A general Eulerian integral associated with product of

three multivariable Aleph-functions

F.Y. AYANT ${ }^{1}$

1 Teacher in High School, France

ABSTRACT
The present paper is evaluated a new Eulerian integral associated with the product of three multivariable Aleph-functions and a generalized hypergeometric function with general arguments. We will study the cases concerning the multivariable I-function defined by Sharma et al [2] and Srivastava-Daoust polynomial [3].

Keywords: Eulerian integral, multivariable I-function, generalized hypergeometric function of several variables, multivariable Aleph-function, generalized hypergeometric function.

2010 Mathematics Subject Classification. 33C99, 33C60, 44A20

1. Introduction

In this paper, we consider a general class of Eulerian integral concerning the product of three Multivariable Alephfunctions and a generalized hypergeometric function.
The Aleph-function of several variables generalize the multivariable I-function defined by Sharma and Ahmad [2] , itself is an a generalisation of G and H -functions of several variables defined by Srivastava et al [6]. The multiple Mellin-Barnes integral occuring in this paper will be referred to as the multivariables Aleph-function throughout our present study and will be defined and represented as follows.
We define $: \aleph\left(z_{1}^{\prime \prime \prime}, \cdots, z_{v}^{\prime \prime \prime}\right)=\aleph_{P_{i}, Q_{i}, \tau_{i} ; R: P_{i(1)}, Q_{i(1)}, \tau_{i(1)} ; R^{(1)} ; \cdots ; P_{i(r)}, Q_{i(v)} ; \tau_{i(v)} ; R^{(v)}}^{0, N: M_{1}, N_{1}, \cdots, M_{v}, N_{v}}\left(\left.\begin{array}{c}\mathrm{Z}^{\prime \prime}{ }_{1} \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{Z}^{\prime \prime}{ }_{v}\end{array} \right\rvert\,\right.$

$$
\left[\left(\mathrm{a}_{j} ; \alpha_{j}^{(1)}, \cdots, \alpha_{j}^{(v)}\right)_{1, \mathfrak{n}}\right] \begin{array}{ll}
,\left[\tau_{i}^{\prime}\left(a_{j i} ; \alpha_{j i}^{(1)}, \cdots, \alpha_{j i}^{(v)}\right)_{\mathfrak{n}+1, p_{i}}\right]: \\
& \left., \tau_{i}^{\prime}\left(b_{j i} ; \beta_{i j}^{(1)}, \cdots, \beta_{i j}^{(v)}\right)_{m+1{ }_{i}}\right]:
\end{array}
$$

$$
\left.\left.\left.\left[\left(c_{j}^{(1)}\right) ; \gamma_{j}^{(1)}\right)_{1, n_{1}}\right],\left[\tau_{i^{(1)}}^{\prime}\left(c_{j i(1)}^{(1)} ; \gamma_{j i^{(1)}}^{(1)}\right)_{n_{1}+1, p_{i}^{(1)}}\right] ; \cdots ; \quad\left[\left(c_{j}^{(v)}\right) ; \gamma_{j}^{(v)}\right)_{1, n_{v}}\right],\left[\tau_{i^{(v)}}^{\prime}\left(c_{j i(v)}^{(v)} ; \gamma_{j i(v)}^{(v)}\right)_{n_{v}+1, p_{i}^{(v)}}\right]\right)
$$

$$
\left.\left.\left.\left[\left(\mathrm{d}_{j}^{(1)}\right) ; \delta_{j}^{(1)}\right)_{1, m_{1}}\right],\left[\tau_{i^{(1)}}^{\prime}\left(d_{j i(1)}^{(1)} ; \delta_{j i(1)}^{(1)}\right)_{m_{1}+1, q_{i}^{(1)}}\right] ; \cdots ;\left[\left(\mathrm{d}_{j}^{(v)}\right) ; \delta_{j}^{(v)}\right)_{1, m_{v}}\right],\left[\tau_{i^{(v)}}^{\prime}\left(d_{j i(v)}^{(v)} ; \delta_{j i(v)}^{(v)}\right)_{m_{v}+1, q_{i}^{(v)}}\right]\right)
$$

$$
\begin{equation*}
=\frac{1}{(2 \pi \omega)^{v}} \int_{L_{1}} \cdots \int_{L_{v}} \psi_{1}\left(s_{1}, \cdots, s_{v}\right) \prod_{k=1}^{v} \xi_{k}\left(s_{k}\right) z_{k}^{\prime \prime \prime s_{k}} \mathrm{~d} s_{1} \cdots \mathrm{~d} s_{r} \tag{1.1}
\end{equation*}
$$

with $\omega=\sqrt{-} 1$
$\psi_{1}\left(s_{1}, \cdots, s_{v}\right)=\frac{\prod_{j=1}^{N} \Gamma\left(1-a_{j}+\sum_{k=1}^{v} \alpha_{j}^{(k)} s_{k}\right)}{\sum_{i=1}^{R}\left[\tau_{i}^{\prime} \prod_{j=N+1}^{P_{i}} \Gamma\left(a_{j i}-\sum_{k=1}^{v} \alpha_{j i}^{(k)} s_{k}\right) \prod_{j=1}^{Q_{i}} \Gamma\left(1-b_{j i}+\sum_{k=1}^{v} \beta_{j i}^{(k)} s_{k}\right)\right]}$
and $\xi_{k}\left(s_{k}\right)=\frac{\prod_{j=1}^{M_{k}} \Gamma\left(d_{j}^{(k)}-\delta_{j}^{(k)} s_{k}\right) \prod_{j=1}^{N_{k}} \Gamma\left(1-c_{j}^{(k)}+\gamma_{j}^{(k)} s_{k}\right)}{\sum_{i^{(k)}=1}^{R^{(k)}}\left[\tau_{i^{(k)}}^{\prime} \prod_{j=M_{k}+1}^{Q_{i}(k)} \Gamma\left(1-d_{j i(k)}^{(k)}+\delta_{j i(k)}^{(k)} s_{k}\right) \prod_{j=N_{k}+1}^{P_{i(k)}} \Gamma\left(c_{j i(k)}^{(k)}-\gamma_{j i(k)}^{(k)} s_{k}\right)\right]}$

Suppose, as usual, that the parameters
$a_{j}, j=1, \cdots, P ; b_{j}, j=1, \cdots, Q ;$
$c_{j}^{(k)}, j=1, \cdots, N_{k} ; c_{j i(k)}^{(k)}, j=N_{k}+1, \cdots, P_{i^{(k)}} ;$
$d_{j}^{(k)}, j=1, \cdots, M_{k} ; d_{j i^{(k)}}^{(k)}, j=M_{k}+1, \cdots, Q_{i^{(k)}} ;$
with $k=1 \cdots, r, i=1, \cdots, R, i^{(k)}=1, \cdots, R^{(k)}$
are complex numbers, and the $\alpha^{\prime} s, \beta^{\prime} s, \gamma^{\prime} s$ and $\delta^{\prime} s$ are assumed to be positive real numbers for standardization purpose such that

$$
\begin{align*}
& U_{i}^{(k)}=\sum_{j=1}^{N} \alpha_{j}^{(k)}+\tau_{i} \sum_{j=N+1}^{P_{i}} \alpha_{j i}^{(k)}+\sum_{j=1}^{N_{k}} \gamma_{j}^{(k)}+\tau_{i(k)}^{\prime} \sum_{j=N_{k}+1}^{P_{i}(k)} \gamma_{j i(k)}^{(k)}-\tau_{i} \sum_{j=1}^{Q_{i}} \beta_{j i}^{(k)}-\sum_{j=1}^{M_{k}} \delta_{j}^{(k)} \\
& -\tau_{i}^{\prime}(k) \sum_{j=M_{k}+1}^{Q_{i(k)}} \delta_{j i(k)}^{(k)} \leqslant 0 \tag{1.4}
\end{align*}
$$

