Resolvability in generalized double Topological Space

* R. Glory Deva Gnanam ** M. Murugalingam

Assistant Professor, * Department of Mathematics, C.S.I Jayaraj Annapackiam college, Nallur. Associate Professor (Rtd), ** Department of Mathematics, Thiruvalluvar college, Papanasam.

Abstract

In this paper the relationship between resolvability in generalized double topoligical spaces and pairwise resolvability in bigeneralized topological spaces has been studied.

1.Introduction:

In 1968 C.L. Chang [2] introduced the concept of fuzzy topological space. The concept of intuitionistic fuzzy set was introduced in 1986 by Atanassov [1] as a possible generalization of ordinary fuzzy sets. In 1997 coker [3] introduced the concept of intuitionistic fuzzy topological spaces as a generalization of fuzzy topological spaces. In 1989, Kandil introduced the concept of fuzzy bitopological space. The concepts of resolvability and irresolvability in a topological space were introduced and studied by E. Hewit in 1943.

2. Preliminaries

Now we introduce some basic definition. Throughout the paper by X we denote a non-empty set. In this section we shall present various fundamental definitions and proposition.

Definition 2.1 [4]

A double set A is an object having the form $A = \langle x, A_1, A_2 \rangle$ where A_1 and A_2 are subsets of X satisfying $A_1 \cap A_2 = \emptyset$. The set A_1 is called the set of members of A while A_2 is the set of non-members of A.

Throughout the remainder of this paper we use the simpler notation $A=(A_1,\ A_2)$ for a double set.

Definition 2.2 [4]

Let the double sets A and B on X be of the form $A=(A_1,\,A_2),\,B=(B_1,\,B_2)$ respectively. Furthermore, let $\{A_j\colon j\in J\}$ be an arbitrary family of double sets in X, where $A_j=(A_j^{\,(1)},\,A_j^{\,(2)})$. Then

- (a) $A \subseteq B$ if and only if $A_1 \subseteq B_1$ and $A_2 \supseteq B_2$
- (b) A = B if and only if $A \subseteq B$ and $B \subseteq A$
- (c) $\bar{A} = (A_2, A_1)$ denotes the complement of A
- (d) $\cap A_i = (\cap A_i^{(1)}, \cup A_i^{(2)})$

$$\begin{array}{ll} (e) & \cup A_j \!=\! (\cup A_j{}^{(1)}, \cap \! A_j{}^{(2)}) \\ (f) & \underline{\varphi} \!=\! (\varphi, X) \text{ and } \underline{X} \!=\! (X, \varphi) \end{array}$$

Definition 2.3 [5]

A generalized double topology on a set X is a family τ of double sets in X satisfying the following axioms

 $T_1: \underline{\phi}, \underline{X} \in \tau$

 $T_2: \bigcup G_j \in \tau$ for any arbitrary family $\{G_j: j \in J\}$

In this case the pair $(X,\,\tau)$ is called a generalized double topological space and double set in τ is known as a double open set. The complement \bar{A} of an double open set A in generalized double topological space is called a double closed set in X.

Definition 2.4 [5]

Let $(X, \ \tau)$ be generalized double topological space and $A=(A_1, A_2)$ be double set in X. Then the interior and closure of A are defined by

 $int \ (A) = \cup \ \{ \ G : G \ is \ a \ double \ open \ sets \\ in \ X \ and \ G \subset A \}$

 $cl\ (A) = \ \cap \ \{\ H \colon H \ is \ a \ double \ closed \ sets$ in X and A \subseteq H} respectively.

3. Comparison of resolvability in generalized double topology with bigeneralized topology: Definition: 3.1

A generalized topological space (X, T) is called resolvable if there exist a dense set A in (X, T) such that X - A is also a dense in (X, T) Otherwise (X, T) is called a irresolvable space.

Definition: 3.2

A bigeneralized topological space (X, T_1, T_2) is called a pair wise resolvable space if there exists a T_1 dense set A such that X - A is a T_2 dense set or a T_2 dense set B such that X - B is a T_1 dense set. Otherwise (X, T_1, T_2) is called a pair wise irresolvable space.

Definition: 3.3

A double set A in a generalized double topological space (X, T) is called dense if there exist no double closed set B such that $A \subset B \subset X$.

Definition: 3.4

A generalized double topological space (X, T) is said to be resolvable if there exists a dense double set A in (X, T) whose complement is also dense in (X, T).

Definition: 3.5

A generalized double topological space (X, T) is said to be irresolvable if it is not resolvable.

Theorem: 3.6

Let (X, T) be generalized double topological space. Let $T = \{ (A_i, B_i) \}$. Let $T_1 = \{ \text{Sets formed by the first co-ordinates of elements of } T \}$. ie, $T_1 = \{ A_i \}$. Then T_1 is a generalized topological space.

