Mean, Odd Mean And Even Mean Labeling For the Extended Duplicate Graph of Kite Graph

¹K.Anitha, ²B.Selvam, ³K.Thirusangu

¹Department of Mathematics, Sri Sairam Engineering College, Chennai–600 044, India ^{2,3}Department of Mathematics, S.I.V.E.T. College, Gowrivakkam, Chennai–600 073, India

Abstract: In this paper, we prove that the extended duplicate graph of kite graph admits mean, even mean and odd mean labeling.

AMS Subject Classification: 05C78

Keywords: Duplicate graph, Mean labeling, Odd mean labeling, Even mean labeling, Kite graph.

1.INTRODUCTION

Graph theory is an area in discrete mathematics which studies graphs. Throughout this paper, by a graph, we mean a finite, undirected simple graph G = (V,E) with p vertices and q edges. Several researchers refer to Rosa's work [1]. For a detailed survey of graph labeling we refer to Gallian's work [2]. Somasundaram and Ponraj [3,4] have introduced the notion of mean labeling of graphs. In [5], K.Manickam and M.Marudai introduced odd mean labeling of a graph. The concept of even mean labeling was introduced and

studied by B.Gayathri and R.Gopi [6]. The concept of duplicate graph was introduced by E.Sampathkumar and he proved many results [7]. K.Thirusangu, B.Selvam and P.P.Ulaganathan have proved that the Extended duplicate graph of twig graph is cordial and total cordial [8].

2. PRELIMINARIES

In this section, we give the basic definitions relevant to this paper. By a labeling we mean a one-to-one mapping that carries a set of graph elements onto a set of numbers, called labels (usually the set of integers).

Definition 2.1 Kite Graph: The kite graph is obtained by attaching a path of length 'm' with a cycle of length 'n' and it is denoted as $KI_{n,m}$. Kite graphs is also known as the Dragon Graphs or Canoe Paddle Graphs or Tadpole graphs.

KITE GRAPH

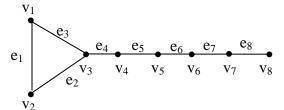


Fig: KI_{3,5}

Definition 2.2 Duplicate Graph: Let G(V,E) be a simple graph and the duplicate graph of G is $DG = (V_1, E_1)$, where the vertex set $V_1 = V \cup V'$ and $V \cap V' = \emptyset$ and $f : V \to V'$ is bijective (for $v \in V$, we write f(v) = v' for convenience) and the edge set E_1 of DG is defined as the edge ab is in E if and only if both ab' and a'b are edges in E_1 .

Definition 2.3 Extended duplicate graph of Kite graph: Let $DG = (V_1, E_1)$ be a duplicate graph of the kite graph G(V,E). Extended duplicate graph of kite graph is obtained by adding the edge $v_2 v_2'$ to the

duplicate graph. It is denoted by EDG ($KI_{3,m}$), $m \ge 1$. Clearly it has 2m+6 vertices and 2m+7 edges.

Definition 2.4 Mean labeling: A graph G with p vertices and q edges is called a mean graph if there is an injective function $f: v \rightarrow \{0,1,2,...,q\}$ such

that each edge uv is labeled with $\frac{(f(u) + f(v))}{2}$ if

f(u)+f(v) is even and $\frac{(f(u)+f(v)+1)}{2}$ if

ISSN: 2231-5373 http://www.ijmttjournal.org

f(u)+f(v) is odd, then the resulting edge labels are distinct.

Definition 2.5 Odd mean labeling: A function f is called an odd mean labeling of a graph G with p vertices and q edges. If f is an injection from the vertices of G to the set $\{1,3,5,...,2q-1\}$ such that each

edge uv is assigned the label
$$\frac{(f(u)+f(v))}{2}$$
, then

the resulting edge labels are distinct. A graph which admits an odd mean labeling is said to be odd mean graph.

