Existence and Non-Existence of some V_{4} Cordial graphs

${ }^{1}$ L. Pandiselvi, ${ }^{2}$ A.Nagarajan, ${ }^{3}$ S.Navaneethakrishnan and ${ }^{4}$ A.Nellai Murugan
${ }^{1234} P G$ and Research Department of Mathematics, V. O. Chidambaram College, Tuticorin-628008, Tamilnadu, India.

Abstract

: Let $\langle A, *>$ be any abelian group. A graph $G=$ $(V(G), E(G))$ is said to be A-cordial[6,9] if there is a mapping $f: V(G) \rightarrow A$ which satisfies the following two conditions with each edge $e=u v$ is labeled as $f(u) * f(v)$, (i) $\left|v_{f}(a)-v_{f}(b)\right| \leq 1, \forall a, b \in A$ (ii) $\left|e_{f}(a)-e_{f}(b)\right| \leq 1, \forall a, b \in A$ wherev $\boldsymbol{v}_{f}(\boldsymbol{a})=$ the number of vertices with label a $v_{f}(b)=$ the number of vertices with label b $e_{f}(a)=$ the number of edges with label a $\boldsymbol{e}_{f}(b)=$ the number of edges with label b We note that if $A=\left\langle V_{4}, *\right\rangle$ is a multiplicative group. Then the labeling is known as V_{4} Cordial Labeling. A graph is called a V_{4} Cordial graph if it admits a V_{4} Cordial Labeling.In this paper $\boldsymbol{C}_{n}($ when $n \neq 4(\bmod 8)), \boldsymbol{K}_{n}(n<7)$ are V_{4} Cordial graphs and Globe Gl(n)(when $n \equiv 2(\bmod 4)$), $\boldsymbol{C}_{n}($ when $n \equiv 4(\bmod 8))$ and $\boldsymbol{K}_{n}(n \geq 7)$ are not V_{4} Cordial graphs. AMS Mathematics subject classification 2010:05C78

Keywords and Phrases: Cordial labeling, $\mathbf{V}_{\mathbf{4}}$ Cordial Labeling and $\mathbf{V}_{\mathbf{4}}$ Cordial Graph.

I. Introduction

By a graph, itmeans a finite undirected graph without loops or multiple edges. For graph theoretic terminology, we referred Harary[4]. For labeling of graphs, we referred Gallian[1].
A vertex labeling of a graph G is an assignment of labels to the vertices of G that induces for each edge $u v$ a label depending on the vertex labels of u and v.
A graph G is said to be labeled if the n vertices are distinguished from a given set, which induces distinguish edge values satisfying certain conditions. The concept of graceful labeling was introduced by Rosa[3] in 1967 and subsequently by Golomb[2].Already we proved that the graph Globe $\mathrm{Gl}(\mathrm{n})\left(\right.$ when $\mathrm{n} \equiv 0,1,3(\bmod 4)$) are V_{4} Cordial graph in [12].In this paper C_{n} (when $\mathrm{n} \neq$ $4(\bmod 8))$,
$K_{n}(\mathrm{n}<7)$ are V_{4} Cordial graphs and Globe $\mathrm{Gl}(\mathrm{n})($ when $\mathrm{n} \equiv 2(\bmod 4)), C_{n}($ when $\mathrm{n} \equiv 4(\bmod$ 8)) and $K_{n}(n \geq 7)$ are not V_{4} Cordial graphs.

II. Preliminaries

Definition 2.1:

Let $G=(\mathrm{V}, \mathrm{E})$ be a simple graph. Let $f: V(G) \rightarrow\{0,1\}$ and for each edge uv, assign the label $\|f(u)-f(v)\|$. f is called a cordial labeling if the number of vertices labeled 0 and the the number of vertices labeled 1 differ by atmost 1 and also the number of edges labeled 0 and the the number of edges labeled 1 differ by atmost 1 . A graph is called Cordial if it has a cordial labeling.

Definition 2.2:

Let $\langle A, *\rangle$ be any abelian group. A graph $G=(V(G), E(G))$ is said to be A-cordial[6,9] if there is a mapping $f: V(G) \rightarrow$ A which satisfies the following two conditions with each edge $e=u v$ is labeled as $f(u) * f(v)$.

$$
\text { (i) }\left|v_{f}(a)-v_{f}(b)\right| \leq 1, \forall a, b \in \mathrm{~A}
$$

(ii) $\left|e_{f}(a)-e_{f}(b)\right| \leq 1, \forall a, b \in \mathrm{~A}$
wherev $v_{f}(a)=$ the number of vertices with label a.
$v_{f}(b)=$ the number of vertices with label b.
$\varepsilon_{f}(a)=$ the number of edges with label a.
$\theta_{f}(b)=$ the number of edges with label b.
We note that if $A=\left\langle V_{4}, *\right\rangle$ is a multiplicative group. Then the labeling is known as $\mathbf{V}_{\mathbf{4}}$ Cordial Labeling. A graph is called a $\mathbf{V}_{\mathbf{4}}$ Cordial graph if it admits a V_{4} Cordial Labeling.