Proof:

Since (ϕ, X) and $(X, \phi) \in T$, $\phi, X \in T_1$.

Also T is closed under arbitrary union. Hence for any collection of open sets $\{ (A_i, B_i) \}$ in $T, \cup (A_i, B_i) = (\cup A_i, \cap B_i) \in T$. Therefore, $\cup A_i \in T_1$. Hence for any collection of $\{A_i\}$ in T_1 , $\cup A_i \in T_1$. ie, T_1 is closed under arbitrary union. Hence T_1 forms a generalized topological space.

Theorem: 3.7

Let (X, T) be generalized double topological space such that for any open set (A_i, B_i) , $A_i \neq \emptyset$. Let T_1 be the generalized topological space formed by the first co-ordinates. If (X, T_1) is resolvable then (X, T) is resolvable.

Proof:

Let $T = \{ (A_i, B_i) \}$ be the generalized double topology. Let (X, T_1) be resolvable where T_1 is the first co-ordinate generalized topology. Then there exist A such that A and X - A are dense in (X, T_1) .

Since A is dense in (X, T_1) , $\forall i$ and $X - A_i \neq X$, $A \not\subset X - A_i$ ie, $\forall i$ and $A_i \neq \emptyset$, $A \supseteq X - A_i$. But $A_i \cap B_i = \emptyset$ $\forall i$, so $B_i \subseteq X - A_i$ $\forall i$. That implies $\forall i$ and $B_i \neq X$, $A \supseteq B_i$. Therefore, $(A, B) \not\subset (B_i , A_i)$ $\forall i$ and $B_i \neq X$ and for any B such that $A \cap B = \emptyset$.

Hence (A, B) is dense in (X, T).

Now, since X-A is dense in (X,T_1) , $\forall i$ and $X-A_i\neq X,\, X-A\not\subset X-A_i$.ie, $\forall i$ and $A_i\neq \emptyset,\, X-A\supseteq X-A_i$ ie, $A\subseteq A_i$. Hence $\forall i$ and $A_i\neq \emptyset,\, A\supseteq A_i$. Hence $(B,A)\not\subset (B_i,A_i)$ $\forall i$ and $A_i\neq \emptyset$ Hence (B,A) is dense in (X,T). Therefore, (X,T) is resolvable.

Result: 3.8

The converse of the above theorem is not true.

Let $X = \{a, b, c\}$. Let $T = \{ \phi, (\{c\}, \{a\}), (\{a, b\}, \{c\}), \underline{X} \}$ Clearly T is generalized double topological space. Here (X, T) is resolvable space.

But (X, T_1) is not resolvable.

Result: 3.9

Theorem 3.7 is not true when there is an open set $(A_1, A_2) \neq (\phi, X)$ such that $A_1 = \phi$ consider the following example.

Let $X = \{a, b\}$ and $T = \{\underline{\phi}, (\phi, \{a\}), \underline{X}\}$. Here $T_1 = \{\phi, X\}$. Hence (X, T_1) is obviously resolvable. But (X, T) is a irresolvable space.

Theorem: 3.10

Let (X, T) be a generalized double topological space. Let $T = \{(A_i, B_i)\}$. Let $T_2 = \{$ sets formed by complement of second co-ordinate of elements of T) ie, $T_2 = \{X - B_i\}$. Then T_2 forms a generalized topology.

Proof:

Since (ϕ, X) and $(X, \phi) \in T$, $X, \phi \in T_2$. For any arbitrary collection of sets $\{X - B_i\}$ in T_2 . $\cup \{X - B_i\} = X - \cap B_i$. Since T is closed under arbitrary union, $\cup (A_i, B_i) = (\cup A_i, \cap B_i) \in T$. Hence $X - \cap B_i \in T_2$. Therefore T_2 is closed under arbitrary union. Hence T_2 is a generalized topology.

Theorem: 3.11

Let (X, T) be generalized double topological space. Let T_2 be the generalized topology formed by the complement of second co-ordinates of T. If (X, T_2) is resolvable then (X, T) is resolvable.

Proof:

Let $T = \{(A_i, B_i)\}$ be the generalized double topology. Let T_2 be the second coordinate generalized topology and (X, T_2) be resolvable. Then there exist a set A such that A and X - A are dense in (X, T_2) .

Since A is dense in (X, T_2) , $\forall i$ and $B_i \neq X$, $A \not\subset B_i$ Therefore $\forall i$ and $B_i \neq X$, $(A, X - A) \not\subset (B_i, A_i)$. Therefore (A, X - A) is dense in (X, T) Also since X - A is dense in (X, T_2) , X

 $-A \not\subset B_i \ \forall i \text{ and } B_i \neq X.$

Therefore $(X - A, A) \not\subset (B_i, A_i)$. Hence (X, T) is resolvable.