The reals numbers τ_{i} are positives for $i=1$ to $R, \tau_{i}(k)$ are positives for $i^{(k)}=1$ to $R^{(k)}$
The contour L_{k} is in the s_{k}-p lane and run from $\sigma-i \infty$ to $\sigma+i \infty$ where σ is a real number with loop, if necessary ,ensure that the poles of $\Gamma\left(d_{j}^{(k)}-\delta_{j}^{(k)} s_{k}\right)$ with $j=1$ to M_{k} are separated from those of $\Gamma\left(1-a_{j}+\sum_{i=1}^{r} \alpha_{j}^{(k)} s_{k}\right)$ with $j=1$ to n and $\Gamma\left(1-c_{j}^{(k)}+\gamma_{j}^{(k)} s_{k}\right)$ with $j=1$ to N_{k} to the left of the contour L_{k}. The condition for absolute convergence of multiple Mellin-Barnes type contour (1.9) can be obtained by extension of the corresponding conditions for multivariable H -function given by as :
$\left|\arg z_{k}^{\prime \prime \prime}\right|<\frac{1}{2} A_{i}^{(k)} \pi$, where

$$
\begin{align*}
& A_{i}^{(k)}=\sum_{j=1}^{N} \alpha_{j}^{(k)}-\tau_{i}^{\prime} \sum_{j=N+1}^{P_{i}} \alpha_{j i}^{(k)}-\tau_{i}^{\prime} \sum_{j=1}^{Q_{i}} \beta_{j i}^{(k)}+\sum_{j=1}^{N_{k}} \gamma_{j}^{(k)}-\tau_{i(k)}^{\prime} \sum_{j=N_{k}+1}^{P_{i}(k)} \gamma_{j i(k)}^{(k)} \\
& +\sum_{j=1}^{M_{k}} \delta_{j}^{(k)}-\tau_{i}^{\prime}(k) \sum_{j=M_{k}+1}^{Q_{i(k)}} \delta_{j i(k)}^{(k)}>0, \text { with } k=1, \cdots, r, i=1, \cdots, R, i^{(k)}=1, \cdots, R^{(k)} \tag{1.5}
\end{align*}
$$

The complex numbers z_{i} are not zero.Throughout this document, we assume the existence and absolute convergence conditions of the multivariable Aleph-function.

We may establish the the asymptotic expansion in the following convenient form :
$\aleph\left(z_{1}^{\prime \prime \prime}, \cdots, z_{v}^{\prime \prime \prime}\right)=0\left(\left|z_{1}^{\prime \prime \prime}\right|^{\alpha_{1}}, \cdots,\left|z_{r}^{\prime \prime \prime}\right|^{\alpha_{r}}\right), \max \left(\left|z_{1}^{\prime \prime \prime}\right|, \cdots,\left|z_{v}^{\prime \prime \prime}\right|\right) \rightarrow 0$
$\aleph\left(z_{1}^{\prime \prime \prime}, \cdots, z_{v}^{\prime \prime \prime}\right)=0\left(\left|z_{1}^{\prime \prime \prime}\right|^{\beta_{1}}, \cdots,\left|z_{v}^{\prime \prime \prime}\right|^{\beta_{r}}\right), \min \left(\left|z_{1}^{\prime \prime \prime}\right|, \cdots,\left|z_{v}^{\prime \prime \prime}\right|\right) \rightarrow \infty$
where $k=1, \cdots, r: \alpha_{k}=\min \left[\operatorname{Re}\left(d_{j}^{(k)} / \delta_{j}^{(k)}\right)\right], j=1, \cdots, m_{k}$ and

$$
\beta_{k}=\max \left[\operatorname{Re}\left(\left(c_{j}^{(k)}-1\right) / \gamma_{j}^{(k)}\right)\right], j=1, \cdots, n_{k}
$$

Serie representation of Aleph-function of u-variables is given by

$$
\begin{align*}
& \aleph\left(z_{1}^{\prime \prime \prime}, \cdots, z_{v}^{\prime \prime \prime}\right)=\sum_{G_{1}, \cdots, G_{v}=0}^{\infty} \sum_{g_{1}=0}^{M_{1}} \cdots \sum_{g_{v}=0}^{M_{v}} \frac{(-)^{G_{1}+\cdots+G_{v}}}{\delta_{g_{1}} G_{1}!\cdots \delta_{g_{v}} G_{v}!} \psi_{1}\left(\eta_{G_{1}, g_{1}}, \cdots, \eta_{G_{v}, g_{v}}\right) \\
& \times \xi_{1}\left(\eta_{G_{1}, g_{1}}\right) \cdots \xi_{v}\left(\eta_{G_{v}, g_{v}}\right) z_{1}^{-\eta_{G_{1}, g_{1}}} \cdots z_{v}^{-\eta_{G_{v}, g_{v}}} \tag{1.6}
\end{align*}
$$

Where $\psi(., \cdots,),. \theta_{i}(),. i=1, \cdots, r$ are given respectively in (1.2), (1.3) and
$\eta_{G_{1}, g_{1}}=\frac{d_{g_{1}}^{(1)}+G_{1}}{\delta_{g_{1}}^{(1)}}, \cdots, \eta_{G_{v}, g_{v}}=\frac{d_{g_{v}}^{(v)}+G_{v}}{\delta_{g_{v}}^{(v)}}$
which is valid under the conditions $\delta_{g_{i}}^{(i)}\left[d_{j}^{i}+p_{i}\right] \neq \delta_{j}^{(i)}\left[d_{g_{i}}^{i}+G_{i}\right]$
for $j \neq M_{i}, M_{i}=1, \cdots \eta_{G_{i}, g_{i}} ; P_{i}, N_{i}=0,1,2, \cdots, ; y_{i} \neq 0, i=1, \cdots, v$

We have $: \aleph\left(z_{1}, \cdots, z_{r}\right)=\aleph_{p_{i}, q_{i}, \tau_{i} ; R: p_{i}(1), q_{i}(1), \tau_{i(1)} ; R^{(1)} ; \cdots ; p_{i(r)}, q_{i}(r) ; \tau_{i(r)} ; R^{(r)}}^{0, \mathfrak{m}, m_{1}, n_{1}, \cdots, m_{r}, n_{r}}\left(\begin{array}{c}\mathrm{z}_{1} \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{z}_{r}\end{array}\right)$
$\left[\begin{array}{cl}{\left[\left(\mathrm{a}_{j} ; \alpha_{j}^{(1)}, \cdots, \alpha_{j}^{(r)}\right)_{1, \mathfrak{n}}\right]} & ,\left[\tau_{i}\left(a_{j i} ; \alpha_{j i}^{(1)}, \cdots, \alpha_{j i}^{(r)}\right)_{\mathfrak{n}+1, p_{i}}\right]: \\ \ldots \ldots \cdots \cdots \cdots \cdots \cdots \cdots \cdots & ,\left[\tau_{i}\left(b_{j i} ; \beta_{j i}^{(1)}, \cdots, \beta_{j i}^{(r)}\right)_{m+1, q_{i}}\right]:\end{array}\right.$
$\left.\begin{array}{l}\left.\left.\left[\left(\mathrm{c}_{j}^{(1)}\right), \gamma_{j}^{(1)}\right)_{1, n_{1}}\right],\left[\tau_{i^{(1)}}\left(c_{j i(1)}^{(1)}, \gamma_{j i^{(1)}}^{(1)}\right)_{n_{1}+1, p_{i}^{(1)}}\right] ; \cdots ;\left[\left(\mathrm{c}_{j}^{(r)}\right), \gamma_{j}^{(r)}\right)_{1, n_{r}}\right],\left[\tau_{i^{(r)}}\left(c_{j i^{(r)}}^{(r)}, \gamma_{j i^{(r)}}^{(r)}\right)_{n_{r}+1, p_{i}^{(r)}}\right] \\ \left.\left.\left[\left(\mathrm{d}_{j}^{(1)}\right), \delta_{j}^{(1)}\right)_{1, m_{1}}\right],\left[\tau_{i^{(1)}}\left(d_{j i^{(1)}}^{(1)}, \delta_{j i^{(1)}}^{(1)}\right)_{m_{1}+1, q_{i}^{(1)}}\right] ; \cdots ;\left[\left(\mathrm{d}_{j}^{\prime(r)}\right), \delta_{j}^{(r)}\right)_{1, m_{r}}\right],\left[\tau_{i^{(r)}}\left(d_{j i(r)}^{(r)}, \delta_{j i^{(r)}}^{(r)}\right)_{m_{r}+1, q_{i}^{(r)}}\right]\end{array}\right)$
$=\frac{1}{(2 \pi \omega)^{r}} \int_{L_{1}^{\prime}} \cdots \int_{L_{r}^{\prime}} \psi\left(s_{1}, \cdots, s_{r}\right) \prod_{k=1}^{r} \theta_{k}\left(s_{k}\right) z_{k}^{s_{k}} \mathrm{~d} s_{1} \cdots \mathrm{~d} s_{r}$
with $\omega=\sqrt{-1}$
$\psi\left(s_{1}, \cdots, s_{r}\right)=\frac{\prod_{j=1}^{\mathfrak{n}} \Gamma\left(1-a_{j}+\sum_{k=1}^{r} \alpha_{j}^{(k)} s_{k}\right)}{\sum_{i=1}^{R}\left[\tau_{i} \prod_{j=\mathfrak{n}+1}^{p_{i}} \Gamma\left(a_{j i}-\sum_{k=1}^{r} \alpha_{j i}^{(k)} s_{k}\right) \prod_{j=1}^{q_{i}} \Gamma\left(1-b_{j i}+\sum_{k=1}^{r} \beta_{j i}^{(k)} s_{k}\right)\right]}$
and $\theta_{k}\left(s_{k}\right)=\frac{\prod_{j=1}^{m_{k}} \Gamma\left(d_{j}^{(k)}-\delta_{j}^{\prime(k)} s_{k}\right) \prod_{j=1}^{n_{k}} \Gamma\left(1-c_{j}^{(k)}+\gamma_{j}^{(k)} s_{k}\right)}{\sum_{i^{(k)}=1}^{R^{(k)}}\left[\tau_{i(k)} \prod_{j=m_{k}+1}^{q_{i(k)}} \Gamma\left(1-d_{j i(k)}^{(k)}+\delta_{j i(k)}^{(k)} s_{k}\right) \prod_{j=n_{k}+1}^{p_{i(k)}} \Gamma\left(c_{j i(k)}^{(k)}-\gamma_{j i(k)}^{(k)} s_{k}\right)\right]}$
Suppose, as usual, that the parameters