Definition 2.3:
A closed trail whose origin and internal vertices are distinct is called a cycle

Definition 2.4:

Globe is a graph obtained from two isolated vertex which are joined by n paths of length 2 . It is denoted by (Gl(n)).

Definition 2.5:

A simple graph in which each pair of distinct vertices is joined by an edge is called a
complete graph. The complete graph on n vertices is denoted by K_{n}.

II .Main Results

Theorem:3.1

$C_{n 1}$ is a V_{4} Cordial graph , when $\mathrm{n} \neq$ $4(\bmod 8)$.

Proof:

Let $\mathrm{V}\left(C_{n}\right)=\left\{u_{i}: 1 \leq i \leq n\right\}$.
Let $\mathrm{E} \quad\left(C_{n}\right)=\left\{\left(u_{i} u_{i+1}\right)\right.$:
$1 \leq i \leq n-1\} \cup\left\{u_{n} u_{1}\right\}$.
Case(i):
Define $\mathrm{f}: \mathrm{V}\left(C_{n}\right) \rightarrow \mathrm{V}_{4}$ by
$\mathrm{f}\left(u_{i}\right)=\left\{\begin{array}{cl}i & \text { if } i \equiv 0,3(\bmod 8) \\ 1 & \text { if } i \equiv 1,6(\bmod 8) \\ -1 & \text { if } i \equiv 2,5(\bmod 8) \\ -i & \text { if } i \equiv 4,7(\bmod 8)\end{array}\right.$
$1 \leq i \leq n$
Subcase (i) : when $n \equiv 0(\bmod 8)$
The induced edge labelings are
$\mathrm{f}\left(u_{i}\right) * \mathrm{f}\left(u_{i+1}\right)=\left\{\begin{array}{cl}i & \text { if } i \equiv 0(\bmod 4) \\ -1 & \text { if } i \equiv 1(\bmod 4) \\ -i & \text { if } i \equiv 2(\bmod 4) \\ 1 & \text { if } i \equiv 3(\bmod 4)\end{array}\right.$,
$1 \leq i \leq n-1$
$\mathrm{f}\left(u_{n}\right) * \mathrm{f}\left(u_{1}\right)=\mathrm{i}$

Vertex Conditions:

Here, $v_{f}(1)=v_{f}(i)=v_{f}(-i)=v_{f}(-1)=\frac{n}{4}$
Hence, $\left|v_{f}(a)-v_{f}(b)\right| \leq 1, \forall \mathrm{a}, \mathrm{b} \in \mathrm{V}_{4}$.

Edge Conditions:

Here, $\varepsilon_{f}(1)=e_{f}(i)=e_{f}(-1)=e_{f}(-i)=\frac{n}{4}$
Hence, $\left|e_{f}(a)-e_{f}(b)\right| \leq 1, \forall a, b \in V_{4}$.
Hence, C_{n} is a V_{4} Cordial graph.
For example, the V_{4} Cordial Labeling of C_{g} is shown in the Figure 3.1.1.

Figure 3.1.1
Subcase(ii): when $\mathbf{n} \equiv \mathbf{1}(\bmod 8)$
The induced edge labelings are
$\mathrm{f}\left(u_{i}\right) * \mathrm{f}\left(u_{i+1}\right)=\left\{\begin{array}{cl}i & \text { if } i \equiv 0(\bmod 4) \\ -1 & \text { if } i \equiv 1(\bmod 4) \\ -i & \text { if } i \equiv 2(\bmod 4) \\ 1 & \text { if } i \equiv 3(\bmod 4)\end{array}\right.$,
$1 \leq i \leq n-1$
$\mathrm{f}\left(u_{n}\right) * \mathrm{f}\left(u_{1}\right)=1$
Vertex Conditions:
Here, $v_{f}(1)=\frac{n-1}{4}+1$ and $v_{f}(i)=v_{f}(-i)=v_{f}(-1)$
$=\frac{n-1}{4}$
Hence, $\left|v_{f}(a)-v_{f}(b)\right| \leq 1, \forall \mathrm{a}, \mathrm{b} \in \mathrm{V}_{4}$.

Edge Conditions:

Here, $\varepsilon_{f}(1)=\frac{n-1}{4}+1$ and $\varepsilon_{f}(-i)=\varepsilon_{f}(-1)=\varepsilon_{f}(i)$
$=\frac{n-1}{4}$
Hence, $\left|e_{f}(a)-e_{f}(b)\right| \leq 1, \forall a, b \in V_{4}$.
Hence, C_{n} is a V_{4} Cordial graph.
For example, the V_{4} Cordial Labeling of C_{g} is shown in the Figure 3.1.2.

