On general Eulerian integral of certain products of I-functions and

a multivariable Aleph-function

F.Y. AY ANT ${ }^{1}$

1 Teacher in High School, France

ABSTRACT

The object of this paper is to establish an general Eulerian integral involving the product of two multivariable I-functions defined by Prasad [1], the multivariable Aleph-function and a generalized hypergeometric function which provide unification and extension of numerous results. We will study the particular case concerning the multivariable H -function defined by Srivastava et al [6].

Keywords: Eulerian integral, multivariable I-function, Lauricella function of several variables, multivariable H-function, generalized hypergeometric function

2010 Mathematics Subject Classification :33C05, 33C60

1.Introduction

In this paper, we evaluate a new Eulerian integral of most general characters associated with the products of two multivariable I-functions defined by Prasad [1], the Aleph-function of several variables and a generalized hypergeometric function with general arguments. The Aleph-function of several variables is an extension of multivariable I-function defined by Sharma et al [3].

We define $: \aleph\left(z_{1}^{\prime \prime \prime}, \cdots, z_{v}^{\prime \prime \prime}\right)=\aleph_{P_{i}, Q_{i}, \tau_{i}, R: P_{i(1)}, Q_{i(1)}, \tau_{i(1)} ; R^{(1)} ; \cdots ; P_{i(r)}, Q_{i(v)} ; \tau_{i(v)} ; R^{(v)}}\left(\begin{array}{c}\mathrm{Z}^{\prime \prime}{ }_{1} \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{Z}^{\prime \prime}{ }_{v}\end{array}\right.$

$$
\begin{array}{cl}
{\left[\left(\mathrm{a}_{j} ; \alpha_{j}^{(1)}, \cdots, \alpha_{j}^{(v)}\right)_{1, \mathfrak{n}}\right]} & ,\left[\tau_{i}^{\prime}\left(a_{j i} ; \alpha_{j i}^{(1)}, \cdots, \alpha_{j i}^{(v)}\right)_{\mathfrak{n}+1, p_{i}}\right]: \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . & ,\left[\tau_{i}^{\prime}\left(b_{j i} ; \beta_{j i}^{(1)}, \cdots, \beta_{j i}^{(v)}\right)_{m+1, q_{i}}\right]:
\end{array}
$$

$$
\left.\begin{array}{c}
\left.\left.\left[\left(\mathrm{c}_{j}^{(1)}\right) ; \gamma_{j}^{(1)}\right)_{1, n_{1}}\right],\left[\tau_{i^{(1)}}^{\prime}\left(c_{j i(1)}^{(1)} ; \gamma_{j i(1)}^{(1)}\right)_{n_{1}+1, p_{i}^{(1)}}\right] ; \cdots ; \quad\left[\left(\mathrm{c}_{j}^{(v)}\right) ; \gamma_{j}^{(v)}\right)_{1, n_{v}}\right],\left[\tau_{i^{(v)}}^{\prime}\left(c_{j i(v)}^{(v)} ; \gamma_{j i(v)}^{(v)}\right)_{n_{v}+1, p_{i}^{(v)}}\right] \\
\left.\left.\left[\left(\mathrm{d}_{j}^{(1)}\right) ; \delta_{j}^{(1)}\right)_{1, m_{1}}\right],\left[\tau_{i^{(1)}}^{\prime}\left(d_{j i^{(1)}}^{(1)} ; \delta_{j i(1)}^{(1)}\right)_{m_{1}+1, q_{i}^{(1)}}\right] ; \cdots ;\left[\left(\mathrm{d}_{j}^{(v)}\right) ; \delta_{j}^{(v)}\right)_{1, m_{v}}\right],\left[\tau_{i^{(v)}}^{\prime}\left(d_{j i(v)}^{(v)} ; \delta_{j i(v)}^{(v)}\right)_{m_{v}+1, q_{i}^{(v)}}\right]
\end{array}\right)
$$

$$
\begin{equation*}
=\frac{1}{(2 \pi \omega)^{v}} \int_{L_{1}} \cdots \int_{L_{v}} \psi_{1}\left(s_{1}, \cdots, s_{v}\right) \prod_{k=1}^{v} \xi_{k}\left(s_{k}\right) z_{k}^{\prime \prime \prime s_{k}} \mathrm{~d} s_{1} \cdots \mathrm{~d} s_{r} \tag{1.1}
\end{equation*}
$$

with $\omega=\sqrt{-1}$
$\psi_{1}\left(s_{1}, \cdots, s_{v}\right)=\frac{\prod_{j=1}^{N} \Gamma\left(1-a_{j}+\sum_{k=1}^{v} \alpha_{j}^{(k)} s_{k}\right)}{\sum_{i=1}^{R}\left[\tau_{i}^{\prime} \prod_{j=N+1}^{P_{i}} \Gamma\left(a_{j i}-\sum_{k=1}^{v} \alpha_{j i}^{(k)} s_{k}\right) \prod_{j=1}^{Q_{i}} \Gamma\left(1-b_{j i}+\sum_{k=1}^{v} \beta_{j i}^{(k)} s_{k}\right)\right]}$
and $\xi_{k}\left(s_{k}\right)=\frac{\prod_{j=1}^{M_{k}} \Gamma\left(d_{j}^{(k)}-\delta_{j}^{(k)} s_{k}\right) \prod_{j=1}^{N_{k}} \Gamma\left(1-c_{j}^{(k)}+\gamma_{j}^{(k)} s_{k}\right)}{\sum_{i^{(k)}=1}^{R^{(k)}}\left[\tau_{i^{(k)}}^{\prime} \prod_{j=M_{k}+1}^{Q_{i}(k)} \Gamma\left(1-d_{j i(k)}^{(k)}+\delta_{j i(k)}^{(k)} s_{k}\right) \prod_{j=N_{k}+1}^{P_{i(k}} \Gamma\left(c_{j i(k)}^{(k)}-\gamma_{j i(k)}^{(k)} s_{k}\right)\right]}$