Definition 2.6 Even mean labeling: A function f is called an even mean labeling of a graph G with p vertices and q edges. If f is an injection from the vertices of G to the set $\{2,4,6,...,2q\}$ such that each

edge uv is assigned the label
$$\frac{(f(u)+f(v))}{2}$$
 , then

the resulting edge labels are distinct. A graph which admits an even mean labeling is said to be even mean graph.

EXTENDED DUPLICATE GRAPH OF KITE GRAPH

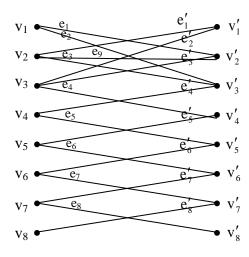


Fig: EDG $(KI_{3.5})$

3. MAIN RESULTS

3.1 Mean labeling

In this section, we present an algorithm and prove the existence of mean labeling for the extended duplicate graph of kite graph $KI_{3,m}$, $m \ge 1$.

Algorithm: 3.1

Procedure (Mean labeling for EDG $(KI_{3,m})$, $m \ge 1$)

$$V \leftarrow \{v_1, v_2, ..., v_{m+3}, v'_1, v'_2, ..., v'_{m+3}\}$$

$$E \leftarrow \{e_1, e_2, ..., e_{m+4}, e'_1, e'_2, ..., e'_{m+3}\}$$

$$v_1 \leftarrow 2m+7, v_2 \leftarrow 1, v'_1 \leftarrow 0, v'_2 \leftarrow 2m+6$$

for
$$i = 1to \left\lfloor \frac{m+1}{2} \right\rfloor do$$

$$v_{2i+2} \leftarrow 2m + 6 - 2i$$

$$v_{2i+2} \leftarrow 2i$$
end for

for
$$i = 1$$
 to $\left[\frac{m+2}{2} \right]$ do
$$v_{2i+1} \leftarrow 2i+1$$

$$v_{2i+1} \leftarrow 2m+7-2i$$

end for

end procedure

Theorem 3.1

The graph $EDG(KI_{3,m})$ for $m\ge 1$ admits mean labeling.

Proof

Let $KI_{3,m}$, $m\ge 1$ be the kite graph and $EDG(KI_{3,m})$, $m\ge 1$ be the extended duplicate graph of kite graph. Let the vertex set and the edge set of the kite graph be defined as follows:

$$V \leftarrow \{v_1, v_2, ..., v_{m+3}, v'_1, v'_2, ..., v'_{m+3}\}$$

$$E \leftarrow \{e_1, e_2, ..., e_{m+4}, e'_1, e'_2, ..., e'_{m+3}\}$$

To label the vertices, define a function $f: v \rightarrow \{0,1,2,...2m+7\}$ as given in algorithm 3.1 as follows.:

$$f(v_{1}) = 2m+7, \ f(v_{1}) = 0, \ f(v_{2}) = 1, \ f(v_{2}) = 2m+6$$

$$for \ 1 \le i \le \left\lfloor \frac{m+1}{2} \right\rfloor,$$

$$f(v_{2i+2}) = 2m+6-2i, \ f(v_{2i+2}) = 2i.$$

for
$$1 \le i \le \left| \frac{m+2}{2} \right|$$
,

 $f(v_{2i+1}) = 2i+1$; $f(v_{2i+1}) = 2m+7-2i$.

Thus the entire 2m+6 vertices are labeled by 0,1,2,...,2m+7 which are all distinct.

Now to compute the edge labeling, we define the induced function $f^*: E \to N$ such that

$$f^{*}(v_{i}v_{j}) = \begin{cases} \frac{f(v_{i}) + f(v_{j})}{2} if \ f(v_{i}) + f(v_{j}) \\ is even \\ \frac{f(v_{i}) + f(v_{j}) + 1}{2} if \ f(v_{i}) + f(v_{j}) \\ is odd \end{cases}$$

The edge functions are as follows:

if $m \ge 1$

$$f^*(e_1) = m+7$$
, $f^*(e_2) = 2m+6$, $f^*(e_3) = m+3$, $f^*(e_4) = 3$

$$f^*(e_1) = 1$$
, $f^*(e_2) = 2$, $f^*(e_3) = m+5$, $f^*(e_4) = 2m+5$.