Figure 3.1.2
Subcase(iii): when $\mathbf{n} \equiv 3(\bmod 8)$
The induced edge labelings are
$\mathrm{f}\left(u_{i}\right) * \mathrm{f}\left(u_{i+1}\right)=\left\{\begin{array}{cl}i & \text { if } i \equiv 0(\bmod 4) \\ -1 & \text { if } i \equiv 1(\bmod 4) \\ -i & \text { if } i \equiv 2(\bmod 4) \\ 1 & \text { if } i \equiv 3(\bmod 4)\end{array}\right.$,
$1 \leq i \leq n-1$
$\mathrm{f}\left(u_{n}\right) * \mathrm{f}\left(u_{1}\right)=\mathrm{i}$

Vertex Conditions:

Here, $v_{f}(1)=v_{f}(i)=v_{f}(-1)=\frac{n+1}{4}$ and $v_{f}(-i)=$ $\frac{n-2}{4}$
Hence, $\left|v_{f}(a)-v_{f}(b)\right| \leq 1, \forall a, b \in V_{4}$.

Edge Conditions:

Here, $e_{f}(1)=\frac{n-a}{4}$ and $e_{f}(-i)=e_{f}(-1)=e_{f}(i)=$ $\frac{n+1}{4}$
Hence, $\left|e_{f}(a)-e_{f}(b)\right| \leq 1, \forall \mathrm{a}, \mathrm{b} \in \mathrm{V}_{4}$.
Hence, C_{n} is a V ${ }_{4}$ Cordial graph.
For example, the V_{4} Cordial Labeling of C_{11} is shown in the Figure 3.1.3.

Figure 3.1.3
Subcase(iv): when $\mathbf{n} \equiv 5(\bmod 8)$
The induced edge labelings are

$$
\mathrm{f}\left(u_{i}\right) * \mathrm{f}\left(u_{i+1}\right)=\left\{\begin{aligned}
i & \text { if } i \equiv 0(\bmod 4) \\
-1 & \text { if } i \equiv 1(\bmod 4) \\
-i & \text { if } i \equiv 2(\bmod 4) \\
1 & \text { if } i \equiv 3(\bmod 4)
\end{aligned}\right.
$$

$1 \leq i \leq n-1$
$\mathrm{f}\left(u_{n}\right) * \mathrm{f}\left(u_{1}\right)=-1$

Vertex Conditions:

Here, $v_{f}(1)=v_{f}(i)=v_{f}(-i)=\frac{n-1}{4}$ and $v_{f}(-1)=$ $\frac{n-1}{4}+1$
Hence, $\mid v_{f}(a)-v_{f}(b) \| \leq 1, \forall \mathrm{a}, \mathrm{b} \in \mathrm{V}_{4}$.

Edge Conditions:

Here, $e_{f}(1)=e_{f}(i)=e_{f}(-i)=\frac{n-1}{4}$ and $e_{f}(-1)=$ $\frac{n-1}{4}+1$
Hence, $\left|e_{f}(a)-e_{f}(b)\right| \leq 1, \forall a, b \in V_{4}$.
Hence, C_{n} is a V_{4} Cordial graph.
For example, the V_{4} Cordial Labeling of C_{5} is shown in the Figure 3.1.4.

Figure 3.1.4
Subcase(v): when $n \equiv 6(\bmod 8)$
The induced edge labelings are
$\mathrm{f}\left(u_{i}\right) * \mathrm{f}\left(u_{i+1}\right)=\left\{\begin{array}{cl}i & \text { if } i \equiv 0(\bmod 4) \\ -1 & \text { if } i \equiv 1(\bmod 4) \\ -i & \text { if } i \equiv 2(\bmod 4) \\ 1 & \text { if } i \equiv 3(\bmod 4)\end{array}\right.$
$1 \leq i \leq n-1$
$\mathrm{f}\left(u_{n}\right) * \mathrm{f}\left(u_{1}\right)=1$

Vertex Conditions:

Here, $v_{f}(1)=v_{f}(-1)=\frac{n-2}{4}+1$ and $v_{f}(-i)=v_{f}(i)$
$=\frac{n-2}{4}$

Hence, $\left|v_{f}(a)-v_{f}(b)\right| \leq 1, \forall a, b \in V_{4}$.

Edge Conditions:

Here, $e_{f}(1)=e_{f}(-1)=\frac{n-2}{4}+1$ and $e_{f}(i)=e_{f}(-i)=\frac{n-2}{4}$
Hence, $\left|e_{f}(a)-e_{f}(b)\right| \leq 1, \forall \mathrm{a}, \mathrm{b} \in \mathrm{V}_{4}$.
Hence, $C_{n 1}$ is a V_{4} Cordial graph.
For example, the V_{4} Cordial Labeling of C_{6} is shown in the Figure 3.1.5.