Suppose, as usual , that the parameters
$a_{j}, j=1, \cdots, P ; b_{j}, j=1, \cdots, Q ;$
$c_{j}^{(k)}, j=1, \cdots, N_{k} ; c_{j i(k)}^{(k)}, j=N_{k}+1, \cdots, P_{i^{(k)}} ;$
$d_{j}^{(k)}, j=1, \cdots, M_{k} ; d_{j i(k)}^{(k)}, j=M_{k}+1, \cdots, Q_{i(k)} ;$
with $k=1 \cdots, r, i=1, \cdots, R, i^{(k)}=1, \cdots, R^{(k)}$
are complex numbers, and the $\alpha^{\prime} s, \beta^{\prime} s, \gamma^{\prime} s$ and $\delta^{\prime} s$ are assumed to be positive real numbers for standardization purpose such that

$$
\begin{align*}
& U_{i}^{(k)}=\sum_{j=1}^{N} \alpha_{j}^{(k)}+\tau_{i} \sum_{j=N+1}^{P_{i}} \alpha_{j i}^{(k)}+\sum_{j=1}^{N_{k}} \gamma_{j}^{(k)}+\tau_{i(k)}^{\prime} \sum_{j=N_{k}+1}^{P_{i}(k)} \gamma_{j i(k)}^{(k)}-\tau_{i} \sum_{j=1}^{Q_{i}} \beta_{j i}^{(k)}-\sum_{j=1}^{M_{k}} \delta_{j}^{(k)} \\
& -\tau_{i(k)}^{\prime} \sum_{j=M_{k}+1}^{Q_{i(k)}} \delta_{j i(k)}^{(k)} \leqslant 0 \tag{1.4}
\end{align*}
$$

The reals numbers τ_{i} are positives for $i=1$ to $R, \tau_{i(k)}$ are positives for $i^{(k)}=1$ to $R^{(k)}$
The contour L_{k} is in the s_{k}-p lane and run from $\sigma-i \infty$ to $\sigma+i \infty$ where σ is a real number with loop, if necessary ,ensure that the poles of $\Gamma\left(d_{j}^{(k)}-\delta_{j}^{(k)} s_{k}\right)$ with $j=1$ to M_{k} are separated from those of $\Gamma\left(1-a_{j}+\sum_{i=1}^{r} \alpha_{j}^{(k)} s_{k}\right)$ with $j=1$ to n and $\Gamma\left(1-c_{j}^{(k)}+\gamma_{j}^{(k)} s_{k}\right)$ with $j=1$ to N_{k} to the left of the contour L_{k}. The condition for absolute convergence of multiple Mellin-Barnes type contour (1.9) can be obtained by extension of the corresponding conditions for multivariable H -function given by as :
$\left|\arg z_{k}^{\prime \prime \prime}\right|<\frac{1}{2} A_{i}^{(k)} \pi$, where

$$
\begin{align*}
& A_{i}^{(k)}=\sum_{j=1}^{N} \alpha_{j}^{(k)}-\tau_{i}^{\prime} \sum_{j=N+1}^{P_{i}} \alpha_{j i}^{(k)}-\tau_{i}^{\prime} \sum_{j=1}^{Q_{i}} \beta_{j i}^{(k)}+\sum_{j=1}^{N_{k}} \gamma_{j}^{(k)}-\tau_{i(k)}^{\prime} \sum_{j=N_{k}+1}^{P_{i}(k)} \gamma_{j i(k)}^{(k)} \\
& +\sum_{j=1}^{M_{k}} \delta_{j}^{(k)}-\tau_{i}^{\prime}(k) \sum_{j=M_{k}+1}^{Q_{i(k)}} \delta_{j i(k)}^{(k)}>0, \text { with } k=1, \cdots, r, i=1, \cdots, R, i^{(k)}=1, \cdots, R^{(k)} \tag{1.5}
\end{align*}
$$

The complex numbers z_{i} are not zero.Throughout this document, we assume the existence and absolute convergence conditions of the multivariable Aleph-function.

We may establish the the asymptotic expansion in the following convenient form :
$\aleph\left(z_{1}^{\prime \prime \prime}, \cdots, z_{v}^{\prime \prime \prime}\right)=0\left(\left|z_{1}^{\prime \prime \prime}\right|^{\alpha_{1}}, \cdots,\left|z_{r}^{\prime \prime \prime}\right|^{\alpha_{r}}\right), \max \left(\left|z_{1}^{\prime \prime \prime}\right|, \cdots,\left|z_{v}^{\prime \prime \prime}\right|\right) \rightarrow 0$
$\aleph\left(z_{1}^{\prime \prime \prime}, \cdots, z_{v}^{\prime \prime \prime}\right)=0\left(\left|z_{1}^{\prime \prime \prime}\right|^{\beta_{1}}, \cdots,\left|z_{v}^{\prime \prime \prime}\right|^{\beta_{r}}\right), \min \left(\left|z_{1}^{\prime \prime \prime}\right|, \cdots,\left|z_{v}^{\prime \prime \prime}\right|\right) \rightarrow \infty$
where $k=1, \cdots, r: \alpha_{k}=\min \left[\operatorname{Re}\left(d_{j}^{(k)} / \delta_{j}^{(k)}\right)\right], j=1, \cdots, m_{k}$ and

$$
\beta_{k}=\max \left[\operatorname{Re}\left(\left(c_{j}^{(k)}-1\right) / \gamma_{j}^{(k)}\right)\right], j=1, \cdots, n_{k}
$$

Serie representation of Aleph-function of u-variables is given by

$$
\begin{align*}
& \aleph\left(z_{1}^{\prime \prime \prime}, \cdots, z_{v}^{\prime \prime \prime}\right)=\sum_{G_{1}, \cdots, G_{v}=0}^{\infty} \sum_{g_{1}=0}^{M_{1}} \cdots \sum_{g_{v}=0}^{M_{v}} \frac{(-)^{G_{1}+\cdots+G_{v}}}{\delta_{g_{1}} G_{1}!\cdots \delta_{g_{v}} G_{v}!} \psi_{1}\left(\eta_{G_{1}, g_{1}}, \cdots, \eta_{G_{v}, g_{v}}\right) \\
& \times \xi_{1}\left(\eta_{G_{1}, g_{1}}\right) \cdots \xi_{v}\left(\eta_{G_{v}, g_{v}}\right) z_{1}^{-\eta_{G_{1}, g_{1}}} \cdots z_{v}^{-\eta_{G_{v}, g_{v}}} \tag{1.6}
\end{align*}
$$