$$
a_{j}, j=1, \cdots, p ; b_{j}, j=1, \cdots, q
$$

$c_{j}^{(k)}, j=1, \cdots, n_{k} ; c_{j i(k)}^{(k)}, j=n_{k}+1, \cdots, p_{i(k)} ;$
$d_{j}^{(k)}, j=1, \cdots, m_{k} ; d_{j i^{(k)}}^{(k)}, j=m_{k}+1, \cdots, q_{i^{(k)}} ;$
with $k=1 \cdots, r, i=1, \cdots, R, i^{(k)}=1, \cdots, R^{(k)}$
are complex numbers, and the $\alpha^{\prime} s, \beta^{\prime} s, \gamma^{\prime} s$ and $\delta^{\prime} s$ are assumed to be positive real numbers for standardization purpose such that

$$
\begin{align*}
& U_{i}^{(k)}=\sum_{j=1}^{\mathfrak{n}} \alpha_{j}^{(k)}+\tau_{i} \sum_{j=\mathfrak{n}+1}^{p_{i}} \alpha_{j i}^{(k)}+\sum_{j=1}^{n_{k}} \gamma_{j}^{(k)}+\tau_{i(k)} \sum_{j=n_{k}+1}^{p_{i}(k)} \gamma_{j i}^{(k)}-\tau_{i} \sum_{j=1}^{q_{i}} \beta_{j i}^{(k)}-\sum_{j=1}^{m_{k}} \delta_{j}^{\prime(k)} \\
& -\tau_{i(k)} \sum_{j=m_{k}+1}^{q_{i}(k)} \delta_{j i(k)}^{(k)} \leqslant 0 \tag{1.11}
\end{align*}
$$

The reals numbers τ_{i} are positives for $i=1$ to $R, \tau_{i(k)}$ are positives for $i^{(k)}=1$ to $R^{(k)}$
The contour L_{k} is in the s_{k}-p lane and run from $\sigma-i \infty$ to $\sigma+i \infty$ where σ is a real number with loop, if necessary ,ensure that the poles of $\Gamma\left(d_{j}^{\prime}{ }^{(k)}-\delta_{j}^{\prime}{ }^{(k)} s_{k}\right)$ with $j=1$ to m_{k} are separated from those of $\Gamma\left(1-a_{j}+\sum_{i=1}^{r} \alpha_{j}^{(k)} s_{k}\right)$ with $j=1$ to n and $\Gamma\left(1-c_{j}^{(k)}+\gamma_{j}^{(k)} s_{k}\right)$ with $j=1$ to n_{k} to the left of the contour L_{k}. The condition for absolute convergence of multiple Mellin-Barnes type contour (1.9) can be obtained by extension of the corresponding conditions for multivariable H -function given by as :
$\left|\arg z_{k}\right|<\frac{1}{2} A_{i}^{(k)} \pi, \quad$ where

$$
\begin{align*}
& A_{i}^{(k)}=\sum_{j=1}^{\mathfrak{n}} \alpha_{j}^{(k)}-\tau_{i} \sum_{j=\mathfrak{n}+1}^{p_{i}} \alpha_{j i}^{(k)}-\tau_{i} \sum_{j=1}^{q_{i}} \beta_{j i}^{(k)}+\sum_{j=1}^{n_{k}} \gamma_{j}^{(k)}-\tau_{i^{(k)}} \sum_{j=n_{k}+1}^{p_{i}(k)} \gamma_{j i(k)}^{(k)} \\
& +\sum_{j=1}^{m_{k}} \delta_{j}^{\prime(k)}-\tau_{i^{(k)}} \sum_{j=m_{k}+1}^{q_{i}(k)} \delta_{j i(k)}^{(k)}>0, \text { with } k=1 \cdots, r, i=1, \cdots, R, i^{(k)}=1, \cdots, R^{(k)} \tag{1.12}
\end{align*}
$$

The complex numbers z_{i} are not zero.Throughout this document, we assume the existence and absolute convergence conditions of the multivariable Aleph-function.

We may establish the the asymptotic expansion in the following convenient form :
$\aleph\left(z_{1}, \cdots, z_{r}\right)=0\left(\left|z_{1}\right|^{\alpha_{1}}, \cdots,\left|z_{r}\right|^{\alpha_{r}}\right), \max \left(\left|z_{1}\right|, \cdots,\left|z_{r}\right|\right) \rightarrow 0$
$\aleph\left(z_{1}, \cdots, z_{r}\right)=0\left(\left|z_{1}\right|^{\beta_{1}}, \cdots,\left|z_{r}\right|^{\beta_{r}}\right), \min \left(\left|z_{1}\right|, \cdots,\left|z_{r}\right|\right) \rightarrow \infty$
where $k=1, \cdots, r: \alpha_{k}=\min \left[\operatorname{Re}\left(d_{j}^{(k)} / \delta_{j}^{(k)}\right)\right], j=1, \cdots, m_{k}$ and

$$
\beta_{k}=\max \left[\operatorname{Re}\left(\left(c_{j}^{(k)}-1\right) / \gamma_{j}^{(k)}\right)\right], j=1, \cdots, n_{k}
$$