Figure 3.1.5
Case(ii): when $n \equiv 2(\bmod 8)$
Define f:V $\left(C_{n}\right) \rightarrow \mathrm{V}_{4}$ by
$\mathrm{f}\left(u_{i}\right)=\left\{\begin{array}{cl}i & \text { if } i \equiv 0,3(\bmod 8) \\ 1 & \text { if } i \equiv 1,6(\bmod 8) \\ -1 & \text { if } i \equiv 2,5(\bmod 8) \\ -i & \text { if } i \equiv 4,7(\bmod 8)\end{array}\right.$
$1 \leq i \leq n-2$
$\mathrm{f}\left(u_{n-1}\right)=i, \quad \mathrm{f}\left(u_{n}\right)=1$
The induced edge labelings are
$\mathrm{f}\left(u_{i}\right) * \mathrm{f}\left(u_{i+1}\right)=\left\{\begin{aligned} i & \text { if } i \equiv 0(\bmod 4) \\ -1 & \text { if } i \equiv 1(\bmod 4) \\ -i & \text { if } i \equiv 2(\bmod 4) \\ 1 & \text { if } i \equiv 3(\bmod 4)\end{aligned}\right.$
$1 \leq i \leq n-3$
$\mathrm{f}\left(u_{n-2}\right) * \mathrm{f}\left(u_{n-1}\right)=-1 \quad, \quad \mathrm{f}\left(u_{n-1}\right) * \mathrm{f}\left(u_{n}\right)=i$, $\mathrm{f}\left(u_{n}\right) * \mathrm{f}\left(u_{1}\right)=1$

Vertex Conditions:

Here, $v_{f}(1)=v_{f}(-1)=\frac{n+2}{4}$ and $v_{f}(i)=v_{f}(-i)=$ $\frac{n+2}{4}-1$
Hence, $\left|v_{f}(a)-v_{f}(b)\right| \leq 1, \forall a, b \in \mathrm{~V}_{4}$.

Edge Conditions:

Here, $e_{f}(1)=e_{f}(-1)=\frac{n+2}{4}$ ande $e_{f}(-i)=e_{f}(i)=$ $\frac{n+2}{4}-1$
Hence, $\left|e_{f}(a)-e_{f}(b)\right| \leq 1, \forall \mathrm{a}, \mathrm{b} \in \mathrm{V}_{4}$.
Hence, $C_{n 1}$ is a V_{4} Cordial graph.
For example, the V_{4} Cordial Labeling of C_{10} is shown in the Figure 3.1.6.

Figure 3.1.6
Case(iii): when $n \equiv 7(\bmod 8)$
Define $\mathrm{f}: \mathrm{V}\left(C_{n}\right) \rightarrow \mathrm{V}_{4}$ by
$\mathrm{f}\left(u_{i}\right)=\left\{\begin{aligned} i & \text { if } i \equiv 0,3(\bmod 8) \\ 1 & \text { if } i \equiv 1,6(\bmod 8) \\ -1 & \text { if } i \equiv 2,5(\bmod 8) \\ -i & \text { if } i \equiv 4,7(\bmod 8)\end{aligned}\right.$
$1 \leq i \leq n-3$
$\mathrm{f}\left(u_{n-1}\right)=-i \quad$ and $\quad \mathrm{f}\left(u_{n}\right)=1$
The induced edge labelings are
$\mathrm{f}\left(u_{i}\right) * \mathrm{f}\left(u_{i+1}\right)=\left\{\begin{array}{cl}i & \text { if } i \equiv 0(\bmod 4) \\ -1 & \text { if } i \equiv 1(\bmod 4) \\ -i & \text { if } i \equiv 2(\bmod 4) \\ 1 & \text { if } i \equiv 3(\bmod 4)\end{array}\right.$
$1 \leq i \leq n-4$
$\mathrm{f}\left(u_{n-2}\right) * \mathrm{f}\left(u_{n-1}\right)=i, \quad \mathrm{f}\left(u_{n-1}\right) * \mathrm{f}\left(u_{n}\right)=-i \quad$,
$\mathrm{f}\left(u_{n}\right) * \mathrm{f}\left(u_{1}\right)=1$

Vertex Conditions:

Here, $v_{f}(1)=v_{f}(-1)=v_{f}(-i)=\frac{n+1}{4}$ and $v_{f}(i)=\frac{n+1}{4}-1$
Hence, $\left|v_{f}(a)-v_{f}(b)\right| \leq 1, \forall a, b \in V_{4}$.