Where $\psi(., \cdots,),. \theta_{i}(),. i=1, \cdots, r$ are given respectively in (1.2), (1.3) and
$\eta_{G_{1}, g_{1}}=\frac{d_{g_{1}}^{(1)}+G_{1}}{\delta_{g_{1}}^{(1)}}, \cdots, \eta_{G_{v}, g_{v}}=\frac{d_{g_{v}}^{(v)}+G_{v}}{\delta_{g_{v}}^{(v)}}$
which is valid under the conditions $\delta_{g_{i}}^{(i)}\left[d_{j}^{i}+p_{i}\right] \neq \delta_{j}^{(i)}\left[d_{g_{i}}^{i}+G_{i}\right]$
for $j \neq m_{i}, m_{i}=1, \cdots \eta_{G_{i}, g_{i}} ; p_{i}, n_{i}=0,1,2, \cdots, ; y_{i} \neq 0, i=1, \cdots, v$
The multivariable I-function of r-variables is defined by Prasad [1] in term of multiple Mellin-Barnes type integral :
$I\left(z_{1}^{\prime}, \cdots, z_{s}^{\prime}\right)=I_{p_{2}, q_{2}, p_{3}, q_{3} ; \cdots ; p_{s}, q_{s}: p^{(1)}, q^{(1)} ; \cdots ; p^{(s)}, q^{(s)}}^{0, n_{2} ; 0, n_{3} ; \cdots ; 0, n_{s}: m^{(1)} n^{(1)} ; \cdots ; m^{(s)}, n^{(s)}}\left(\begin{array}{c}\mathrm{z}^{\prime}{ }_{1} \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{z}^{\prime}\end{array}\right)\left(\mathrm{a}_{2 j} ; \alpha_{2 j}^{\prime}, \alpha_{2 j}^{\prime \prime}\right)_{1, p_{2}} ; \cdots ;$

$$
\left.\begin{array}{l}
\left(\mathrm{a}_{s j} ; \alpha_{s j}^{(1)}, \cdots, \alpha_{s j}^{(s)}\right)_{1, p_{s}}:\left(a_{j}^{(1)}, \alpha_{j}^{(1)}\right)_{1, p^{(1)}} ; \cdots ;\left(a_{j}^{(s)}, \alpha_{j}^{(s)}\right)_{1, p^{(s)}} \\
\left(\mathrm{b}_{r j} ; \beta_{s j}^{(1)}, \cdots, \beta_{s j}^{(s)}\right)_{1, q_{s}}:\left(b_{j}^{(1)}, \beta_{j}^{(1)}\right)_{1, q^{(1)}} ; \cdots ;\left(b_{j}^{(s)}, \beta_{j}^{(s)}\right)_{1, q^{(s)}}
\end{array}\right)
$$

The defined integral of the above function, the existence and convergence conditions, see Y,N Prasad [1]. Throughout the present document, we assume that the existence and convergence conditions of the multivariable I-function.

The condition for absolute convergence of multiple Mellin-Barnes type contour (1.9) can be obtained by extension of the corresponding conditions for multivariable H -function given by as :
$\left|\arg z_{i}^{\prime}\right|<\frac{1}{2} \Omega_{i} \pi$, where
$\Omega_{i}=\sum_{k=1}^{n^{(i)}} \alpha_{k}^{(i)}-\sum_{k=n^{(i)}+1}^{p^{(i)}} \alpha_{k}^{(i)}+\sum_{k=1}^{m^{(i)}} \beta_{k}^{(i)}-\sum_{k=m^{(i)}+1}^{q^{(i)}} \beta_{k}^{(i)}+\left(\sum_{k=1}^{n_{2}} \alpha_{2 k}^{(i)}-\sum_{k=n_{2}+1}^{p_{2}} \alpha_{2 k}^{(i)}\right)+\cdots+$

$$
\begin{equation*}
\left(\sum_{k=1}^{n_{s}} \alpha_{s k}^{(i)}-\sum_{k=n_{s}+1}^{p_{s}} \alpha_{s k}^{(i)}\right)-\left(\sum_{k=1}^{q_{2}} \beta_{2 k}^{(i)}+\sum_{k=1}^{q_{3}} \beta_{3 k}^{(i)}+\cdots+\sum_{k=1}^{q_{s}} \beta_{s k}^{(i)}\right) \tag{1.10}
\end{equation*}
$$

where $i=1, \cdots, s$
The complex numbers z_{i} are not zero.Throughout this document, we assume the existence and absolute convergence conditions of the multivariable I-function.

We may establish the the asymptotic expansion in the following convenient form :
$I\left(z_{1}^{\prime}, \cdots, z_{s}^{\prime}\right)=0\left(\left|z_{1}^{\prime}\right|^{\alpha_{1}}, \cdots,\left|z_{s}^{\prime}\right|^{\alpha_{r}}\right), \max \left(\left|z_{1}^{\prime}\right|, \cdots,\left|z_{s}^{\prime}\right|\right) \rightarrow 0$
$I\left(z_{1}^{\prime}, \cdots, z_{s}^{\prime}\right)=0\left(\left|z_{1}^{\prime}\right|^{\beta_{1}}, \cdots,\left|z_{s}^{\prime}\right|^{\beta_{r}}\right), \min \left(\left|z_{1}^{\prime}\right|, \cdots,\left|z_{s}^{\prime}\right|\right) \rightarrow \infty$
where $k=1, \cdots, r: \alpha_{k}^{\prime}=\min \left[\operatorname{Re}\left(b_{j}^{(k)} / \beta_{j}^{(k)}\right)\right], j=1, \cdots, m_{k}$ and

$$
\beta_{k}^{\prime}=\max \left[\operatorname{Re}\left(\left(a_{j}^{(k)}-1\right) / \alpha_{j}^{(k)}\right)\right], j=1, \cdots, n_{k}
$$

We will use these following notations in this section :

$$
\begin{align*}
& \left(\mathrm{a}_{u j} ; \alpha_{u j}^{\prime(1)}, \cdots, \alpha_{u j}^{\prime(u)}\right)_{1, p_{u}^{\prime}}:\left(a_{j}^{\prime(1)}, \alpha_{j}^{\prime(1)}\right)_{1, p^{\prime(1)}} ; \cdots ;\left(a_{j}^{\prime(u)}, \alpha_{j}^{\prime(u)}\right)_{1, p^{\prime(u)}} \\
& \left(\mathrm{b}^{\prime}{ }_{u j} ; \beta_{u j}^{\prime(1)}, \cdots, \beta_{u j}^{\prime}{ }^{(u)}\right)_{1, q_{u}^{\prime}}:\left(b_{j}^{\prime(1)}, \beta_{j}^{\prime(1)}\right)_{1, q^{\prime(1)}} ; \cdots ;\left(b_{j}^{\prime(u)}, \beta_{j}^{\prime(u)}\right)_{1, q^{\prime(u)}} \tag{1.11}\\
& \quad=\frac{1}{(2 \pi \omega)^{u}} \int_{L_{1}^{\prime \prime}} \cdots \int_{L_{u}^{\prime \prime}} \psi\left(x_{1}, \cdots, x_{u}\right) \prod_{i=1}^{u} \xi_{i}\left(x_{i}\right) z_{i}^{\prime \prime} x_{i} \mathrm{~d} x_{1} \cdots \mathrm{~d} x_{u} \tag{1.12}
\end{align*}
$$

The defined integral of the above function, the existence and convergence conditions, see Y,N Prasad [1]. Throughout the present document, we assume that the existence and convergence conditions of the multivariable I-function.