We will use these following notations in this paper
$U=p_{i}, q_{i}, \tau_{i} ; R ; V=m_{1}, n_{1} ; \cdots ; m_{r}, n_{r}$
$\mathrm{W}=p_{i^{(1)}}, q_{i^{(1)}}, \tau_{i^{(1)}} ; R^{(1)}, \cdots, p_{i^{(r)}}, q_{i^{(r)}}, \tau_{i(r)} ; R^{(r)}$
$A=\left\{\left(a_{j} ; \alpha_{j}^{(1)}, \cdots, \alpha_{j}^{(r)}\right)_{1, n}\right\},\left\{\tau_{i}\left(a_{j i} ; \alpha_{j i}^{(1)}, \cdots, \alpha_{j i}^{(r)}\right)_{n+1, p_{i}}\right\}$
$B=\left\{\tau_{i}\left(b_{j i} ; \beta_{j i}^{(1)}, \cdots, \beta_{j i}^{(r)}\right)_{m+1, q_{i}}\right\}$
$\left.\left.C=\left\{\left(c_{j}^{(1)} ; \gamma_{j}^{(1)}\right)_{1, n_{1}}\right\}, \tau_{i^{(1)}}\left(c_{j i^{(1)}}^{(1)} ; \gamma_{j i^{(1)}}^{(1)}\right)_{n_{1}+1, p_{i}(1)}\right\}, \cdots,\left\{\left(c_{j}^{(r)} ; \gamma_{j}^{(r)}\right)_{1, n_{r}}\right\}, \tau_{i(r)}\left(c_{j i(r)}^{(r)} ; \gamma_{j i(r)}^{(r)}\right)_{n_{r}+1, p_{i}(r)}\right\}$
$\left.\left.D=\left\{\left(d_{j}^{\prime(1)} ; \delta_{j}^{\prime(1)}\right)_{1, m_{1}}\right\}, \tau_{i^{(1)}}\left(d_{j i^{(1)}}^{(1)} ; \delta_{j i^{(1)}}^{(1)}\right)_{m_{1}+1, q_{i}(1)}\right\}, \cdots,\left\{\left(d_{j}^{\prime(r)} ; \delta_{j}^{\prime(r)}\right)_{1, m_{r}}\right\}, \tau_{i^{(r)}}\left(d_{j i^{(r)}}^{(r)} ; \delta_{j i^{(r)}}^{(r)}\right)_{m_{r}+1, q_{i}(r)}\right\}$
The multivariable Aleph-function write :
$\aleph\left(z_{1}, \cdots, z_{r}\right)=\aleph_{U: W}^{0, n: V}\left(\begin{array}{c|c}\mathrm{z}_{1} & \mathrm{~A}: \mathrm{C} \\ \cdot & \cdots \\ : \cdot & \cdots \\ \mathrm{z}_{r} & \mathrm{~B}: \mathrm{D}\end{array}\right)$

Consider the Aleph-function of s variables
$\aleph\left(z_{1}, \cdots, z_{s}\right)=\aleph_{p_{i}^{\prime}, q_{i}^{\prime}, \iota_{i}, r^{\prime}: p_{i}^{\prime}(1), q_{i}^{\prime}(1), \iota_{i(1)} ; r^{(1)} ; \cdots ; p_{i}^{\prime}(s), q_{i}^{\prime}(s) ; i_{i}(s) ; r^{(s)}}^{0, n^{\prime}: m^{\prime}, n_{1}^{\prime}, \cdots, m^{\prime}, n^{\prime}}\left(\begin{array}{c}\mathrm{z}_{1} \\ \cdot \\ \cdot \\ \cdot \\ z_{s}\end{array}\right)$

$$
\begin{array}{cl}
{\left[\left(u_{j} ; \mu_{j}^{(1)}, \cdots, \mu_{j}^{\left(r^{\prime}\right)}\right)_{1, n^{\prime}}\right]} & {\left[\iota_{i}\left(u_{j i} ; \mu_{j i}^{(1)}, \cdots, \mu_{j i}^{\left(r^{\prime}\right)}\right)_{n^{\prime}+1, p_{i}^{\prime}}\right]:} \\
\ldots & ,\left[\iota_{i}\left(v_{j i} ; v_{j i}^{(1)}, \cdots, v_{j i}^{\left(r^{\prime}\right)}\right)_{m^{\prime}+1, q_{i}^{\prime}}\right]:
\end{array}
$$

$=\frac{1}{(2 \pi \omega)^{s}} \int_{L_{1}^{\prime \prime}} \cdots \int_{L_{s}^{\prime \prime}} \zeta\left(t_{1}, \cdots, t_{s}\right) \prod_{k=1}^{s} \phi_{k}\left(t_{k}\right) z_{k}^{t_{k}} \mathrm{~d} t_{1} \cdots \mathrm{~d} t_{s}$
with $\omega=\sqrt{-1}$
$\zeta\left(t_{1}, \cdots, t_{s}\right)=\frac{\prod_{j=1}^{n^{\prime}} \Gamma\left(1-u_{j}+\sum_{k=1}^{s} \mu_{j}^{(k)} t_{k}\right)}{\sum_{i=1}^{r^{\prime}}\left[\iota_{i} \prod_{j=n^{\prime}+1}^{P_{i}} \Gamma\left(u_{j i}-\sum_{k=1}^{s} \mu_{j i}^{(k)} t_{k}\right) \prod_{j=1}^{q_{i}^{\prime}} \Gamma\left(1-v_{j i}+\sum_{k=1}^{s} v_{j i}^{(k)} t_{k}\right)\right]}$
and $\phi_{k}\left(t_{k}\right)=\frac{\prod_{j=1}^{m_{k}^{\prime}} \Gamma\left(b_{j}^{(k)}-\beta_{j}^{(k)} t_{k}\right) \prod_{j=1}^{n_{k}^{\prime}} \Gamma\left(1-a_{j}^{(k)}+\alpha_{j}^{(k)} s_{k}\right)}{\left.\sum_{i^{(k)}=1}^{r^{(k)}\left[\iota_{i}(k)\right.} \prod_{j=m_{k}+1}^{Q_{i}(k)} \Gamma\left(1-b_{j i(k)}^{(k)}+\beta_{j i(k)}^{(k)} t_{k}\right) \prod_{j=n_{k}+1}^{P_{i}(k)} \Gamma\left(a_{j i(k)}^{(k)}-\alpha_{j i(k)}^{(k)} s_{k}\right)\right]}$

Suppose, as usual , that the parameters
$u_{j}, j=1, \cdots, p^{\prime} ; v_{j}, j=1, \cdots, q^{\prime} ;$
$a_{j}^{(k)}, j=1, \cdots, n_{k}^{\prime} ; a_{j i(k)}^{(k)}, j=n_{k}+1, \cdots, p_{i(k)}^{\prime} ;$
$b_{\left.j i^{(k)}\right)}^{(k)}, j=m_{k}^{\prime}+1, \cdots, q_{i(k)}^{\prime} ; b_{j}^{(k)}, j=1, \cdots, m_{k}^{\prime} ;$
with $k=1 \cdots, s, i=1, \cdots, r^{\prime}, i^{(k)}=1, \cdots, r^{(k)}$
are complex numbers, and the $\alpha^{\prime} s, \beta^{\prime} s, \gamma^{\prime} s$ and $\delta^{\prime} s$ are assumed to be positive real numbers for standardization purpose such that

$$
\begin{align*}
& U_{i}^{\prime(k)}=\sum_{j=1}^{n^{\prime}} \mu_{j}^{(k)}+\iota_{i} \sum_{j=n^{\prime}+1}^{p_{i}^{\prime}} \mu_{j i}^{(k)}+\sum_{j=1}^{n_{k}^{\prime}} \alpha_{j}^{(k)}+\iota_{i}(k) \sum_{j=n_{k}^{\prime}+1}^{p_{i}^{\prime}(k)} \alpha_{j i(k)}^{(k)}-\iota_{i} \sum_{j=1}^{q_{i}^{\prime}} v_{j i}^{(k)}-\sum_{j=1}^{m_{k}^{\prime}} \beta_{j}^{(k)} \\
& -\iota_{i(k)} \sum_{j=m_{k}^{\prime}+1}^{q_{i}^{\prime}(k)} \beta_{j i(k)}^{(k)} \leqslant 0 \tag{1.23}
\end{align*}
$$

The reals numbers τ_{i} are positives for $i=1, \cdots, s, \iota_{i(k)}$ are positives for $i^{(k)}=1 \cdots r^{(k)}$
The contour L_{k} is in the t_{k}-p lane and run from $\sigma-i \infty$ to $\sigma+i \infty$ where σ is a real number with loop, if necessary ,ensure that the poles of $\Gamma\left(b_{j}^{(k)}-\beta_{j}^{(k)} t_{k}\right)$ with $j=1$ to m_{k}^{\prime} are separated from those of $\Gamma\left(1-u_{j}+\sum_{i=1}^{s} \mu_{j}^{(k)} t_{k}\right)$ with $j=1$ to N and $\Gamma\left(1-a_{j}^{(k)}+\alpha_{j}^{(k)} t_{k}\right)$ with $j=1$ to n_{k}^{\prime} to the left of the contour L_{k}. The condition for absolute convergence of multiple Mellin-Barnes type contour (1.9) can be obtained by extension of the corresponding conditions for multivariable H -function given by as :
$\left|\arg z_{k}\right|<\frac{1}{2} B_{i}^{(k)} \pi$, where

$$
\begin{align*}
& B_{i}^{(k)}=\sum_{j=1}^{n^{\prime}} \mu_{j}^{(k)}-\iota_{i} \sum_{j=n^{\prime}+1}^{p_{i}^{\prime}} \mu_{j i}^{(k)}-\iota_{i} \sum_{j=1}^{q_{i}^{\prime}} v_{j i}^{(k)}+\sum_{j=1}^{n_{k}^{\prime}} \alpha_{j}^{(k)}-\iota_{i}(k) \sum_{j=n_{k}^{\prime}+1}^{p_{i(k)}^{\prime}} \alpha_{j i(k)}^{(k)} \\
& +\sum_{j=1}^{m_{k}^{\prime}} \beta_{j}^{(k)}-\iota_{i(k)} \sum_{j=m_{k}^{\prime}+1}^{q_{i}^{\prime}(k)} \beta_{j i(k)}^{(k)}>0, \text { with } k=1, \cdots, s, i=1, \cdots, r, i^{(k)}=1, \cdots, r^{(k)} \tag{1.24}
\end{align*}
$$

The complex numbers z_{i} are not zero.Throughout this document, we assume the existence and absolute convergence conditions of the multivariable Aleph-function.