Edge Conditions:

Here, $\varepsilon_{f}(1)=e_{f}(-i)=\varepsilon_{f}(i)=\frac{n+1}{4}$ and $\varepsilon_{f}(-1)=$ $\frac{n+1}{4}-1$
Hence, $\left|e_{f}(a)-e_{f}(b)\right| \leq 1, \forall a, b \in V_{4}$.
Hence, C_{n} is a V_{4} Cordial graph.
For example, the V_{4} Cordial Labeling of C_{7} is shown in the Figure 3.1.7.

Figure 3.1.7
Theorem: 3.2
C_{n} is not a V_{4} Cordial graph, when $\mathrm{n} \equiv$ $4(\bmod 8)$.

Proof:

For all the 4 k vertices of ν_{i} assign the label values as $1,-1, i$ and $-i$ in any order. So that each labela $\in \mathrm{V}_{4}$ occurs k times. In this case $C_{n}(\mathrm{n}$ $\equiv 4(\bmod 8))$ satisfies the vertex condition of V_{4} Cordial Labeling. It is verified that in any case it does not satisfy the edge condition of V_{4} Cordial Labeling. Therefore, $C_{n}(\mathrm{n} \equiv 4(\bmod 8))$ is not a V_{4} Cordial graph.

Figure 3.2.1

Figure 3.2.2

Figure 3.2.3

Figure 3.2.4

Figure 3.2.5

Figure 3.2.6

For example, the V_{4} Cordial Labeling of C_{12} is shown in Figures 3.2.1-3.2.6.

Here, $v_{f}(1)=v_{f}(i)=v_{f}(-1)=v_{f}(-i)=3$ Here, $v_{f}(1)=v_{f}(i)=v_{f}(-1)=v_{f}(-i)=3$
$\& \theta_{f}(1)=3, \varepsilon_{f}(i)=0, \quad e_{f}(-1)=3, e_{f}(-i)=6$ $\& e_{f}(1)=0, e_{f}(i)=6, e_{f}(-1)=0, e_{f}(-i)=6$

Here, $v_{f}(1)=v_{f}(i)=v_{f}(-1)=v_{f}(-i)=3$ Here, $v_{f}(1)=v_{f}(i)=v_{f}(-1)=v_{f}(-i)=3$
$\& \theta_{f}(1)=3, e_{f}(i)=2, \quad e_{f}(-1)=3, e_{f}(-i)=4$ $\& e_{f}(1)=4, e_{f}(i)=2, e_{f}(-1)=4, e_{f}(-i)=2$

Here, $v_{f}(1)=v_{f}(i)=v_{f}(-1)=v_{f}(-i)=3$
Here, $v_{f}(1)=v_{f}(i)=v_{f}(-1)=v_{f}(-i)=3$
$\& \theta_{f}(1)=3, e_{f}(i)=5, \quad e_{f}(-1)=1, e_{f}(-i)=3$
$\& e_{f}(1)=2, e_{f}(i)=4, e_{f}(-1)=2, e_{f}(-i)=4$

Theorem :3.3

Globe $\mathrm{Gl}(\mathrm{n})$ is not a V_{4} cordial graph, $($ when $n \equiv 2(\bmod 4))$.

$*$	1	-1	i	$-i$
1	$\mathbf{1}$	-1	i	$-i$
-1	-1	$\mathbf{1}$	$-i$	i
i	i	$-i$	$-\mathbf{1}$	1
$-i$	$-i$	i	1	$-\mathbf{1}$

Proof:
Let $\mathrm{V}(\mathrm{G})=\left\{u, v, v_{i}: 1 \leq i \leq n\right\}$.
Let $\mathrm{E}(\mathrm{G})=\left\{u v_{i}: 1 \leq i \leq n\right\} \cup\left\{v v_{i}: 1 \leq i \leq n\right\}$.
Case(i): Suppose the label values of u and v are different.
For the first 4 k vertices of v_{i} assign values from $\mathrm{U}_{j=1}^{k} S_{j}, S_{j}=\{1,-1, i,-i\}$ for $1 \leq j \leq k$ in any order. From the table, it is observed that the edge values $1,-1, i$ and $-i$ occur equal number of times for the edges induced by 4 k vertices together with u and v. Further, it also satisfy the vertex condition of V_{4} Cordial Labeling. Hence for any choice of labeling of G, if there is any difference
in vertex labeling as well as edge labeling occurs it depends on the choice of vertex labelings of two vertices of v_{i}, say $v_{4 k+1}, v_{4 k+2}$ and u, v and the corresponding edge values among them.

