eta(\mathrm{X})-(2 \mathrm{n}-1) \mathrm{X} \beta-(\varphi \mathrm{X}) \alpha, \tag{2.10}\\
& \mathrm{Q} \xi=\left(2 \mathrm{n}\left(\alpha^{2}-\beta^{2}\right)-\xi \beta\right) \xi-(2 \mathrm{n}-1) \operatorname{grad} \beta+\varphi(\operatorname{grad} \alpha) . \tag{2.11}
\end{align*}
$$

When $\varphi \operatorname{grad}(\alpha)=(2 \mathrm{n}-1) \operatorname{grad} \beta$, then (2.10) and (2.11) reduces to

$$
\begin{equation*}
S(X, \xi)=2 n\left(\alpha^{2}-\beta^{2}\right) \eta(X) \tag{2.12}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{Q} \xi=2 \mathrm{n}\left(\alpha^{2}-\beta^{2}\right) \xi \tag{2.13}
\end{equation*}
$$

Again a trans-Sasakian manifold is said to be locally φ-symmetric [11] if

$$
\begin{equation*}
\varphi^{2}\left(\left(\nabla_{W} \mathrm{R}\right)(\mathrm{X}, \mathrm{Y}) \mathrm{Z}\right)=0 \tag{2.14}
\end{equation*}
$$

for all vector fields $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{W}$ orthogonal to ξ.
Let us introduce conformal φ-recurrent manifold. A trans-Sasakian manifold is said to be conformal φ-recurrent manifold if there exists a non-zero 1-form A such that

$$
\begin{equation*}
\varphi^{2}\left(\left(\nabla_{W} \mathrm{C}\right)(\mathrm{X}, \mathrm{Y}) \mathrm{Z}\right)=\mathrm{A}(\mathrm{~W}) \mathrm{C}(\mathrm{X}, \mathrm{Y}) \mathrm{Z} \tag{2.15}
\end{equation*}
$$

for $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{W} \in \chi(\mathrm{M})$, where the 1-form A is defined as

$$
\begin{equation*}
\mathrm{g}(\mathrm{X}, \rho)=\mathrm{A}(\mathrm{X}), \forall \mathrm{X} \in \chi(\mathrm{M}) \tag{2.16}
\end{equation*}
$$

ρ being the vector field associated to the 1-form A and C is a conformal curvature tensor given by [2]

$$
\begin{align*}
C(X, Y) Z & =R(X, Y) Z-\frac{r}{(2 n-1)}[g(Y, Z) Q X \\
-g(X, Z) Q Y+S(Y, Z) X-S(X, Z) Y] & -\frac{r}{2 n(2 n-1)}[g(Y, Z) X-g(X, Z) Y]
\end{align*}
$$

where R is the curvature tensor, S is the Ricci-tensor and r is the scalar curvature. Also,

$$
\begin{equation*}
\mathrm{g}(\mathrm{QX}, \mathrm{Y})=\mathrm{S}(\mathrm{X}, \mathrm{Y}) \tag{2.18}
\end{equation*}
$$

Q being the symmetric endomorphism of the tangent space at each point corresponding to the Ricci-tensor S . The above results will be useful in the next section.

III. Conformal φ-recurrent Trans-Sasakian manifold

In this section we consider a trans-Sasakian manifold which is conformal φ-recurrent. Then by virtue of (2.1) and (2.15) we have

$$
\begin{equation*}
\left.-\left(\nabla_{W} \mathrm{C}\right)(\mathrm{X}, \mathrm{Y}) \mathrm{Z}+\eta\left(\left(\nabla_{\mathrm{W}} \mathrm{C}\right)(\mathrm{X}, \mathrm{Y}) \mathrm{Z}\right) \xi=\mathrm{A}(\mathrm{~W}) \mathrm{C}\right)(\mathrm{X}, \mathrm{Y}) \mathrm{Z} \tag{3.1}
\end{equation*}
$$

From (3.1) it follows that

$$
\begin{equation*}
\left.-g\left(\left(\nabla_{W} C\right)(X, Y) Z, U\right)+\eta\left(\left(\nabla_{W} C\right)(X, Y) Z\right) \eta(U)=A(W) g(C)(X, Y) Z, U\right) \tag{3.2}
\end{equation*}
$$

Let $\left\{e_{i}\right\}, i=1,2, \ldots, 2 n+1$, be an orthonormal basis of the tangent space at any point of the manifold. Then putting $X=U=\left\{\mathrm{e}_{\mathrm{i}}\right\}$, in (3.2) and taking summation over $\mathrm{i}, 1 \leq \mathrm{i} \leq 2 \mathrm{n}+1$, we get

$$
\begin{align*}
\nabla_{W} S(Y, Z)=(2 n-1)\left[-\frac{\operatorname{dr}(W)}{2 n} g(Y, Z)\right. & +\frac{d r(W)}{2 n(2 n-1)}[g(Y, Z) \\
& \left.-\eta(Y) \eta(Z)]-A(W)\left[\frac{1}{2 n-1} S(Y, Z)+\frac{r}{2 n} g(Y, Z)\right]\right] . \tag{3.3}
\end{align*}
$$