We may establish the the asymptotic expansion in the following convenient form :
$\aleph\left(z_{1}, \cdots, z_{s}\right)=0\left(\left|z_{1}\right|^{\alpha_{1}^{\prime}}, \cdots,\left|z_{s}\right|^{\alpha_{s}^{\prime}}\right), \max \left(\left|z_{1}\right|, \cdots,\left|z_{s}\right|\right) \rightarrow 0$
$\aleph\left(z_{1}, \cdots, z_{s}\right)=0\left(\left|z_{1}\right|^{\beta_{1}^{\prime}}, \cdots,\left|z_{s}\right|^{\beta_{s}^{\prime}}\right), \min \left(\left|z_{1}\right|, \cdots,\left|z_{s}\right|\right) \rightarrow \infty$
where $k=1, \cdots, z: \alpha_{k}^{\prime}=\min \left[\operatorname{Re}\left(b_{j}^{(k)} / \beta_{j}^{(k)}\right)\right], j=1, \cdots, m_{k}^{\prime}$ and

$$
\beta_{k}^{\prime}=\max \left[\operatorname{Re}\left(\left(a_{j}^{(k)}-1\right) / \alpha_{j}^{(k)}\right)\right], j=1, \cdots, n_{k}^{\prime}
$$

We will use these following notations in this paper
$U^{\prime}=p_{i}^{\prime}, q_{i}^{\prime}, \iota_{i} ; r^{\prime} ; V^{\prime}=m_{1}^{\prime}, n_{1}^{\prime} ; \cdots ; m_{s}^{\prime}, n_{s}^{\prime}$
$W^{\prime}=p_{i^{(1)}}^{\prime}, q_{i^{(1)}}^{\prime}, \iota_{i^{(1)}} ; r^{(1)}, \cdots, p_{i^{(r)}}^{\prime}, q_{i^{(r)}}^{\prime}, \iota_{\left.i^{(s)}\right)} ; r^{(s)}$
$A^{\prime}=\left\{\left(u_{j} ; \mu_{j}^{(1)}, \cdots, \mu_{j}^{(s)}\right)_{1, n^{\prime}}\right\},\left\{\iota_{i}\left(u_{j i} ; \mu_{j i}^{(1)}, \cdots, \mu_{j i}^{(s)}\right)_{n^{\prime}+1, p_{i}^{\prime}}\right\}$
$B^{\prime}=\left\{\iota_{i}\left(v_{j i} ; v_{j i}^{(1)}, \cdots, v_{j i}^{(s)}\right)_{m^{\prime}+1, q_{i}^{\prime}}\right\}$
$C^{\prime}=\left(a_{j}^{(1)} ; \alpha_{j}^{(1)}\right)_{1, n_{1}^{\prime}}, \iota_{i^{(1)}}\left(a_{j i^{(1)}}^{(1)} ; \alpha_{j i^{(1)}}^{(1)}\right)_{n_{1}^{\prime}+1, p_{i}^{\prime}(1)}, \cdots,\left(a_{j}^{(s)} ; \alpha_{j}^{(s)}\right)_{1, n_{s}^{\prime}}, \iota_{i^{(s)}}\left(a_{j i^{(s)}}^{(s)} ; \alpha_{j i^{(s)}}^{(s)}\right)_{n_{s}^{\prime}+1, p_{i}^{\prime}(s)}$
$D^{\prime}=\left(b_{j}^{(1)} ; \beta_{j}^{(1)}\right)_{1, m_{1}^{\prime}}, \iota_{i^{(1)}}\left(b_{j i^{(1)}}^{(1)} ; \beta_{j i^{(1)}}^{(1)}\right)_{m_{1}^{\prime}+1, q_{i}^{\prime}(1)} \cdots,\left(b_{j}^{(s)} ; \beta_{j}^{(s)}\right)_{1, m_{s}^{\prime}}, \iota_{i^{(s)}}\left(\beta_{j i^{(s)}}^{(s)} ; \beta_{j i^{(s)}}^{(s)}\right)_{m_{s}^{\prime}+1, q_{i}^{\prime}(s)}$

The multivariable Aleph-function write :
$\aleph\left(z_{1}, \cdots, z_{s}\right)=\aleph_{U^{\prime}: W^{\prime}}^{0, n^{\prime}: V^{\prime}}\left(\begin{array}{c|c}\mathrm{z}_{1} & \mathrm{~A}^{\prime}: \mathrm{C}^{\prime} \\ \cdot & \mathrm{B}^{\prime} \\ \cdot & \mathrm{B}^{\prime}: \mathrm{D}^{\prime}\end{array}\right)$