if m≥2

when m is even,

for
$$1 \le i \le \left\lfloor \frac{m+1}{2} \right\rfloor$$
,
 $f^*(e_{2i+3}) = 2m+6-2i$, $f^*(e_{2i+3}) = 2i+2$.
for $1 \le i \le \left\lfloor \frac{m+1}{3} \right\rfloor$,

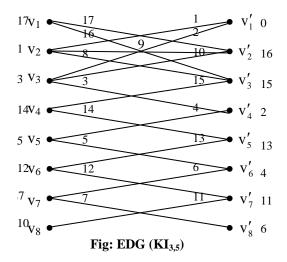
 $f^*(e_{2i+4}) = 2i+3$, $f^*(e_{2i+4}) = 2m+5-2i$. when m is odd,

$$for 1 \le i \le \left\lfloor \frac{m+1}{3} \right\rfloor$$
, $f^*(e_{2i+3}) = 2m+6-2i$,

 $\begin{array}{lll} f^*(e^{'}_{2i+3}\,) = 2i+2,\, f^*(e_{2i+4}) = 2i+3,\, f^*(e^{'}_{2i+4}\,) = 2m+5-2i.\\ Thus & the & entire & 2m+7 & edges & are & labeled \\ 1,2,3,4,..,2m+7,\, which \, are \, all \, distinct. \end{array}$

Hence the extended duplicate graph of kite graph $KI_{3,m}$, $m\ge 1$ admits mean labeling.

Example 1: MEAN LABELING IN EXTENDED DUPLICATE GRAPH FOR KITE GRAPH



3.2 Odd mean labeling

In this section, we present an algorithm and prove the existence of odd mean labeling for the extended duplicate graph of kite graph $KI_{3,m}$, $m \geq 1$.

Algorithm: 3.2

Procedure [Odd mean labeling for EDG $(KI_{3,m})$, $m \ge 1$]

V
$$\leftarrow$$
 { $v_1, v_2, ..., v_{m+3}, v'_1, v'_2, ..., v'_{m+3}$ }
E \leftarrow { $e_1, e_2, ..., e_{m+4}, e'_1, e'_2, ..., e'_{m+3}$ }

if
$$m \ge 1$$

$$for i = 0 to \left\lfloor \frac{m+1}{2} \right\rfloor do$$

$$v_{2i+2} \leftarrow 4m+11-4i$$
end for

for
$$i = 1$$
 to $\left[\frac{m+4}{2} \right] do$
 $v_{2i-1} \leftarrow 4i-3$

end for

for
$$i = 0$$
 to $\left[\frac{m+2}{2} \right] do$
 $v_{2i+1} \leftarrow 4m+13-4i$

for
$$i = 1$$
 to $\left\lfloor \frac{m+3}{2} \right\rfloor$ do
$$v_{2i} \leftarrow 4i-1$$

end for

end procedure

Theorem 3.2

The graph $EDG(KI_{3,m})$ for $m\ge 1$ admits odd mean labeling.

Proof

Let $KI_{3,m}$ $m\ge 1$ be the kite graph and $EDG(KI_{3,m})$, $m\ge 1$ be the extended duplicate graph of kite graph.

Let the vertex set and the edge set of the kite graph be defined as follows.

$$V \leftarrow \{v_1, v_2, ..., v_{m+3}, v'_1, v'_2, ..., v'_{m+3}\}$$

$$E \leftarrow \{e_1, e_2, ..., e_{m+4}, e'_1, e'_2, ..., e'_{m+3}\}$$

To label the vertices, define a function $f: v \rightarrow \{1, 2, ..., 2m + 7\}$ as given in algorithm 3.2 as follows:

If $m \ge 1$,

for
$$0 \le i \le \left| \frac{m+1}{2} \right|$$
,

$$f(v_{2i+2})\!\!=\!\!4m\!\!+\!\!11\!-\!\!4i \ ;$$

for
$$1 \le i \le \left| \frac{m+4}{2} \right|$$
, $f(v_{2i-1})=4i-3$

for
$$0 \le i \le \left| \frac{m+2}{2} \right|$$
, $f(v_{2i+2}) = 2i$

$$for 1 \le i \le \left| \frac{m+3}{2} \right|, \ f(v_{2i}) = 4i-1.$$

Thus the entire 2m+6 vertices are labeled by 1,3,5,...,4m+13, which are all distinct.