Given that $\mathrm{f}(\mathrm{u}) \neq \mathrm{f}(\mathrm{v})$. If two of $\mathrm{f}\left(\mathrm{v}_{4 k+1}\right)$, $\mathrm{f}\left(v_{4 k+2}\right) \mathrm{f}(u)$ and $\mathrm{f}(v)$ are equal, then the vertex condition is not satisfied. Therefore the vertex labelings of $u, v, v_{4 k+1}$ andv$v_{4 k+2}$ are different. Now consider $\mathrm{f}(u)=1, \mathrm{f}(v)=-1, \mathrm{f}\left(v_{4 k+1}\right)=i$ and $\mathrm{f}\left(v_{4 k+2}\right)=-i$. The other possible different vertex labelings of $u, v, v_{4 k+1}$ and $v_{4 k+2}$ can be similarly discussed.

From this table, we observed that $v_{f}(1)=v_{f}(i)=v_{f}(-i)=v_{f}(-1)=\frac{n+2}{4}$.
So, For all $\mathrm{a}, \mathrm{b} \in \mathrm{V}_{4}$, the number of vertices with label a and the number of vertices with label b differ by atmost 1 . Without affecting vertex conditions of V_{4} Cordial Labeling. We check the edge condition for all possible cases.
1.

$*$	i	-i
1	i	-i
-1	-i	i

Here,$\theta_{f}(1)=\theta_{f}(-1) \frac{n-2}{2}$ and $\varepsilon_{f}(-i)=\varepsilon_{f}(i)=$ $\frac{\mathrm{n}+2}{2}$.
It is observed that, $\left|e_{f}(1)-e_{f}(b)\right|>1$, where $\mathrm{b} \in\{$

$*$	1	-1	i	$-i$	$\mathrm{f}\left(v_{4 k+1}\right)$ $i-i$	$\mathrm{f}\left(v_{4 k+2}\right)$ $=-i$
$\mathrm{f}(u)=1$	1	-1	i	$-i$	i	$-i$
$\mathrm{f}(v)=$ -1	-1	1	$-i$	i	$-i$	i

$i,-i\}$ and $\left|e_{f}(-1)-e_{f}(b)\right|>1$,
where $\mathrm{b} \in\{i,-i\}$.
2.

$*$	-1	-i
1	-1	-i
i	-i	1

It follows that, $\left|\theta_{f}(a)-e_{f}(b)\right|>1$, where $a, b \in$ $\mathrm{V}_{4}-\{1,-1\}$.
3.

$*$	-1	i
1	-1	i
-i	i	1

It is seen that, $\left|e_{f}(a)-e_{f}(b)\right|>1$, where $a, b \in$ $\mathrm{V}_{4}-\{1,-1\}$.
4.

It is observed that, $\left|e_{f}(a)-e_{f}(b)\right|>1$, where $a, b \in V_{4}-\{\mathbb{1},-1\}$.
5.

$*$	1	i
-1	-1	-i
-i	-i	1

It follows that, $\left|e_{f}(a)-e_{f}(b)\right|>1$, where $\mathrm{a}, \mathrm{b} \in$ $\mathrm{V}_{4}-\{1,-1\}$.
6.

It is seen that, $\| e_{f}(1)-e_{f}(b) \mid>1$, where $\mathrm{b} \in\{$ $i,-i\}$ and $\left|e_{f}(-1)-e_{f}(b)\right|>1$,
where $b \in\{i,-i\}$.
From the above 6 cases, we observed that it does not satisfy the edge condition of V_{4} Cordial Labeling. Hence Globe $\mathrm{Gl}(\mathrm{n})($ when $\mathrm{n} \equiv 2(\bmod$ 4)) is not a V_{4} cordial graph.

Case(ii): Suppose $f(u)=f(v)$.
First we consider vertex condition. Let $\mathrm{f}(\mathrm{u})=\mathrm{f}(\mathrm{v})=i$ (say). For the other choices the result follows in similar way. It remains $4 \mathrm{n}+2$ vertices. Label $4(n-1)$ vertices with $1,-1, i$ and $-i$. So that eachlabel occur $\mathrm{n}-1$ times. The vertex condition depends on the choices of the 6 remaining vertices of v_{i}. As we assigned the label i for u and v, we label $1,-1$ and $-i$ for 6 vertices so that each label occur two times. There is no other choice of labeling of G , otherwise vertex condition will be violated.

For edge condition the edges formal form $4(\mathrm{n}-1) v_{\mathrm{i}} \mathrm{s}$ together with u and v have equal
representation for each labels of V_{4}. So it is enough to consider edges induced by u and v together with six left over vertices of v_{i}. Consider,

$*$	1	-1	$-i$	1	-1	$-i$
i	i	$-i$	1	i	$-i$	1
i	i	$-i$	1	i	$-i$	1

If $\mathrm{f}(\mathrm{u})=\mathrm{f}(\mathrm{v})=\mathrm{i}$, as discussed above the only vertex labeling of the 6 vertices are shown above. Hence, $\left|e_{f}(-1)-e_{f}(a)\right|>1$, for all $a \in V_{4}-$ $\{-1\}$. Hence, if $f(u)=f(v)=a$,
$\mathrm{a} \in \mathrm{V}_{4}$, then the edge condition is violated for any labeling of satisfying vertex condition.
Hence Globe $\mathrm{Gl}(\mathrm{n})($ when $\mathrm{n} \equiv 2(\bmod 4)$) is not a V_{4} cordial graph.