2. Integral representation of generalized Lauricella function of several variables

The following generalized hypergeometric function in terms of multiple contour integrals is also required [5 ,page 39 eq .30]
$\frac{\prod_{j=1}^{P} \Gamma\left(A_{j}\right)}{\prod_{j=1}^{Q} \Gamma\left(B_{j}\right)}{ }_{P} F_{Q}\left[\left(A_{P}\right) ;\left(B_{Q}\right) ;-\left(x_{1}+\cdots+x_{r}\right)\right]$
$=\frac{1}{(2 \pi \omega)^{r}} \int_{L_{1}} \cdots \int_{L_{r}} \frac{\prod_{j=1}^{P} \Gamma\left(A_{j}+s_{1}+\cdots+s_{r}\right)}{\prod_{j=1}^{Q} \Gamma\left(B_{j}+s_{1}+\cdots+s_{r}\right)} \Gamma\left(-s_{1}\right) \cdots \Gamma\left(-s_{r}\right) x_{1}^{s_{1}} \cdots x_{r}^{s_{r}} \mathrm{~d} s_{1} \cdots \mathrm{~d} s_{r}$
where the contours are of Barnes type with indentations, if necessary, to ensure that the poles of $\Gamma\left(A_{j}+s_{1}+\cdots+s_{r}\right)$ are separated from those of $\Gamma\left(-s_{j}\right), j=1, \cdots, r$. The above result (1.23) can be easily established by an appeal to the calculus of residues by calculating the residues at the poles of $\Gamma\left(-s_{j}\right), j=1, \cdots, r$
In order to evaluate a number of integrals of multivariable I-function, we first establish the formula
$\int_{a}^{b}(t-a)^{\alpha-1}(b-t)^{\beta-1} \prod_{j=1}^{l}\left[1-\tau_{j}(t-a)^{h_{i}}\right]^{-\lambda_{j}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{\sigma_{j}} \mathrm{~d} t=(b-a)^{\alpha+\beta-1} B(\alpha, \beta) \prod_{j=1}^{k}\left(a f_{j}+g_{j}\right)^{\sigma_{j}}$
$F_{1: 0, \cdots, 1 ; 0, \cdots, 0}^{1: 1, \cdots, 1 ; 1,1}\left(\begin{array}{c}\left(\alpha: h_{1}, \cdots, h_{l}, 1, \cdots, 1\right):\left(\lambda_{1}: 1\right), \cdots,\left(\lambda_{l}: 1\right) ;\left(-\sigma_{1}: 1\right), \cdots,\left(-\sigma_{k}: 1\right) \\ \cdots \\ \left(\alpha+\beta: h_{1}, \cdots, h_{l}, 1, \cdots, 1\right):-, \cdots,-;-, \cdots,-\end{array}\right.$
$\left.; \tau_{1}(b-a)^{h_{1}}, \cdots, \tau_{l}(b-a)^{h_{l}},-\frac{(b-a) f_{1}}{a f_{1}+g_{1}}, \cdots,-\frac{(b-a) f_{k}}{a f_{k}+g_{k}}\right)$
where $a, b \in \mathbb{R}(a<b), \alpha, \beta, f_{i}, g_{i}, \sigma_{i}, \tau_{j}, h_{j} \in \mathbb{C}, \lambda_{j} \in \mathbb{R}^{+}(i=1, \cdots, k ; j=1, \cdots, l)$
$\min (\operatorname{Re}(\alpha), \operatorname{Re}(\beta))>0, \max _{1 \leqslant j \leqslant l}\left\{\left|\tau_{j}(b-a)^{h_{j}}\right|\right\}<1, \max _{1 \leqslant j \leqslant k}\left\{\left|\frac{(b-a) f_{i}}{a f_{i}+g_{i}}\right|\right\}<1$,
and $F_{1: 0, \cdots, 0 ; 0, \cdots, 0}^{1: 1, \cdots, 1 ; 1 \cdots, 1}$ is a particular case of the generalized Lauricella function introduced by Srivastava-Daoust[3,page 454] and [5] given by :
$F_{1: 0, \cdots, 0 ; 0, \cdots, 0}^{1: 1, \cdots, 1 ; 1 \cdots, 1}$$\left(\begin{array}{c}\left(\alpha: h_{1}, \cdots, h_{l}, 1, \cdots, 1\right):\left(\lambda_{1}: 1\right), \cdots,\left(\lambda_{l}: 1\right) ;\left(-\sigma_{1}: 1\right), \cdots,\left(-\sigma_{k}: 1\right) \\ \cdots \\ \left(\alpha+\beta: h_{1}, \cdots, h_{l}, 1, \cdots, 1\right):-, \cdots,-;-, \cdots,-\end{array}\right.$
$\left.; \tau_{1}(b-a)^{h_{1}}, \cdots, \tau_{l}(b-a)^{h_{l}},-\frac{(b-a) f_{1}}{a f_{1}+g_{1}}, \cdots,-\frac{(b-a) f_{k}}{a f_{k}+g_{k}}\right)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \prod_{j=1}^{l} \Gamma\left(\lambda_{j}\right) \prod_{j=1}^{k} \Gamma\left(-\sigma_{j}\right)}$
$\frac{1}{(2 \pi \omega)^{l+k}} \int_{L_{1}} \cdots \int_{L_{l+k}} \frac{\Gamma\left(\alpha+\sum_{j=1}^{l} h_{j} s_{j}+\sum_{j=1}^{k} s_{l+j}\right)}{\Gamma\left(\alpha+\beta+\sum_{j=1}^{l} h_{j} s_{j}+\sum_{j=1}^{k} s_{l+j}\right)} \prod_{j=1}^{l} \Gamma\left(\lambda_{j}+s_{j}\right) \prod_{j=1}^{k} \Gamma\left(-\sigma_{j}+s_{l+j}\right)$
$\prod_{j=1}^{l+k} \Gamma\left(-s_{j}\right) z_{1}^{s_{1}} \cdots z_{l}^{s_{l}} z_{l+1}^{s_{l+1}} \cdots, z_{l+k}^{s_{l+k}} \mathrm{~d} s_{1} \cdots \mathrm{~d} s_{l+k}$
Here the contour $L_{j}^{\prime} s$ are defined by $L_{j}=L_{w \zeta_{j} \infty}\left(\operatorname{Re}\left(\zeta_{j}\right)=v_{j}^{\prime \prime}\right)$ starting at the point $v_{j}^{\prime \prime}-\omega \infty$ and terminating at the point $v_{j}^{\prime \prime}+\omega \infty$ with $v_{j}^{\prime \prime} \in \mathbb{R}(j=1, \cdots, l)$ and each of the remaining contour L_{l+1}, \cdots, L_{l+k} run from $-\omega \infty$ to $\omega \infty$
(2.2) can be easily established by expanding $\prod_{j=1}^{l}\left[1-\tau_{j}(t-a)^{h_{i}}\right]^{-\lambda_{j}}$ by means of the formula :
$(1-z)^{-\alpha}=\sum_{r=0}^{\infty} \frac{(\alpha)_{r}}{r!} z^{r}(|z|<1)$
integrating term by term with the help of the integral given by Saigo and Saxena [1, page 93, eq.(3.2)] and applying the definition of the generalized Lauricella function [3, page 454].

3. Eulerian integral

In this section, we note :
$\theta_{i}=\prod_{j=1}^{l}\left[1-\tau_{j}(t-a)^{h_{i}}\right]^{-\zeta_{j}^{(i)}}, \zeta_{j}^{(i)}>0(i=1, \cdots, r) ; \theta_{i}^{\prime}=\prod_{j=1}^{l}\left[1-\tau_{j}(t-a)^{h_{i}}\right]^{-\zeta_{j}^{\prime(i)}}, \zeta_{j}^{\prime(i)}>0(i=1, \cdots, s)$
$\theta_{i}^{\prime \prime}=\prod_{j=1}^{l}\left[1-\tau_{j}(t-a)^{h_{i}}\right]^{-\zeta_{j}^{\prime \prime(i)}}, \zeta_{j}^{\prime \prime(i)}>0(i=1, \cdots, u)$
$\theta_{i}^{\prime \prime \prime}=\prod_{j=1}^{l}\left[1-\tau_{j}(t-a)^{h_{i}}\right]^{-\zeta_{j}^{\prime \prime \prime(i)}}, \zeta_{j}^{\prime \prime \prime(i)}>0(i=1, \cdots, v)$
$K_{1}=\left(1-\alpha-\sum_{i=1}^{v} \eta_{G_{i}, g_{i}}\left(\mu_{i}+\mu_{i}^{\prime}\right) ; \mu_{1}, \cdots, \mu_{s}, \mu_{1}^{\prime}, \cdots, \mu_{u}^{\prime}, 1, \cdots, 1, v_{1}, \cdots, v_{l}\right)$

$$
\begin{align*}
& K_{2}=\left(1-\beta-\sum_{i=1}^{v} \eta_{G_{i}, g_{i}}\left(\rho_{i}+\rho_{i}^{\prime}\right) ; \rho_{1}, \cdots, \rho_{s}, \rho_{1}^{\prime}, \cdots, \rho_{u}^{\prime}, 0, \cdots, 0, \tau_{1}, \cdots, \tau_{l}\right) \tag{3.3}\\
& K_{P}=\left[1-A_{j} ; 0, \cdots, 0,0, \cdots, 0,0, \cdots, 0,1, \cdots, 1\right]_{1, P} \tag{3.4}
\end{align*}
$$