Replacing Z by ξ and using (2.1), (2.3) and (2.12) we obtain

$$
\begin{equation*}
\nabla_{\mathrm{W}} \mathrm{~S}(\mathrm{Y}, \xi)=(2 \mathrm{n}-1)\left[-\frac{\mathrm{dr}(\mathrm{~W})}{2 \mathrm{n}}-\mathrm{A}(\mathrm{~W})\left[\frac{2 \mathrm{n}\left(\alpha^{2}-\beta^{2}\right)}{2 \mathrm{n}-1}+\frac{\mathrm{r}}{2 \mathrm{n}}\right]\right] \eta(\mathrm{Y}) \tag{3.4}
\end{equation*}
$$

Now we know

$$
\begin{equation*}
\left(\nabla_{\mathrm{W}} \mathrm{~S}\right)(\mathrm{Y}, \xi)=\nabla_{\mathrm{W}} S(\mathrm{Y}, \xi)-\mathrm{S}\left(\nabla_{\mathrm{W}} \mathrm{Y}, \xi\right)-\mathrm{S}\left(\mathrm{Y}, \nabla_{\mathrm{W}} \xi\right) \tag{3.5}
\end{equation*}
$$

Using (2.5) and (2.12) in the above relation (3.5) we have

$$
\begin{gather*}
\left(\nabla_{\mathrm{W}} \mathrm{~S}\right)(\mathrm{Y}, \xi)=2 \mathrm{n}\left(\alpha^{2}-\beta^{2}\right)[-\alpha \mathrm{g}(\varphi \mathrm{~W}, \mathrm{Y})+\beta \mathrm{g}(\mathrm{~W}, \mathrm{Y})] \\
+\alpha \mathrm{S}(\mathrm{Y}, \varphi \mathrm{~W})-\beta \mathrm{S}(\mathrm{Y}, \mathrm{~W}) . \tag{3.6}
\end{gather*}
$$

Using (3.6) in (3.4) we have

$$
\begin{align*}
& 2 \mathrm{n}\left(\alpha^{2}-\beta^{2}\right)[-\alpha \mathrm{g}(\varphi \mathrm{~W}, \mathrm{Y})+\beta \mathrm{g}(\mathrm{~W}, \mathrm{Y})]+\alpha \mathrm{S}(\mathrm{Y}, \varphi \mathrm{~W})-\beta \mathrm{S}(\mathrm{Y}, \mathrm{~W}) \\
& =(2 \mathrm{n}-1)\left[-\frac{\operatorname{dr}(\mathrm{W})}{2 \mathrm{n}}-\mathrm{A}(\mathrm{~W})\left[\frac{2 \mathrm{n}\left(\alpha^{2}-\beta^{2}\right)}{2 \mathrm{n}-1}+\frac{\mathrm{r}}{2 \mathrm{n}}\right]\right] \eta(\mathrm{Y}) . \tag{3.7}
\end{align*}
$$

Replacing Y and W by $\varphi \mathrm{Y}$ and $\varphi \mathrm{W}$ respectively, we obtain

$$
\begin{equation*}
S(Y, W)=2 n\left(\alpha^{2}-\beta^{2}\right) g(Y, W) \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{S}(\varphi \mathrm{Y}, \mathrm{~W})=2 \mathrm{n}\left(\alpha^{2}-\beta^{2}\right) \mathrm{g}(\varphi \mathrm{Y}, \mathrm{~W}) \tag{3.9}
\end{equation*}
$$

Hence we can state the following theorem:
Theorem 3.1. A conformal φ-recurrent trans-Sasakian manifold $\left(M^{2 n+1}, g\right)$ satisfying $\varphi \operatorname{grad}(\alpha)=(2 n-$ $1) \operatorname{grad} \beta$, is an Einstein manifold.

Now from (3.1) and (2.16) we have

$$
\begin{align*}
\left(\nabla_{W} R\right)(X, Y) Z=+\eta\left(\left(\nabla_{W} R\right)\right. & (X, Y) Z) \xi-\frac{1}{(2 n-1)}\left[\left(\nabla_{W} g\right)(Y, Z) \eta(Q X)\right. \\
& -\left(\nabla_{W} g\right)(X, Z) \eta(Q Y)-\left(\nabla_{W} S\right)(Y, Z) \eta(X) \\
& -\left(\nabla_{W} S\right)(X, Z) \eta(Y)+\frac{d r(W)}{2 n(2 n-1)}[g(Y, Z) \eta(X) \\
& -g(X, Z) \eta(Y)] \xi-A(W)[R(X, Y) Z \\
& -\frac{1}{(2 n-1)}[g(Y, Z) Q X-g(X, Z) Q Y+S(Y, Z) X-S(X, Z) Y] \\
& +\frac{\operatorname{dr}(W)}{2 n(2 n-1)}[g(Y, Z) X-g(X, Z) Y] \\
& -\frac{1}{(2 n-1)}\left[\left(\nabla_{W} g\right)(Y, Z) Q X\right. \\
& -\left(\nabla_{W} g\right)(X, Z) Q Y-\left(\nabla_{W} S\right)(Y, Z) X-\left(\nabla_{W} S\right)(X, Z) Y . \tag{3.10}
\end{align*}
$$