Theorem: 3.4

$$
K_{n} \text { is a } \mathrm{V}_{4} \text { Cordial graph, when } \mathrm{n}<7 \text {. }
$$

Proof:

(i) when $\mathrm{n}=2$

vertex		v_{1}	v_{2}
		1	-1
v_{1}	1	$\mathbf{1}$	-1
v_{2}	-1	-1	$\mathbf{1}$

$*$	1	$-i$
1	$\mathbf{1}$	$-i$
$-i$	$-i$	$-\mathbf{1}$

$*$	-1	i
-1	$\mathbf{1}$	-1
i	-1	$\mathbf{1}$

$*$	-1	$-i$
-1	$\mathbf{1}$	i
$-i$	i	$\mathbf{- 1}$

$*$	i	$-i$
i	$\mathbf{- 1}$	1
$-i$	1	$\mathbf{- 1}$

(ii) when $\mathrm{n}=3$

Vertex		v_{1}	v_{2}	v_{3}
		1	-1	i
v_{1}	1	$\mathbf{1}$	-1	i
v_{2}	-1	-1	$\mathbf{1}$	$-i$
v_{3}	i	i	$-i$	$-\mathbf{1}$

$*$	i	$-i$	-1
i	$-\mathbf{1}$	1	$-i$
$-i$	1	$\mathbf{- 1}$	i
-1	$-i$	i	$\mathbf{1}$

$*$	1	-1	$-i$
1	$\mathbf{1}$	-1	$-i$
-1	-1	$\mathbf{1}$	i
$-i$	$-i$	i	$-\mathbf{1}$

$*$	1	i	$-i$
1	$\mathbf{1}$	i	$-i$
i	i	$\mathbf{- 1}$	1
$-i$	$-i$	1	$\mathbf{- 1}$

(iii) when $n=4$

Vertex		v_{1}	v_{2}	v_{3}	v_{4}
	1	-1	i	$-i$	
v_{1}	1	$\mathbf{1}$	-1	i	$-i$
v_{2}	-1	-1	$\mathbf{1}$	$-i$	i
v_{3}	i	i	$-i$	$-\mathbf{1}$	1
v_{4}	$-i$	$-i$	i	1	$\mathbf{- 1}$

(iv) when $\mathrm{n}=5$

vertex		v_{1}	v_{2}	v_{3}	v_{4}	v_{5}
	1	-1	i	$-i$	1	
v_{1}	1	$\mathbf{1}$	-1	i	$-i$	1
v_{2}	-1	-1	$\mathbf{1}$	$-i$	i	-1
v_{3}	i	i	$-i$	$-\mathbf{1}$	1	i
v_{4}	$-i$	$-i$	i	1	$-\mathbf{1}$	$-i$
v_{5}	1	1	-1	i	$-i$	$\mathbf{1}$

$*$	1	-1	i	$-i$	-1
1	$\mathbf{1}$	-1	i	$-i$	-1
-1	-1	$\mathbf{1}$	$-i$	i	1
i	i	$-i$	$-\mathbf{1}$	1	$-i$
$-i$	$-i$	i	1	$-\mathbf{1}$	i
-1	-1	1	$-i$	i	$\mathbf{1}$

${ }^{*}$	1	-1	i	$-i$	i							
1	$\mathbf{1}$	-1	i	$-i$	i							
-1	-1	$\mathbf{1}$	$-i$	i	$-i$							
i	i	$-i$	$\mathbf{- 1}$	1	-1							
$-i$	$-i$	i	1	$\mathbf{- 1}$	1							
i	i	$-i$	-1	1	$\mathbf{- 1}$	\quad	$*$	1	-1	i	$-i$	$-i$
:---:	:---:	:---:	:---:	:---:	:---:							
1	$\mathbf{1}$	-1	i	$-i$	$-i$							
-1	-1	$\mathbf{1}$	$-i$	i	i							
i	i	$-i$	$\mathbf{- 1}$	1	1							
$-i$	$-i$	i	1	$-\mathbf{1}$	-1							
$-i$	$-i$	i	1	-1	$\mathbf{- 1}$							

(v) when $\mathrm{n}=6$

\[

\]