$K_{j}=\left[1+\sigma_{j}-\sum_{i=1}^{v} \eta_{G_{i}, g_{i}}\left(\lambda_{i}^{(j)}+\lambda_{i}^{\prime(j)}\right) ; \lambda_{j}^{(1)}, \cdots, \lambda_{j}^{(s)}, \lambda_{j}^{\prime(1)} \cdots, \lambda_{j}^{\prime(u)}, 0 \cdots, 1, \cdots, 0, \zeta_{j}^{\prime}, \cdots, \zeta_{j}^{(l)}\right]_{1, k}$
$L_{1}=\left(1-\alpha-\beta-\sum_{i=1}^{v} \eta_{G_{i}, g_{i}}\left(\mu_{i}+\mu_{i}^{\prime}+\rho_{i}+\rho_{i}^{\prime}\right) ; \mu_{1}+\rho_{1}, \cdots, \mu_{s}+\rho_{s}, \mu_{1}^{\prime}+\rho_{1}^{\prime}, \cdots, \mu_{u}^{\prime}+\rho_{u}^{\prime}\right.$,
$\left.1, \cdots, 1, v_{1}+\tau_{1}, \cdots, v_{l}+\tau_{l}\right)$
$L_{Q}=\left[1-B_{j} ; 0, \cdots, 0,0, \cdots, 0,0, \cdots, 0,1 \cdots, 1\right]_{1, Q}$
$L_{j}=\left[1+\sigma_{j}-\sum_{i=1}^{v} \eta_{G_{i}, g_{i}}\left(\lambda_{i}^{(j)}+\lambda_{i}^{\prime(j)}\right) ; \lambda_{j}^{(1)}, \cdots, \lambda_{j}^{(s)}, \lambda_{j}^{\prime(1)} \cdots, \lambda_{j}^{\prime(u)}, 0 \cdots, 0, \zeta_{j}^{\prime}, \cdots, \zeta_{j}^{(l)}\right]_{1, k}$
$P_{1}=(b-a)^{\alpha+\beta-1}\left\{\prod_{j=1}^{h}\left(a f_{j}+g_{j}\right)^{\rho_{j}}\right\}$
$B_{u, v}=(b-a)^{\sum_{i=1}^{v}\left(\mu_{i}+\mu_{i}^{\prime}+\rho_{i}+\rho_{i}^{\prime}\right) \eta_{G_{i}, g_{i}}}\left\{\prod_{j=1}^{h}\left(a f_{j}+g_{j}\right)^{-\sum_{i=1}^{v}\left(\lambda_{i}+\lambda_{i}^{\prime}\right) \eta_{g_{i}, h_{i}}}\right\} G_{v}$
where $G_{v}=\psi\left(\eta_{G_{1}, g_{1}}, \cdots, \eta_{G_{v}, g_{v}}\right) \times \xi_{1}\left(\eta_{G_{1}, g_{1}}\right) \cdots \xi_{v}\left(\eta_{G_{v}, g_{v}}\right)$
$\psi_{1}, \xi_{i}, i=1, \cdots, v$ are defined respectively by (1.2) and (1.3)
$B_{u}=\frac{(-L)_{h_{1} R_{1}+\cdots+h_{u} R_{u}} B\left(E ; R_{1}, \cdots, R_{u}\right)}{R_{1}!\cdots R_{u}!}$
$V_{1}=V ; V^{\prime} ; 1,0 ; \cdots ; 1,0 ; 1,0 ; \cdots ; 1,0 ; W_{1}=W ; W^{\prime} ; 0,1 ; \cdots ; 0,1 ; 0,1 ; \cdots ; 0,1$
$C_{1}=C ; C^{\prime} ;(1,0), \cdots,(1,0) ;(1,0), \cdots,(1,0) ; D_{1}=D ; D^{\prime} ;(0,1), \cdots,(0,1) ;(0,1), \cdots,(0,1)$
We have the general Eulerian integral
$\int_{a}^{b}(t-a)^{\alpha-1}(b-t)^{\beta-1} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{\sigma_{j} \aleph}\left(\begin{array}{c}\mathrm{z}^{\prime \prime}{ }_{1}(t-a)^{\mu_{1}+\mu_{1}^{\prime}}(b-t)^{\rho_{1}+\rho_{1}^{\prime}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{(1)}-\lambda_{j}^{\prime(1)}} \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{z}^{\prime \prime}{ }_{v}(t-a)^{\mu_{v}+\mu_{v}^{\prime}}(b-t)^{\rho_{v}+\rho_{v}^{\prime}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{(v)}-\lambda_{j}^{\prime(v)}}\end{array}\right)$
$\aleph\left(\begin{array}{c}\mathrm{z}_{1}(t-a)^{\mu_{1}}(b-t)^{\rho_{1}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{(1)}} \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{z}_{r}(t-a)^{\mu_{r}}(b-t)^{\rho_{r}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{(r)}}\end{array}\right) \aleph\left(\begin{array}{c}\mathrm{z}_{1}(t-a)^{\mu_{1}^{\prime}}(b-t)^{\rho_{1}^{\prime}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime(1)}} \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{z}_{s}(t-a)^{\mu_{s}^{\prime}}(b-t)^{\rho_{s}^{\prime}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime(s)}}\end{array}\right)$
${ }_{P} F_{Q}\left[\left(A_{P}\right) ;\left(B_{Q}\right) ;-\sum_{i=1}^{l} z_{i}^{\prime \prime}(t-a)^{v_{i}}(b-t)^{\tau_{i}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\zeta_{j}^{(i)}}\right] \mathrm{d} t=(b-a)^{\alpha+\beta-1}$
$=P_{1} \frac{\prod_{j=1}^{Q} \Gamma\left(B_{j}\right)}{\prod_{j=1}^{P} \Gamma\left(A_{j}\right)} \sum_{h_{1}=1}^{M_{1}} \cdots \sum_{h_{v}=1}^{M_{v}} \sum_{k_{1}=0}^{\infty} \cdots \sum_{k_{v}=0}^{\infty} \sum_{R_{1}, \cdots, R_{u}=0}^{h_{1} R_{1}+\cdots h_{u} R_{u} \leqslant L} \prod_{i=1}^{v} z_{i}^{\prime \prime \prime \eta_{h_{i}, k_{i}}} \prod_{k=1}^{u} z^{\prime \prime R_{k}} B_{u} B_{u, v}$

Provided that
(A) $a, b \in \mathbb{R}(a<b) ; \mu_{i}, \rho_{i}, \mu_{j}^{\prime}, \rho_{j}^{\prime} \lambda_{v}^{(i)} ; \lambda_{v}^{\prime(j)} \in \mathbb{R}^{+}, f_{i}, g_{j}, \tau_{v}, \sigma_{j} \in \mathbb{C}(i=1, \cdots, r ; j=1, \cdots ; s ; v=1, \cdots, k)$
(B) See I
(C) $\max _{1 \leqslant j \leqslant k}\left\{\left|\frac{(b-a) f_{i}}{a f_{i}+g_{i}}\right|\right\}<1$
(D) $\operatorname{Re}\left[\alpha+\sum_{i=1}^{r} \mu_{i} \min _{1 \leqslant j \leqslant m_{i}} \frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}+\sum_{i=1}^{s} \mu_{i}^{\prime} \min _{1 \leqslant j \leqslant m_{i}^{\prime}} \frac{b_{j}^{(i)}}{\beta_{j}^{(i)}}\right]>0$

$$
\operatorname{Re}\left[\beta+\sum_{i=1}^{r} \rho_{i} \min _{1 \leqslant j \leqslant m_{i}} \frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}+\sum_{i=1}^{s} \rho_{i}^{\prime} \min _{1 \leqslant j \leqslant m_{i}^{\prime}} \frac{b_{j}^{(i)}}{\beta_{j}^{(i)}}\right]>0
$$

(E) $U_{i}^{(k)}=\sum_{j=1}^{\mathfrak{n}} \alpha_{j}^{(k)}+\tau_{i} \sum_{j=\mathfrak{n}+1}^{p_{i}} \alpha_{j i}^{(k)}+\sum_{j=1}^{n_{k}} \gamma_{j}^{(k)}+\tau_{i}(k) \sum_{j=n_{k}+1}^{p_{i}(k)} \gamma_{j i(k)}^{(k)}-\tau_{i} \sum_{j=1}^{q_{i}} \beta_{j i}^{(k)}-\sum_{j=1}^{m_{k}} \delta_{j}^{\prime}(k)$

$$
-\tau_{i(k)} \sum_{j=m_{k}+1}^{q_{i}(k)} \delta_{j i(k)}^{(k)} \leqslant 0
$$

$$
U_{i}^{\prime(k)}=\sum_{j=1}^{n^{\prime}} \mu_{j}^{(k)}+\iota_{i} \sum_{j=n^{\prime}+1}^{p_{i}^{\prime}} \mu_{j i}^{(k)}+\sum_{j=1}^{n_{k}^{\prime}} \alpha_{j}^{(k)}+\iota_{i}(k) \sum_{j=n_{k}^{\prime}+1}^{p_{i}^{\prime}(k)} \alpha_{j i(k)}^{(k)}-\iota_{i} \sum_{j=1}^{q_{i}^{\prime}} v_{j i}^{(k)}-\sum_{j=1}^{m_{k}^{\prime}} \beta_{j}^{(k)}
$$

$$
-\iota_{i}(k) \sum_{j=m_{k}^{\prime}+1}^{q_{i}^{\prime}(k)} \beta_{j i(k)}^{(k)} \leqslant 0
$$