The condition for absolute convergence of multiple Mellin-Barnes type contour (1.9) can be obtained by extension of the corresponding conditions for multivariable H -function given by as :
where $\left|\arg z_{i}^{\prime \prime}\right|<\frac{1}{2} \Omega_{i}^{\prime \prime} \pi$,

$$
\begin{align*}
& \Omega_{i}^{\prime}=\sum_{k=1}^{\left.n^{\prime(}\right)} \alpha_{k}^{\prime}{ }^{(i)}-\sum_{k=n^{\prime}(i)+1}^{\left.p^{\prime(}\right)} \alpha_{k}^{\prime}{ }^{(i)}+\sum_{k=1}^{m^{\prime(i)}}{\beta_{k}^{\prime}}^{(i)}-\sum_{k=m^{(i)}+1}^{q^{\prime(i)}} \beta_{k}^{\prime}{ }^{(i)}+\left(\sum_{k=1}^{n_{2}^{\prime}} \alpha_{2 k}^{\prime}{ }^{(i)}-\sum_{k=n_{2}+1}^{p_{2}^{\prime}} \alpha_{2 k}^{\prime}{ }^{(i)}\right) \\
& +\cdots+\left(\sum_{k=1}^{n_{u}^{\prime}}{\alpha_{u k}^{\prime}}^{(i)}-\sum_{k=n_{u}^{\prime}+1}^{p_{u}^{\prime}} \alpha_{u k}^{\prime}{ }^{(i)}\right)-\left(\sum_{k=1}^{q_{2}^{\prime}}{\left.\beta_{2 k}^{\prime}{ }^{(i)}+\sum_{k=1}^{q_{3}^{\prime}} \beta_{3 k}^{\prime}{ }^{(i)}+\cdots+\sum_{k=1}^{q_{u}^{\prime}} \beta_{u k}^{\prime}{ }^{(i)}\right)}^{+1.13}\right. \tag{1.13}
\end{align*}
$$

where $i=1, \cdots, u$
The complex numbers z_{i} are not zero.Throughout this document, we assume the existence and absolute convergence conditions of the multivariable I-function.

We may establish the the asymptotic expansion in the following convenient form :
$I\left(z_{1}^{\prime \prime}, \cdots, z_{u}^{\prime \prime}\right)=0\left(\left|z_{1}^{\prime \prime}\right|^{\alpha_{1}^{\prime}}, \cdots,\left|z_{u}^{\prime \prime}\right|^{\alpha_{s}^{\prime}}\right), \max \left(\left|z_{1}^{\prime \prime}\right|, \cdots,\left|z_{u}^{\prime \prime}\right|\right) \rightarrow 0$
$I\left(z_{1}^{\prime \prime}, \cdots, z_{u}^{\prime \prime}\right)=0\left(\left|z_{1}^{\prime \prime}\right|^{\beta_{1}^{\prime}}, \cdots,\left|z_{u}^{\prime \prime}\right|^{\beta_{s}^{\prime}}\right), \min \left(\left|z_{1}^{\prime \prime}\right|, \cdots,\left|z_{u}^{\prime \prime}\right|\right) \rightarrow \infty$
where $k=1, \cdots, z: \alpha_{k}^{\prime \prime}=\min \left[\operatorname{Re}\left(b_{j}^{(k)} / \beta_{j}^{\prime(k)}\right)\right], j=1, \cdots, m_{k}^{\prime}$ and

$$
\beta_{k}^{\prime \prime}=\max \left[\operatorname{Re}\left(\left(a_{j}^{\prime(k)}-1\right) / \alpha_{j}^{\prime(k)}\right)\right], j=1, \cdots, n_{k}^{\prime}
$$

2. Integral representation of generalized Lauricella function of several variables

The following generalized hypergeometric function in terms of multiple contour integrals is also required [4,page 39 eq .30]
$\frac{\prod_{j=1}^{P} \Gamma\left(A_{j}\right)}{\prod_{j=1}^{Q} \Gamma\left(B_{j}\right)}{ }_{P} F_{Q}\left[\left(A_{P}\right) ;\left(B_{Q}\right) ;-\left(x_{1}+\cdots+x_{r}\right)\right]$
$=\frac{1}{(2 \pi \omega)^{r}} \int_{L_{1}} \cdots \int_{L_{r}} \frac{\prod_{j=1}^{P} \Gamma\left(A_{j}+s_{1}+\cdots+s_{r}\right)}{\prod_{j=1}^{Q} \Gamma\left(B_{j}+s_{1}+\cdots+s_{r}\right)} \Gamma\left(-s_{1}\right) \cdots \Gamma\left(-s_{r}\right) x_{1}^{s_{1}} \cdots x_{r}^{s_{r}} \mathrm{~d} s_{1} \cdots \mathrm{~d} s_{r}$
where the contours are of Barnes type with indentations, if necessary, to ensure that the poles of $\Gamma\left(A_{j}+s_{1}+\cdots+s_{r}\right)$ are separated from those of $\Gamma\left(-s_{j}\right), j=1, \cdots, r$. The above result (1.23) can be easily established by an appeal to the calculus of residues by calculating the residues at the poles of $\Gamma\left(-s_{j}\right), j=1, \cdots, r$

The Lauricella function $F_{D}^{(k)}$ is defined as

$$
\begin{align*}
& F_{D}^{(k)}\left[a, b_{1}, \cdots, b_{k} ; c ; x_{1}, \cdots, x_{k}\right]=\frac{\Gamma(c)}{\Gamma(a) \prod_{j=1}^{k} \Gamma\left(b_{j}\right)(2 \pi \omega)^{k}} \int_{L_{1}} \cdots \int_{L_{k}} \frac{\Gamma\left(a+\sum_{j=1}^{k} \zeta_{j}\right) \Gamma\left(b_{1}+\zeta_{1}\right), \cdots, \Gamma\left(b_{k}+\zeta_{k}\right)}{\Gamma\left(c+\sum_{j=1}^{k} \zeta_{j}\right)} \\
& \prod_{j=1}^{k} \Gamma\left(-\zeta_{j}\right)\left(-x_{j}\right)^{\zeta_{i}} \mathrm{~d} \zeta_{1} \cdots \mathrm{~d} \zeta_{k} \tag{2.2}
\end{align*}
$$