Now to compute the edge labeling, we define the induced function $f^*: E \to N$ such that

$$f^*(v_i v_j) = \frac{f(v_i) + f(v_j)}{2}; v_i v_j \in V$$

The edge functions are as follows:

$$f^*(e_1) = 3$$
, $f^*(e_2) = 2m+5$, $f^*(e_{m+4}) = 2m+7$, $f^*(e_1) = 4m+12$, $f^*(e_{12}) = 2m+9$,

$$for \ 1 \le i \le \left\lfloor \frac{m+2}{2} \right\rfloor, \quad f^*(e_{2i+1}) = 4m+14-4i,$$

$$f^*(e_{2i+1}) = 4i$$

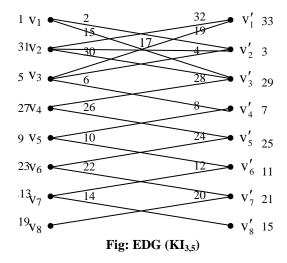
for
$$0 \le i \le \left| \frac{m+1}{2} \right|$$
, $f^*(e_{2i+2}) = 4i+2$,

$$f^*(e_{2i+2}) = 4m+12-4i$$
.

Thus the entire 2m+7 edges are labeled, which are all distinct.

Hence the extended duplicate graph of kite graph $KI_{3,m}$, $m\ge 1$ admits odd mean labeling.

Example 2: ODD MEAN LABELING IN EXTENDED DUPLICATE GRAPH FOR KITE GRAPH



3.3 Even mean labeling

In this section, we present an algorithm and prove the existence of even mean labeling for the extended duplicate graph of kite graph $KI_{3,m}$, $m \ge 1$. Algorithm: 3.3

Procedure [Even mean labeling for EDG (KI_{3,m}). $m \ge 1$

$$V \leftarrow \{v_1, v_2, ..., v_{m+3}, v'_1, v'_2, ..., v'_{m+3}\}$$

$$E \leftarrow \{e_1, e_2, ..., e_{m+4}, e'_1, e'_2, ..., e'_{m+3}\}$$
if $m \ge 1$

for
$$i = 0$$
 to $\left\lfloor \frac{m+1}{2} \right\rfloor$ do

$$v_{2i+2}\!\leftarrow\!4m\!\!+\!\!12\text{-}4i$$

end for

for
$$i = 1$$
 to $\left\lfloor \frac{m+4}{2} \right\rfloor$ do

$$v_{2i-1} \leftarrow 4i-2$$

end for

for
$$i = 0$$
 to $\left\lfloor \frac{m+2}{2} \right\rfloor$ do

 $v_{2i+1} \leftarrow 4m+14-4i$
end for

$$v_{2i+1} \leftarrow 4m+14-4$$

for
$$i = 1$$
 to $\left\lfloor \frac{m+3}{2} \right\rfloor$ do

end for

end procedure

Theorem 3.3

The graph $EDG(KI_{3,m})$ for $m\ge 1$ admits even mean labeling.