Result: 3.12

(X, T) is resolvable does not imply that (X, T_2) is resolvable, where T_2 is the generalized

topology formed by the complement of second components of T. Consider the example.

Let $X = \{a, b, c\}$ Let $T = \{\underline{\phi}, \underline{X}, (\{c\}, \{b\}), (\{a, b\}, \{c\}), (\{c\}, \{a\}), (\{c\}, \{\phi\})\}$

Here $(X,\,T)$ is resolvable. But $(X,\,T_2)$ is irresolvable

Definition: 3.13

The Let (X, T) be generalized double topological space. Then (X, T_1, T_2) is called the induced bigeneralized topological space where T_1 and T_2 are generalized topologies formed by the first and the complement of second co-ordinates of T respectively.

Theorem: 3.14

Let (X, T) be an generalized double topological space where $T = \{(A_i, B_i)\}$ such that for any non – empty open set (A_i, B_i) , $A_i \neq \emptyset$. If the induced bigeneralized topological space (X, T_1, T_2) is pair wise resolvable, then (X, T) is resolvable.

Proof:

Let the induced bigeneralized topological space (X, T_1, T_2) be pair wise resolvable. Then there exist a dense set A in T_1 such that X-A is dense in T_2 . ie, $\forall i$ and $X-A_i \neq X$, $A\supset X-A_i$ And $\forall i$ and $B_i\neq X$, $X-A\supset B_i$. Hence $\forall i$ and $A_i\neq \varphi$ and $B_i\neq X$, $(X-A,A)\not\subset (B_i,A_i)$. Therefore, (X-A,A) is dense in (X,T)

Also $\forall i$ and X - $A_i \neq X$, $A \supset X - A_i$ Moreover $A_i \cap B_i = \emptyset$. Therefore $B_i \subseteq X$ - A_i Hence $\forall i$ and X - $A_i \neq X$, $A \supseteq B_i$. So (A, X - A) $\not\subset (B_i, A_i)$, $\forall i$ Hence (A, X - A) is dense in (X, T). Therefore, (X, T) is resolvable space.

Result: 3.15

converse of the above theorem is not true. For the example, Let $X = \{a, b, c\}$

Let $T = \{\phi, X, (\{c\}, \{b\}), (\{a, b\}, \{c\}), (\{c\}, \{a\}), (\{c\}, \phi\})$. Here (X, T) is resolvable, but (X, T_1, T_2) is not pair wise resolvable.

Now to find the condition when the converse of the above theorem is true.

Theorem: 3.16

Let (X, T) be a resolvable space. Let (ρ, λ) be a double dense set whose complement is also dense. Let $T = \{(A_i, B_i)\}$ be the collection of open sets. If $A_i \subset \rho \subset B_i \ \forall i$ or $A_i \subset \lambda \subset B_i \ \forall i$ then (X, T_1, T_2) is pair wise resolvable.

Proof:

Let $A_i \subset \rho \subset B_i \ \forall i$. Since (ρ, λ) dense in $(X, T), (\rho, \lambda) \not\subset (B_i, A_i) \ \forall i$ Therefore $\ \forall i \ \rho \not\subset B_i \ \text{or} \ \lambda \supseteq A_i \ \text{ie}, \ \forall i \ \rho \supset B_i \ \text{or} \ \lambda \subset A_i$. But $\rho \subset B_i \ \forall i$. Hence $\lambda \subset A_i \ \forall i$. ie, $X - \lambda \supset X - A_i \ \forall i$. That implies $X - \lambda \not\subseteq X - A_i \ \forall i$. Hence $X - \lambda \ \text{is}$ dense in T_1 .

Now since (λ, ρ) is dense in (X, T), (λ, ρ) $\not\subset (B_i, A_i) \ \forall i$. Therefore $\forall i, \lambda \not\subseteq B_i \ \text{or} \ \rho \supseteq A_i$ ie, $\forall i, \lambda \supset B_i \ \text{or} \ \rho \subset Ai$. But $A_i \subset \rho \ \forall i \ \text{Hence} \ \lambda \supset B_i \ \forall i$. So λ is dense in T_2 . Hence (X, T_1, T_2) is pair wise resolvable.

The proof is similar if $A_i \subset \lambda \subset B_i \ \forall i$

References:

- [1] Atanassov, K. (1986): Intuitionistic fuzzy sets, fuzzy sets and system 20, 87
- [2] Chang, C.L. (1968): Fuzzy topological spaces J. Math. Anal. Appl., 24,182.
- [3] Coker, D. (1997): An introduction to intuitionistic fuzzy topological space, fuzzy sets and system, 88, 81.
- [4] Coker, D: A note on intuitionistic sets and intuitionistic points, Turkish J. Math. 20(3), 343 351, 1996.
- [5] Coker,D:An introduction to intuitionistic topological spaces, BUSEFAL 81, 51–56, 2000.