where $\max \left[\left|\arg \left(-x_{1}\right)\right|, \cdots,\left|\arg \left(-x_{k}\right)\right|\right]<\pi, c \neq 0,-1,-2, \cdots$.
In order to evaluate a number of integrals of multivariable I-function, we first establish the formula
$\int_{a}^{b}(t-a)^{\alpha-1}(b-t)^{\beta-1} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{\sigma_{j}} \mathrm{~d} t=(b-a)^{\alpha+\beta-1} B(\alpha, \beta) \prod_{j=1}^{k}\left(a f_{j}+g_{j}\right)^{\sigma_{j}}$
$\times F_{D}^{(k)}\left[\alpha,-\sigma_{1}, \cdots,-\sigma_{k} ; \alpha+\beta ;-\frac{(b-a) f_{1}}{a f_{1}+g_{1}}, \cdots,-\frac{(b-a) f_{k}}{a f_{k}+g_{k}}\right]$
where $a, b \in \mathbb{R}(a<b), \alpha, \beta, f_{i}, g_{i}, \sigma_{i} \in \mathbb{C},(i=1, \cdots, k) ; \min (\operatorname{Re}(\alpha), \operatorname{Re}(\beta))>0$ and
$\max _{1 \leqslant j \leqslant k}\left\{\left|\frac{(b-a) f_{i}}{a f_{i}+g_{i}}\right|\right\}<1$
$F_{D}^{(k)}$ is a Lauricella's function of k-variables, see Srivastava et al ([5], page60)
The formula (2.2) can be establish by expanding $\prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{\sigma_{j}}$ by means of the formula :
$(1-z)^{-\alpha}=\sum_{r=0}^{\infty} \frac{(\alpha)_{r}}{r!} z^{r}(|z|<1)$
integrating term by term with the help of the integral given by Saigo and Saxena [2, page 93, eq.(3.2)] and applying the definition of the Lauricella function $F_{D}^{(k)}$ [4, page 454].

3. Eulerian integral

In this section, we note :

$$
\begin{align*}
& U=p_{2}, q_{2} ; p_{3}, q_{3} ; \cdots ; p_{s-1}, q_{s-1} ; p_{2}^{\prime}, q_{2}^{\prime} ; p_{3}^{\prime}, q_{3}^{\prime} ; \cdots ; p_{u-1}^{\prime}, q_{u-1}^{\prime} ; 0,0 ; \cdots ; 0,0 ; 0,0 ; \cdots ; 0,0 \tag{3.1}\\
& V=0, n_{2} ; 0, n_{3} ; \cdots ; 0, n_{s-1} ; 0, n_{2}^{\prime} ; 0, n_{3}^{\prime} ; \cdots ; 0, n_{u-1}^{\prime} ; 0,0 ; \cdots ; 0,0 ; 0,0 ; \cdots ; 0,0 \tag{3.2}\\
& X=m^{(1)}, n^{(1)} ; \cdots ; m^{(s)}, n^{(s)} ; m^{\prime(1)}, n^{\prime(1)} ; \cdots ; m^{\prime(u)}, n^{\prime(u)} ; 1,0 ; \cdots ; 1,0 ; 1,0 ; \cdots ; 1,0 \tag{3.3}\\
& Y=p^{(1)}, q^{(1)} ; \cdots ; p^{(s)}, q^{(s)} ; p^{\prime(1)}, q^{\prime(1)} ; \cdots ; p^{\prime(u)}, q^{\prime(u)} ; 0,1 ; \cdots ; 0,1 ; 0,1 ; \cdots ; 0,1 \tag{3.4}\\
& A=\left(a_{2 k} ; \alpha_{2 k}^{(1)}, \alpha_{2 k}^{(2)}\right) ; \cdots ;\left(a_{(s-1) k} ; \alpha_{(s-1) k}^{(1)}, \alpha_{(s-1) k}^{(2)}, \cdots, \alpha_{(s-1) k}^{(s-1)}\right) ;\left(a_{2 k}^{\prime} ; \alpha_{2 k}^{\prime(1)}, \alpha_{2 k}^{\prime(2)}\right) ; \cdots ; \\
& \left(a_{(u-1) k}^{\prime} ; \alpha_{(u-1) k}^{\prime(1)}, \alpha_{(u-1) k}^{\prime(2)}, \cdots, \alpha_{(u-1) k}^{\prime(u-1)}\right. \tag{3.5}\\
& B=\left(b_{2 k} ; \beta_{2 k}^{(1)}, \beta_{2 k}^{(2)}\right) ; \cdots ;\left(b_{(s-1) k} ; \beta_{(s-1) k}^{(1)}, \beta_{(s-1) k}^{(2)}, \cdots, \beta_{(s-1) k}^{(s-1)}\right) ;\left(b_{2 k}^{\prime} ; \beta_{2 k}^{\prime(1)}, \beta_{2 k}^{\prime(2)}\right) ; \cdots ; \\
& \left(b_{(u-1) k}^{\prime} ; \beta_{(u-1) k}^{\prime(1)}, \beta_{(u-1) k}^{\prime(2)}, \cdots, \beta_{(u-1) k}^{(u-1)}\right) \tag{3.6}\\
& \mathfrak{A}=\left(a_{s k} ; \alpha_{s k}^{(1)}, \alpha_{s k}^{(2)}, \cdots, \alpha_{s k}^{(s)}, 0, \cdots, 0,0 \cdots, 0,0, \cdots, 0\right) \tag{3.7}
\end{align*}
$$