Using Bianchi's identity in (3.10) we obtain

$$
\begin{aligned}
& \mathrm{A}(\mathrm{~W}) \eta(\mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{Z})+\mathrm{A}(\mathrm{X}) \eta(\mathrm{R}(\mathrm{Y}, \mathrm{~W}) \mathrm{Z})+\mathrm{A}(\mathrm{Y}) \eta(\mathrm{R}(\mathrm{~W}, \mathrm{X}) \mathrm{Z}) \\
& =+\frac{\mathrm{r}}{2 \mathrm{n}(2 \mathrm{n}-1)} \mathrm{A}(\mathrm{~W})[\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \eta(\mathrm{X})-\mathrm{g}(\mathrm{X}, \mathrm{Z}) \eta(\mathrm{Y})] \\
& \quad+\frac{\mathrm{r}}{2 \mathrm{n}(2 \mathrm{n}-1)} \mathrm{A}(\mathrm{X})[\mathrm{g}(\mathrm{~W}, \mathrm{Z}) \eta(\mathrm{Y})-\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \eta(\mathrm{W})]
\end{aligned}
$$

$$
\begin{equation*}
+\frac{\mathrm{r}}{2 \mathrm{n}(2 \mathrm{n}-1)} \mathrm{A}(\mathrm{Y})[\mathrm{g}(\mathrm{X}, \mathrm{Z}) \eta(\mathrm{W})-\mathrm{g}(\mathrm{~W}, \mathrm{Z}) \eta(\mathrm{X})] \tag{3.11}
\end{equation*}
$$

Putting $Y=Z=\left\{e_{i}\right\}$, where e_{i} be an orthonormal basis of the tangent space at any point of the manifold, in (3.11) and taking summation over $\mathrm{i}, 1 \leq \mathrm{i} \leq 2 \mathrm{n}+1$, we get

$$
\begin{equation*}
A(W)=-\frac{1}{2 n-1}[A(X) \eta(W)-A(W) \eta(X)] \tag{3.12}
\end{equation*}
$$

Putting again $X=\xi$ and using (2.1) and (2.3) we obtain

$$
\begin{equation*}
A(W)=-K \eta(\rho) \eta(W) \text { where }\left(K=\frac{1}{2 n-2}\right) \tag{3.13}
\end{equation*}
$$

for any vector field W and ρ being the vector field associated to the 1 -form A, defined as (2.16). Thus we can state the following theorem:

Theorem 2. In a conformal φ-recurrent trans-Sasakian manifold ($\mathrm{M}^{2 \mathrm{n}+1}, \mathrm{~g}$), $\mathrm{n} \geq 1$, the characteristic vector field ξ and the vector field ρ associated to the 1-form A are opposite directional and the 1-form A is given by

$$
(2 n-1) A(W)=-\eta(\rho) \eta(W) \forall W \in \chi(M)
$$

References

[1] Bhattacharyya and D. Debnath, On some types of quasi Einstein manifolds and generalized quasi Einstein manifolds, Ganita, 2(57)(2006) 185-191.
[2] D. E. Blair, Contact manifolds in Riemannian geometry, Lecture notes in Math., Springer verlag, 509(1976).
[3] D. Debnath, On some type of curvature tensors on a trans-Sasakian manifold satisfying a condition with $\xi \in N(k)$, Journal of the Tensor Society (JTS), 3(2009) 1-9.
[4] D. Debnath, On some types of trans-Sasakian manifold, Journal of the Tensor Society (JTS), 5(2011) 101-109.
[5] D. Janssens, L. Vanhecke, Almost contact structures and curvature tensors, Kodai Math. J., 4 (1981) 1-27.
[6] J. C. Marrero, The local structure of trans-Sasakian manifolds, Ann. Mat. pura appl., 4(162)(1992) 77-86.
[7] J. A. Oubina, New classes of almost contact metric structures, Publ. Math. Debrecen, 32 (1985) 187-195.
[8] M. Tarafdar, A. Bhattacharyya, and D. Debnath, A type of pseudo projective φ-recurrent trans-Sasakian manifold, Analele Stintfice Ale Universitatii, Al.I. Cuza, Iasi, Tomul LII, S.I, Mathematica, f., 2 (2006) 417-422.
[9] M. Tarafdar and A. Bhattachryya, A special type of trans-Sasakian manifolds, Tensor, 3(64)(2003) 274-281.
[10] M. M. Tripathi and U. C. De, Ricci tensor in 3-dimensional trans-Sasakian manifolds, Kyungpook. Math J.,2(43)(2003) 247-255.
[11] T. Takahashi, Sasakian φ-symmetric spaces, Tohoku Math. J. 2(29)(1977) 91-113.
[12] U. C. De, A. A. Shaikh, and S. Biswas, On φ-recurrent Sasakian manifolds, Novi Sad J. Math, 2(33)(2003) 43-48.