(F) $A_{i}^{(k)}=\sum_{j=1}^{\mathfrak{n}} \alpha_{j}^{(k)}-\tau_{i} \sum_{j=\mathfrak{n}+1}^{p_{i}} \alpha_{j i}^{(k)}-\tau_{i} \sum_{j=1}^{q_{i}} \beta_{j i}^{(k)}+\sum_{j=1}^{n_{k}} \gamma_{j}^{(k)}-\tau_{i(k)} \sum_{j=n_{k}+1}^{p_{i}(k)} \gamma_{j i}^{(k)}$
$+\sum_{j=1}^{m_{k}} \delta_{j}^{\prime(k)}-\tau_{i(k)} \sum_{j=m_{k}+1}^{q_{i}(k)} \delta_{j i^{(k)}}^{(k)}>0$
$B_{i}^{(k)}=\sum_{j=1}^{n^{\prime}} \mu_{j}^{(k)}-\iota_{i} \sum_{j=n^{\prime}+1}^{p_{i}^{\prime}} \mu_{j i}^{(k)}-\iota_{i} \sum_{j=1}^{q_{i}^{\prime}} v_{j i}^{(k)}+\sum_{j=1}^{n_{k}^{\prime}} \alpha_{j}^{(k)}-\iota_{i}(k) \sum_{j=n_{k}^{\prime}+1}^{p_{i}^{\prime}(k)} \alpha_{j i^{(k)}}^{(k)}$
$+\sum_{j=1}^{m_{k}^{\prime}} \beta_{j}^{(k)}-\iota_{i}(k) \sum_{j=m_{k}^{\prime}+1}^{q_{i}^{\prime}(k)} \beta_{j i(k)}^{(k)}>0$
(G) $\left|\arg \left(z_{i} \prod_{j=1}^{h}\left(p_{j} t+q_{j}\right)^{-\lambda_{j}^{(i)}}\right)\right|<\frac{1}{2} A_{i}^{(k)} \pi, A_{i}^{(k)}$ is defined by (1.12) and
$\left|\arg \left(z_{i}^{\prime} \prod_{j=1}^{h}\left(p_{j} t+q_{j}\right)^{-\lambda_{j}^{\prime(i)}}\right)\right|<\frac{1}{2} B_{i}^{(k)} \pi, B_{i}^{(k)}$ is defined by $($
(H) $P \leqslant Q+1$. The equality holds, when , in addition,
either $P>Q$ and $\left|z_{i}^{\prime \prime}\left(\prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\zeta_{j}^{(i)}}\right)\right|^{\frac{1}{Q-P}}<1 \quad(a \leqslant t \leqslant b)$
or $P \leqslant Q$ and $\max _{1 \leqslant i \leqslant k}\left[\left|\left(z_{i}^{\prime \prime} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\zeta_{j}^{(i)}}\right)\right|\right]<1 \quad(a \leqslant t \leqslant b)$
(I) The multiple series occuring on the right-hand side of (3.14) is absolutely and uniformly convergent.

Proof

First expressing the multivariable Aleph-function in serie with the help of (1.6) and we interchange the order of summations and t-integral (which is permissible under the conditions stated). expressing the Aleph-function of svariables and u-variables by the Mellin-Barnes contour integral with the help of the equation (1.8) and (1.20) respectively, the generalized hypergeometric function ${ }_{P} F_{Q}($.$) in Mellin-Barnes contour integral with the help of (2.1).$ and interchange the order of integrations which is justifiable due to absolute convergence of the integral involved in the process. Now collect the power of $\left(f_{j} t+g_{j}\right)$ with $j=1, \cdots, k$ and use the equations (2.1) and (2.2) and we obtain $k-$ Mellin-Barnes contour integral. Interpreting $(r+s+k+l)$-Mellin-barnes contour integral to multivariable Alephfunction, we obtain the desired result.

4. Particular case

$\tau, \tau_{(1)}, \cdots, \tau_{(r)}, \iota, \iota_{(1)}, \cdots, \iota_{(u)} \rightarrow 1$, the Aleph-function of r-variables and the Aleph-function of s-variables reduces respectively to I-function of r-variables and I-function of s-variables defined by Sharma et al [2],and we have : We have the general Eulerian integral
$\int_{a}^{b}(t-a)^{\alpha-1}(b-t)^{\beta-1} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{\sigma_{j} \aleph}\left(\begin{array}{c}\mathrm{z}^{\prime \prime}{ }_{1}(t-a)^{\mu_{1}+\mu_{1}^{\prime}}(b-t)^{\rho_{1}+\rho_{1}^{\prime}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{(1)}-\lambda_{j}^{\prime(1)}} \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{z}^{\prime \prime}{ }_{v}(t-a)^{\mu_{v}+\mu_{v}^{\prime}}(b-t)^{\rho_{v}+\rho_{v}^{\prime}} \\ \\ \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{(v)}-\lambda_{j}^{\prime(v)}}\end{array}\right)$
$I\left(\begin{array}{c}\mathrm{z}_{1}(t-a)^{\mu_{1}}(b-t)^{\rho_{1}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{(1)}} \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{z}_{r}(t-a)^{\mu_{r}}(b-t)^{\rho_{r}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{(r)}}\end{array}\right) I\left(\begin{array}{c}\mathrm{z}^{\prime}{ }_{1}(t-a)^{\mu_{1}^{\prime}}(b-t)^{\rho_{1}^{\prime}} \\ \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime(1)}} \\ \cdot \\ \cdot \\ \mathrm{z}_{s}(t-a)^{\mu_{s}^{\prime}}(b-t)^{\rho_{s}^{\prime}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime(s)}}\end{array}\right)$
${ }_{P} F_{Q}\left[\left(A_{P}\right) ;\left(B_{Q}\right) ;-\sum_{i=1}^{l} z_{i}^{\prime \prime}(t-a)^{v_{i}}(b-t)^{\tau_{i}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\zeta_{j}^{(i)}}\right] \mathrm{d} t=(b-a)^{\alpha+\beta-1}$

$$
=P_{1} \frac{\prod_{j=1}^{Q} \Gamma\left(B_{j}\right)}{\prod_{j=1}^{P} \Gamma\left(A_{j}\right)} \sum_{h_{1}=1}^{M_{1}} \cdots \sum_{h_{v}=1}^{M_{v}} \sum_{k_{1}=0}^{\infty} \cdots \sum_{k_{v}=0}^{\infty} \sum_{R_{1}, \cdots, R_{u}=0}^{h_{1} R_{1}+\cdots h_{u} R_{u} \leqslant L} \prod_{i=1}^{v} z_{i}^{\prime \prime \prime \eta_{h_{i}, k_{i}}} \prod_{k=1}^{u} z^{\prime \prime R_{k}} B_{u} B_{u, v}
$$

under the same notations and conditions that (3,14) with $\tau, \tau_{(1)}, \cdots, \tau_{(r)}, \iota, \iota_{(1)}, \cdots, \iota_{(u)} \rightarrow 1$

Remark

By the following similar procedure, the results of this document can be extented to product of any finite number of multivariable Aleph-functions.

5. Conclusion

In this paper we have evaluated a generalized Eulerian integral involving the product of two multivariable Alephfunctions, a expansion of a multivariable Aleph-function and a generalized hypergeometric function with general arguments. The formulae established in this paper is very general nature. Thus, the results established in this research work would serve as a key formula from which, upon specializing the parameters, as many as desired results involving the special functions of one and several variables can be obtained.

REFERENCES

[1] Saigo M. and Saxena R.K. Unified fractional integral formulas for the multivariable H-function I. J.Fractional Calculus 15 (1999), page 91-107.
[2] Sharma C.K.and Ahmad S.S.: On the multivariable I-function. Acta ciencia Indica Math , 1994 vol 20,no2, p 113116.
[3] Srivastava H.M. and Karlsson P.W. Multiple Gaussian Hypergeometric series. Ellis.Horwood. Limited. New-York, Chichester. Brisbane. Toronto , 1985.
[4] Srivastava H.M. and Manocha H.L : A treatise of generating functions. Ellis. Horwood.Series. Mathematics and Applications 1984, page 60
[5] H.M. Srivastava And R.Panda. Some expansion theorems and generating relations for the H-function of several complex variables. Comment. Math. Univ. St. Paul. 24(1975), p.119-137.

Personal adress : 411 Avenue Joseph Raynaud
Le parc Fleuri , Bat B
83140 , Six-Fours les plages
Tel : 06-83-12-49-68
Department : VAR
Country : FRANCE