$\mathfrak{A}^{\prime}=\left(a_{u k}^{\prime} ; 0, \cdots, 0, \alpha_{u k}^{\prime(1)}, \alpha_{u k}^{\prime(2)}, \cdots, \alpha_{u k}^{\prime(u)}, 0, \cdots, 0,0, \cdots, 0\right)$
$\mathfrak{B}=\left(b_{s k} ; \beta_{s k}^{(1)}, \beta_{s k}^{(2)}, \cdots, \beta_{s k}^{(s)}, 0, \cdots, 0,0, \cdots, 0,0, \cdots, 0\right)$
$\mathfrak{B}^{\prime}=\left(b_{u k}^{\prime} ; 0, \cdots, 0, \beta_{u k}^{(1)}, \beta_{u k}^{(2)}, \cdots, \beta_{u k}^{(u)}, 0, \cdots, 0,0, \cdots, 0\right)$
$A^{\prime}=\left(a_{k}^{(1)}, \alpha_{k}^{(1)}\right)_{1, p^{(1)}} ; \cdots ;\left(a_{k}^{(s)}, \alpha_{k}^{(s)}\right)_{1, p^{(s)}} ;\left(a_{k}^{\prime(1)}, \alpha_{k}^{\prime(1)}\right)_{1, p^{(1)}} ; \cdots ;\left(a_{k}^{\prime(u)}, \alpha_{k}^{\prime(u)}\right)_{1, p^{\prime}(u)} ;$
$(1,0) ; \cdots ;(1,0) ;(1,0) ; \cdots ;(1,0)$
$B^{\prime}=\left(b_{k}^{(1)}, \beta_{k}^{(1)}\right)_{1, q^{(1)}} ; \cdots ;\left(b_{k}^{(s)}, \beta_{k}^{(s)}\right)_{1, q^{(s)}} ;\left(b_{k}^{(1)}, \beta_{k}^{\prime(1)}\right)_{1, q^{(1)}} ; \cdots ;\left(b_{k}^{\prime(u)}, \beta_{k}^{(u)}\right)_{1, q^{\prime(u)}} ;$
$(0,1) ; \cdots ;(0,1) ;(0,1) ; \cdots ;(0,1)$
$K_{1}=\left(1-\alpha-\sum_{i=1}^{v} \eta_{G_{i}, g_{i}}\left(\mu_{i}+\mu_{i}^{\prime}\right) ; \mu_{1}, \cdots, \mu_{s}, \mu_{1}^{\prime}, \cdots, \mu_{u}^{\prime}, 1, \cdots, 1, v_{1}, \cdots, v_{l}\right)$
$K_{2}=\left(1-\beta-\sum_{i=1}^{v} \eta_{G_{i}, g_{i}}\left(\rho_{i}+\rho_{i}^{\prime}\right) ; \rho_{1}, \cdots, \rho_{s}, \rho_{1}^{\prime}, \cdots, \rho_{u}^{\prime}, 0, \cdots, 0, \tau_{1}, \cdots, \tau_{l}\right)$
$K_{P}=\left[1-A_{j} ; 0, \cdots, 0,0, \cdots, 0,0, \cdots, 0,1, \cdots, 1\right]_{1, P}$
$K_{j}=\left[1+\sigma_{j}-\sum_{i=1}^{v} \eta_{G_{i}, g_{i}}\left(\lambda_{i}^{(j)}+\lambda_{i}^{\prime(j)}\right) ; \lambda_{j}^{(1)}, \cdots, \lambda_{j}^{(s)}, \lambda_{j}^{\prime(1)} \cdots, \lambda_{j}^{\prime(u)}, 0 \cdots, 1, \cdots, 0, \zeta_{j}^{\prime}, \cdots, \zeta_{j}^{(l)}\right]_{1, k(3.16)}$ j
$L_{1}=\left(1-\alpha-\beta-\sum_{i=1}^{v} \eta_{G_{i}, g_{i}}\left(\mu_{i}+\mu_{i}^{\prime}+\rho_{i}+\rho_{i}^{\prime}\right) ; \mu_{1}+\rho_{1}, \cdots, \mu_{s}+\rho_{s}, \mu_{1}^{\prime}+\rho_{1}^{\prime}, \cdots, \mu_{u}^{\prime}+\rho_{u}^{\prime}\right.$,
$\left.1, \cdots, 1, v_{1}+\tau_{1}, \cdots, v_{l}+\tau_{l}\right)$
$L_{Q}=\left[1-B_{j} ; 0, \cdots, 0,0, \cdots, 0,0, \cdots, 0,1 \cdots, 1\right]_{1, Q}$
$L_{j}=\left[1+\sigma_{j}-\sum_{i=1}^{v} \eta_{G_{i}, g_{i}}\left(\lambda_{i}^{(j)}+\lambda_{i}^{\prime(j)}\right) ; \lambda_{j}^{(1)}, \cdots, \lambda_{j}^{(s)}, \lambda_{j}^{\prime(1)} \cdots, \lambda_{j}^{\prime(u)}, 0 \cdots, 0, \zeta_{j}^{\prime}, \cdots, \zeta_{j}^{(l)}\right]_{1, k}$
$P_{1}=(b-a)^{\alpha+\beta-1}\left\{\prod_{j=1}^{h}\left(a f_{j}+g_{j}\right)^{\sigma_{j}}\right\}$
$B_{u, v}=(b-a)^{\sum_{i=1}^{v}\left(\mu_{i}+\mu_{i}^{\prime}+\rho_{i}+\rho_{i}^{\prime}\right) \eta_{G_{i}, g_{i}}}\left\{\prod_{j=1}^{h}\left(a f_{j}+g_{j}\right)^{-\sum_{i=1}^{v}\left(\lambda_{i}+\lambda_{i}^{\prime}\right) \eta_{g_{i}, h_{i}}}\right\} G_{v}$
where $G_{v}=\psi\left(\eta_{G_{1}, g_{1}}, \cdots, \eta_{G_{v}, g_{v}}\right) \times \xi_{1}\left(\eta_{G_{1}, g_{1}}\right) \cdots \xi_{v}\left(\eta_{G_{v}, g_{v}}\right)$
$\psi_{1}, \xi_{i}, i=1, \cdots, v$ are defined respectively by (1.2) and (1.3)

We have the following result
$\int_{a}^{b}(t-a)^{\alpha-1}(b-t)^{\beta-1} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{\sigma_{j}}$
$\aleph\left(\begin{array}{c}\mathrm{z} "{ }_{1}(t-a)^{\mu_{1}+\mu_{1}^{\prime}}(b-t)^{\rho_{1}+\rho_{1}^{\prime}} \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ { }_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{(1)}-\lambda_{j}^{\prime(1)}} \\ \mathrm{z}^{\prime \prime}{ }_{v}(t-a)^{\mu_{v}+\mu_{v}^{\prime}}(b-t)^{\rho_{v}+\rho_{v}^{\prime}} \\ \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{(v)}-\lambda_{j}^{\prime(v)}}\end{array}\right)$
$I\left(\begin{array}{c}\mathrm{z}_{1}(t-a)^{\mu_{1}}(b-t)^{\rho_{1}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{(1)}} \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{z}_{s}(t-a)^{\mu_{s}}(b-t)^{\rho_{s}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{(s)}}\end{array}\right)$
$I\left(\begin{array}{c}\mathrm{z}_{1}(t-a)^{\mu_{1}^{\prime}}(b-t)^{\rho_{1}^{\prime}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime(1)}} \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{z}^{\prime}{ }_{u}(t-a)^{\mu_{u}^{\prime}}(b-t)^{\rho_{u}^{\prime}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime(u)}}\end{array}\right)$
${ }_{P} F_{Q}\left[\left(A_{P}\right) ;\left(B_{Q}\right) ;-\sum_{i=1}^{l} z_{i}^{\prime \prime}(t-a)^{v_{i}}(b-t)^{\tau_{i}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\zeta_{j}^{(i)}}\right] \mathrm{d} t=(b-a)^{\alpha+\beta-1}$
$=P_{1} \frac{\prod_{j=1}^{Q} \Gamma\left(B_{j}\right)}{\prod_{j=1}^{P} \Gamma\left(A_{j}\right)} \sum_{h_{1}=1}^{M_{1}} \cdots \sum_{h_{v}=1}^{M_{v}} \sum_{k_{1}=0}^{\infty} \cdots \sum_{k_{v}=0}^{\infty} \sum_{R_{1}, \cdots, R_{u}=0}^{h_{1} R_{1}+\cdots h_{u} R_{u} \leqslant L} \prod_{i=1}^{v} z_{i}^{\prime \prime \prime} \eta_{h_{i}, k_{i}} \prod_{k=1}^{u} z^{\prime \prime R_{k}} B_{u} B_{u, v}$

We obtain the I-function of $s+u+k+l$ variables.