Proof: Let $KI_{3,m}$ $m\ge 1$ be the kite graph and $EDG(KI_{3,m})$, m ≥ 1 be the extended duplicate graph of kite graph. Let the vertex set and the edge set of the kite graph be defined as follows:

$$V \leftarrow \{v_1, v_2, ..., v_{m+3}, v'_1, v'_2, ..., v'_{m+3}\}$$

$$E \leftarrow \{e_1, e_2, ..., e_{m+4}, e'_1, e'_2, ..., e'_{m+3}\}$$

label the vertices, define a function $f: v \rightarrow \{1, 2, \dots, 2m+7\}$ as given in algorithm 3.3 as follows:

If m
$$\geq$$
1, for $0 \leq i \leq \left\lfloor \frac{m+1}{2} \right\rfloor$, f(v_{2i+2})=4m+12-4i,

for
$$1 \le i \le \left| \frac{m+4}{2} \right|$$
, $f(v_{2i-1})=4i-2$,

for
$$0 \le i \le \left\lfloor \frac{m+2}{2} \right\rfloor$$
, $f(v_{2i+1}) = 4m+14-4i$,

for
$$1 \le i \le \left| \frac{m+3}{2} \right|$$
, $f(v_{2i}) = 4i$.

Thus the entire 2m+6 vertices are labeled by $2,4,6,\ldots,4m+14$, which are all distinct.

Now to compute the edge labeling, we define the induced function $f^*: E \to N$ such that

$$f^*(v_i v_j) = \frac{f(v_i) + f(v_j)}{2}; v_i v_j \in V$$

The edge functions are as follows:

$$f^*(e_1) = 3$$
, $f^*(e_2) = 2m+6$, $f^*(e_{m+4}) = 2m+8$, $f^*(e_1) = 4m+13$, $f^*(e_2) = 2m+10$,

for
$$1 \le i \le \left| \frac{m+2}{2} \right|$$
,

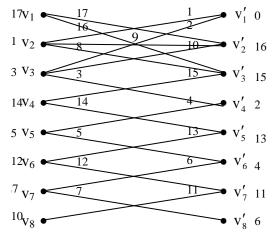
$$f^*(e_{2i+1}) = 4m+15-4i, f^*(e_{2i+1}) = 4i+1;$$

for
$$0 \le i \le \left\lfloor \frac{m+1}{2} \right\rfloor$$
,

$$f^*(e_{2i+2}) = 4i+3$$
, $f^*(e_{2i+2}) = 4m+13-4i$.

Thus the entire 2m+7 edges are labeled, which are all distinct. Hence the extended duplicate graph of kite graph $KI_{3,m}$, $m \ge 1$ admits even mean labeling.

Example 3: EVEN MEAN LABELING IN EXTENDED DUPLICATE GRAPH FOR KITE GRAPH



ISSN: 2231-5373

4. CONCLUSION In this paper, we presented algorithms and proved the extended duplicate of kite graph $KI_{3,m}$, $m\ge 1$ admits mean, odd mean and even meanlabeling

5. REFERENCES

- Rosa A, On certain Valuations of the vertices of a graph, Theory of graphs (Internat. Symposium, Rome, July 1966), Gordon and Breech, N.Y. and Dunod paris, 1967.pp. 349-55.
- 2. Gallian J.A, "A Dynamic Survey of graph labeling", the Electronic Journal of combinatories, 19, # DS6 (2012).
- S.Somasundaram and R.Ponraj, Mean labeling of graphs, National Academy Science Letter, 26(2003) 210-213.
- S.Somasundaram and R.Ponraj, Some results on Mean graphs, Pure and Applied Mathematika Sciences, 58 (2003), 29,35
- K.Manickam and M.Marudai, Odd Mean Labeling of Graphs, Bulletin of Pure and Applied Sciences,25 E (1)(2006), 149-153.
- B.Gayathiri and R.Gopi, K-even mean labeling of D_{m,n}@C_n, International Journal of Engineering Science, Advanced Computing and Bio-Technology, 1(3)(2010),137-145.
- 7. E.Sampath kumar, "On duplicate graphs", Journal of the Indian Math. Soc. 37 (1973), 285 293.
- 8. Thirusangu,K,Selvam.B.and UlaganathanP.P Cordial labeling in extended duplicate twig graph ,International Journal of computer, mathematical sciences and applications, Vol.4, Nos 3-4 ,(2010), pp.319-328.