${ }^{*}$	${ }^{1}$	-1	${ }^{i}$	$-i$	-1	i
1	$\mathbf{1}$	-1	i	$-i$	-1	i
-1	-1	$\mathbf{1}$	$-i$	i	1	$-i$
i	i	$-i$	$\mathbf{- 1}$	1	$-i$	-1
$-i$	$-i$	i	1	$-\mathbf{1}$	i	1
-1	-1	1	$-i$	i	$\mathbf{1}$	$-i$
i	i	$-i$	-1	1	$-i$	$\mathbf{- 1}$

From all the table, it is observed that, the vertex condition and edge condition of V_{4} Cordial Labeling is satisfied. Hence $\left|v_{f}(a)-v_{f}(b)\right| \leq 1$ and $\left|e_{f}(a)-e_{f}(b)\right| \leq 1, \forall \mathrm{a}, \mathrm{b} \in \mathrm{V}_{4}$. Hence $K_{n}(\mathrm{n}$ $\leq 6)$ is a V_{4} Cordial graph.

Theorem: 3.5

K_{n} is not a V_{4} Cordial graph, when n ≥ 7.
Proof: when $n=7$

vertex			v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}
			1	-1	i	-i	1	-1	-i
v_{1}	1		1	-1	i	-i	1	-1	-i
v_{2}	-1		-1	1	-i	i	-1	1	i
v_{3}	i		i	-i	-1	1	i	-i	1
v_{4}	-i		-i	i	1	-1	-i	i	-1
v_{5}	1		1	-1	i	-i	1	-1	-i
v_{6}	-1		-1	1	-i	i	-1	1	i
v_{7}	-i		-i	i	1	-1	-i	i	-1
*	1		-1	i	-i	1	${ }^{i}$	-i	
1	1		-1	i	-i	1	i	-i	
-1	-		1	-i	i	-1	-i	i	
i	${ }^{\text {i }}$		-i	-1	1	${ }^{i}$	-1	1	
${ }^{-i}$	-		i	1	-1	-i	1	-1	
1	1		-1	i	-i	1	i	-i	
i	i		-i	-1	1	i	-1	1	
-i	-		i	1	-1	-i	1	-1	

In this case, the vertex condition of V_{4} Cordial Labeling is satisfied. It is observed that, $\left|v_{f}(a)-v_{f}(b)\right| \leq 1 \forall \mathrm{a}, \mathrm{b} \in \mathrm{V}_{4}$. But it does not satisfy the edge condition of V_{4} Cordial Labeling. Hence, $\left|e_{f}(a)-e_{f}(b)\right|>1$. We can extend $K_{n}(n>8)$ it also does not satisfy the edge condition of V_{4} Cordial Labeling. Hence $K_{n}(\mathrm{n} \geq 7)$ is not a V_{4} Cordial graph.

IV. References

[1] G.J. Gallian, A Dynamic survey of graph labeling, The electronic journal of combinotorics, 16 (2009), \#DS6.
[2] S.W Golomb, How to number a graph in graph Theory and computing, R.C. Read, ed., Academic Press, New York (1972), 23-37.
[3] A. Rosa, On certain valuations of the vertices of a graph, Theory of graphs (International Symposium, Rome), July (1966).
[4] Frank Harary, Graph Theory, Narosa publishing house pvt. Ltd.,10th reprint 2001.
[5] J Gross and J Yeiien, Handbook of graph theory, CRC Press,2004.
[6] M. Hovey, A-cordial graphs, Discrete Math.,Vol 93(1991), 183-194.
[7] R. Tao, On k-cordiality of cycles, crowns and wheels, Systems Sci., 11 (1998), 227-229.
[8] M.Z. Youssef, On k-cordial labeling, Australas.J. Combin., Vol 43(2009), 31-37.
[9] M.V.Modha, K.K.Kanani, Some new families of 5-cordial graphs, International Journal of Mathematics and Soft Computing, Vol.5, No.1(2015), 129-141.
[10]L.Pandiselvi, S.NavaneethaKrishnan and A.NellaiMurugan, Path Related V_{4} Cordial graphs,International Journal of Recent advances in Multidisiplinary Research, Vol. 03, Issue 02, pp.12851294, February, 2016,
[11]11.L.Pandiselvi, S.Navaneetha Krishnan and A.NellaiMurugan, Bi-Star V_{4} Cordial Graphs,International Journal Of Advanced Science and Research Vol. 1,Issue 2, Feb 2016. Pg no:14-21.
[12]L.Pandiselvi, A.NellaiMurugan, and S.NavaneethaKrishnan, V_{4} Cordial Graphs of Fan and Globe International Journal of Applied Research2016; 2(4): 344-350.
[13] L.Pandiselvi, S.Navaneethakrishnan,, A.NellaiMurugan, A.Nagarajan, Star Related V_{4} Cordial graphs, International Journal Of Mathematics And Computer Research [Volume 4 issue 10 Oct 2016] PageNo.1610-1621.