Provided that

(A) $a, b \in \mathbb{R}(a<b) ; \mu_{i}, \rho_{i}, \mu_{j}^{\prime}, \rho_{j}^{\prime} \lambda_{v}^{(i)} ; \lambda_{v}^{\prime(j)} \in \mathbb{R}^{+}, f_{i}, g_{j}, \tau_{v}, \sigma_{j} \in \mathbb{C}(i=1, \cdots, s ; j=1, \cdots ; u ; v=1, \cdots, k)$
(B) $\quad a_{i j}^{\prime}, b_{i k}^{\prime}, \in \mathbb{C}\left(i=1, \cdots, s ; j=1, \cdots, p_{i}^{\prime} ; k=1, \cdots, q_{i}^{\prime}\right) ; a_{j}^{\prime(i)}, b_{j}^{\prime(k)} \in \mathbb{C}$
$\left(i=1, \cdots, s ; j=1, \cdots, p^{\prime(i)} ; k=1, \cdots, q^{\prime(i)}\right)$
$a_{i j}^{\prime \prime}, b_{i k}^{\prime \prime}, \in \mathbb{C}\left(i=1, \cdots, u^{\prime} ; j=1, \cdots, p_{i}^{\prime \prime} ; k=1, \cdots, q_{i}^{\prime \prime}\right) ; a_{j}^{\prime \prime(i)}, b_{j}^{\prime \prime(k)}, \in \mathbb{C}$
$\left.\left(i=1, \cdots, u ; j=1, \cdots, p^{\prime \prime}\right)^{\prime} ; k=1, \cdots, q^{\prime \prime(i)}\right)$
$\alpha_{i j}^{\prime}{ }^{(k)}, \beta_{i j}^{\prime}{ }^{(k)} \in \mathbb{R}^{+}\left(i=1, \cdots, s, j=1, \cdots, p_{i}^{\prime}, k=1, \cdots, s\right) ; \alpha_{j}^{\prime(i)}, \beta_{i}^{\prime(i)} \in \mathbb{R}^{+}\left(i=1, \cdots, s ; j=1, \cdots, p_{i}^{\prime}\right)$
$\alpha_{i j}^{\prime \prime}{ }^{(k)}, \beta_{i j}^{\prime \prime}{ }^{(k)} \in \mathbb{R}^{+}\left(i=1, \cdots, u, j=1, \cdots, p_{i}^{\prime \prime}, k=1, \cdots, u\right) ; \alpha_{j}^{\prime \prime(i)}, \beta_{i}^{\prime \prime(i)} \in \mathbb{R}^{+}\left(i=1, \cdots, u ; j=1, \cdots, p_{i}^{\prime \prime}\right)$
(C) $\max _{1 \leqslant j \leqslant k}\left\{\left|\frac{(b-a) f_{i}}{a f_{i}+g_{i}}\right|\right\}<1$
(D) $\quad R e\left[\alpha+\sum_{i=1}^{s} \mu_{i} \min _{1 \leqslant j \leqslant m^{(i)}} \frac{b_{j}^{(i)}}{\beta_{j}^{(i)}}+\sum_{i=1}^{u} \mu_{i}^{\prime} \min _{1 \leqslant j \leqslant m^{\prime(i)}} \frac{b_{j}^{\prime(i)}}{\beta_{j}^{\prime(i)}}\right]>0$
$\operatorname{Re}\left[\beta+\sum_{i=1}^{s} \rho_{i} \min _{1 \leqslant j \leqslant m^{(i)}} \frac{b_{j}^{(i)}}{\beta_{j}^{(i)}}+\sum_{i=1}^{u} \rho_{i}^{\prime} \min _{1 \leqslant j \leqslant m^{\prime(i)}} \frac{b_{j}^{\prime(i)}}{\beta_{j}^{\prime(i)}}\right]>0$
(E) $\Omega_{i}=\sum_{k=1}^{n^{(i)}} \alpha_{k}^{(i)}-\sum_{k=n^{(i)}+1}^{p^{(i)}} \alpha_{k}^{(i)}+\sum_{k=1}^{m^{(i)}} \beta_{k}^{(i)}-\sum_{k=m^{(i)}+1}^{q^{(i)}} \beta_{k}^{(i)}+\left(\sum_{k=1}^{n_{2}} \alpha_{2 k}^{(i)}-\sum_{k=n_{2}+1}^{p_{2}} \alpha_{2 k}^{(i)}\right)+\cdots+$
$\left(\sum_{k=1}^{n_{s}} \alpha_{s k}^{(i)}-\sum_{k=n_{s}+1}^{p_{s}} \alpha_{s k}^{(i)}\right)-\left(\sum_{k=1}^{q_{2}} \beta_{2 k}^{(i)}+\sum_{k=1}^{q_{3}} \beta_{3 k}^{(i)}+\cdots+\sum_{k=1}^{q_{s}} \beta_{s k}^{(i)}\right)-\mu_{i}-\rho_{i}$
$-\sum_{j=1}^{k} \lambda_{j}^{(i)}>0 \quad(i=1, \cdots, s)$

$+\cdots+\left(\sum_{k=1}^{n_{u}^{\prime}} \alpha_{u k}^{\prime}{ }^{(i)}-\sum_{k=n_{u}^{\prime}+1}^{p_{u}^{\prime}} \alpha_{u k}^{\prime}{ }^{(i)}\right)-\left(\sum_{k=1}^{q_{2}^{\prime}} \beta_{2 k}^{\prime}{ }^{(i)}+\sum_{k=1}^{q_{3}^{\prime}} \beta_{3 k}^{\prime}{ }^{(i)}+\cdots+\sum_{k=1}^{q_{u}^{\prime}} \beta_{u k}^{\prime}{ }^{(i)}\right)-\mu_{i}^{\prime}-\rho_{i}^{\prime}$
$-\sum_{j=1}^{k} \lambda_{j}^{\prime(i)}>0 \quad(i=1, \cdots, u)$
(F) $\left|\arg \left(z_{i} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{(i)}}\right)\right|<\frac{1}{2} \Omega_{i} \pi \quad(a \leqslant t \leqslant b ; i=1, \cdots, s)$
$\left|\arg \left(z_{i}^{\prime} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime(i)}}\right)\right|<\frac{1}{2} \Omega_{i}^{\prime} \pi \quad(a \leqslant t \leqslant b ; i=1, \cdots, u)$
(G) $P \leqslant Q+1$. The equality holds, when , in addition,
either $P>Q$ and $\left|z_{i}^{\prime \prime}\left(\prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\zeta_{j}^{(i)}}\right)\right|^{\frac{1}{Q-P}}<1 \quad(a \leqslant t \leqslant b)$
or $P \leqslant Q$ and $\max _{1 \leqslant i \leqslant k}\left[\left|\left(z_{i}^{\prime \prime} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\zeta_{j}^{(i)}}\right)\right|\right]<1 \quad(a \leqslant t \leqslant b)$
(\mathbf{H}) The multiple series occuring on the right-hand side of (3.22) is absolutely and uniformly convergent.

Proof

First expressing the multivariable Aleph-function in serie with the help of (1.6) and we interchange the order of summations and t-integral (which is permissible under the conditions stated). Expressing the I-function of s-variables and u-variables defined by Prasad [1] by the Mellin-Barnes contour integral with the help of the equation (1.8) and (1.12) respectively, the generalized hypergeometric function ${ }_{P} F_{Q}($.$) in Mellin-Barnes contour integral with the help of$ (2.1) and interchange the order of integrations which is justifiable due to absolute convergence of the integral involved in the process. Now collect the power of $\left(f_{j} t+g_{j}\right)$ with $j=1, \cdots, k$ and use the equations (2.1) and (2.2) and we obtain k-Mellin-Barnes contour integral. Interpreting $(r+s+k+l)$-Mellin-barnes contour integral in multivariable I-function defined by Prasad [1], we obtain the desired result.

4. Multivariable H -function

If $A=B=U=V=0$, the multivariable I-function reduces to the multivariable H -function and we obtain
$\int_{a}^{b}(t-a)^{\alpha-1}(b-t)^{\beta-1} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{\sigma_{j} \aleph}\left(\begin{array}{c}\mathrm{z}^{\prime \prime}{ }_{1}(t-a)^{\mu_{1}+\mu_{1}^{\prime}}(b-t)^{\rho_{1}+\rho_{1}^{\prime}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{(1)}-\lambda_{j}^{\prime(1)}} \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{z}^{\prime \prime}{ }_{v}(t-a)^{\mu_{v}+\mu_{v}^{\prime}}(b-t)^{\rho_{v}+\rho_{v}^{\prime}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{(v)}-\lambda_{j}^{\prime(v)}}\end{array}\right)$
$H\left(\begin{array}{c}\mathrm{z}_{1}(t-a)^{\mu_{1}}(b-t)^{\rho_{1}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{(1)}} \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{z}_{s}(t-a)^{\mu_{s}}(b-t)^{\rho_{s}} \\ \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{(s)}}\end{array}\right)$
$H\left(\begin{array}{c}\mathrm{z}^{\prime}{ }_{1}(t-a)^{\mu_{1}^{\prime}}(b-t)^{\rho_{1}^{\prime}} \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{z}_{j=1}^{\prime}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime(1)}} \\)^{\mu_{u}^{\prime}}(b-t)^{\rho_{u}^{\prime}} \\ \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime(u)}}\end{array}\right)$
${ }_{P} F_{Q}\left[\left(A_{P}\right) ;\left(B_{Q}\right) ;-\sum_{i=1}^{l} z_{i}^{\prime \prime}(t-a)^{v_{i}}(b-t)^{\tau_{i}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\zeta_{j}^{(i)}}\right] \mathrm{d} t=(b-a)^{\alpha+\beta-1}$

$$
=P_{1} \frac{\prod_{j=1}^{Q} \Gamma\left(B_{j}\right)}{\prod_{j=1}^{P} \Gamma\left(A_{j}\right)} \sum_{h_{1}=1}^{M_{1}} \cdots \sum_{h_{v}=1}^{M_{v}} \sum_{k_{1}=0}^{\infty} \cdots \sum_{k_{v}=0}^{\infty} \sum_{R_{1}, \cdots, R_{u}=0}^{h_{1} R_{1}+\cdots h_{u} R_{u} \leqslant L} \prod_{i=1}^{v} z_{i}^{\prime \prime \prime \eta_{h_{i}, k_{i}}} \prod_{k=1}^{u} z^{\prime \prime R_{k}} B_{u} B_{u, v}
$$

under the same conditions that (3.22) with $A=B=U=V=0$

Remark

By the following similar procedure, the results of this document can be extented to product of any finite number of multivariable I-functions defined by Prasad [1].

5. Conclusion

In this paper we have evaluated a generalized Eulerian integral involving the product of two multivariable I-functions, defined by Prasad [1], a expansion of mltivariable Aleph-function and a generalized hypergeometric function with general arguments. The formulae established in this paper is very general nature. Thus, the results established in this research work would serve as a key formula from which, upon specializing the parameters, as many as desired results involving the special functions of one and several variables can be obtained.
[1] Y.N. Prasad , Multivariable I-function, Vijnana Parishad Anusandhan Patrika 29 (1986) , page 231-237.
[2] Saigo M. and Saxena R.K. Unified fractional integral formulas for the multivariable H-function I. J.Fractional Calculus 15 (1999), page 91-107.
[3] Sharma C.K.and Ahmad S.S.: On the multivariable I-function. Acta ciencia Indica Math , 1994 vol 20,no2, p 113116.
[4] Srivastava H.M. and Karlsson P.W. Multiple Gaussian Hypergeometric series. Ellis.Horwood. Limited. New-York, Chichester. Brisbane. Toronto , 1985.
[5] Srivastava H.M. and Manocha H.L : A treatise of generating functions. Ellis. Horwood.Series. Mathematics and Applications 1984, page 60
[6] H.M. Srivastava And R.Panda. Some expansion theorems and generating relations for the H -function of several complex variables. Comment. Math. Univ. St. Paul. 24(1975), p.119-137.

Personal adress : 411 Avenue Joseph Raynaud
Le parc Fleuri , Bat B
83140 , Six-Fours les plages
Tel : 06-83-12-49-68
Department: VAR
Country : FRANCE

