# A Procedure for Division by Some Small Primes 

Siddharth Grover

Class IB, 1B
The Shri Ram School, Moulsari Avenue,
Gurgaon, Haryana, India


#### Abstract

Abstact This note gives a procedure for division of a number by some small primes up to 151 .


## 1. Introduction.

While dealing with division in early school days, we are told that a positive integer $N$ is divisible by 3 (respectively 9 ) if and only if the sum of the digits forming the number is divisible by 3 (respectively 9). We are not normally told why this happens although there is a very valid reason behind it. In the same way we also learn that $N$ is divisible by 11 if and only if the sum and difference of the digits forming $N$ taken alternatively in order is divisible by 11.Divisibility of $N$ by 2 or 5 is simple. For 2 the digit in thr units place of $N$ is divisible by 2 while for 5 this digit has to be either 0 or 5 . In [2] there is given a procedure for the division of $N$ by 19. Proceeding on the lines of the procedure given in [2], we give procedures for division of $N$ by several small primes up to 151 .

## 2. The Procedure

Let $N$ be a positive integer, $x$ the number of tens (and mot the digit in the tens place) in it and $y$ be the digit in the units place in $N$. Then $N=10 x+y$. Let $p>1$ and $k$ be positive integers such that $p$ divides $10 k+1$.

Theorem 1. Let $N_{1}=x-k y$. Then $p$ divides $N$ if and only if $p$ divides $N_{1}$.
Proof. Observe that $N-10 N_{1}=10 x+y-10(x-k y)=(10 k+1) y$. Therefore $p$ divides $N-10 N_{1}$. Since $\operatorname{gcd}(10 k+1,10)=1$ and $p$ divides $10 k+1, \operatorname{gcd}(10, p)=1$. If $p$ divides $N$, then $p$ divides $N-\left(N-10 N_{1}\right)=10 N_{1}$ and, therefore, $p$ divides $N_{1}$. On the other hand, if $p$ divides $N_{1}$, then $p$ divides $N-10 N_{1}+10 N_{1}=N$.

Corollary 2.
(a) 31 divides $N$ if and only if 31 divides $x-3 y$;
(b) 41 divides $N$ if and only if 41 divides $x-4 y$;
(c) 17 divides $N$ if and only if 17 divides $x-5 y$;
(d) 61 divides $N$ if and only if 61 divides $x-6 y$;
(e) 71 divides $N$ if and only if 71 divides $x-7 y$;
(f) 101 divides $N$ if and only if 101 divides $x-10 y$;
(g) 37 divides $N$ if and only if 37 divides $x-11 y$;
(h) 131 divides $N$ if and only if 131 divides $x-13 y$;
(i) 47 divides $N$ if and only if 47 divides $x-14 y$;
(j) 151 divides $N$ if and only if 151 divides $x-15 y$;

Now suppose that $p>1, k$ are positive integers such that $p$ divides $10 k-1$. With $N, x, y$ as already stated, let $N_{2}=x+k y$. Proceeding precisely on the lines of proof of Theorem 1, we can also prove the following:

Theorem 3. The number $p$ divides $N$ if and only if $p$ divides $N_{2}$.

## Corollary 4.

(a) 29 divides $N$ if and only if 29 divides $x+3 y$;
(b) 13 divides $N$ if and only if 13 divides $x+4 y$;
(c) 7 divides $N$ if and only if 7 divides $x+5 y$;
(d) 59 divides $N$ if and only if 59 divides $x+6 y$;
(e) 79 divides $N$ if and only if 79 divides $x+8 y$;
(f) 89 divides $N$ if and only if 89 divides $x+9 y$;
(g) 109 divides $N$ if and only if 109 divides $x+11 y$;
(h) 17 divides $N$ if and only if 17 divides $x+12 y$
(i) 43 divides $N$ if and only if 43 divides $x+13 y$;
(j) 139 divides $N$ if and only if 139 divides $x+14 y$;
(k) 149 divides $N$ if and only if 1493 divides $x+15 y$.
3. Some Examples

As illustrations on the use of Theorems 1 and 3 or their corollaries and using recursive argument we decide the divisibility of some numbers by $17,37,29$ and 47 .

Example Decide if the number 8179341256 is divisible by (a) 17 , (b) 29, (c) 37 , (d) 47.
Solution. (a) Adding $12 \times$ (units digit) recursively, we get

$$
\begin{array}{rl}
N_{2}=817934 & 25+6 \times 12=817934197 \rightarrow 81793419+7 \times 12=81793503 \\
& \rightarrow 8179350+3 \times 12=8179386 \rightarrow 817938+6 \times 12=818010 \rightarrow 81801 \\
& \rightarrow 8180+1 \times 12=8192 \rightarrow 819+2 \times 12=843 \rightarrow 84+3 \times 12=120 \rightarrow 12
\end{array}
$$

Since the last value of $N_{2}$ is 12 which is not divisible by 17 , the given number is not divisible by 17.
(b) Adding $3 \times$ (units digit) recursively, we get
$N_{2}=817934125+6 \times 3=817934143 \rightarrow 81793414+3 \times 3=81793423 \rightarrow 8179342+$ $3 \times 3=8179351 \rightarrow 817935+1 \times 3=817938 \rightarrow 81793+8 \times 3=81817 \rightarrow 8181+7 \times$ $3=8202 \rightarrow 820+2 \times 3=826 \rightarrow 82+6 \times 3=100 \rightarrow 10$.

Since the last value of $N_{2}$ is10 which is not divisible by 29, the given number is not divisible by 29.
(c) Subtracting $11 \times$ (units digit) recursively, we get

$$
\begin{array}{rl}
N_{1}=8179341 & 25-6 \times 11=817934059 \rightarrow 81793405-9 \times 11=81793406 \\
& \rightarrow 8179340-6 \times 11=8179274 \rightarrow 817927-4 \times 11=817883 \\
& \rightarrow 81788-3 \times 11=81755 \rightarrow 8175-5 \times 11=8120 \rightarrow 812 \rightarrow 81-2 \times 11 \\
& =59 .
\end{array}
$$

The last value of $N_{1}$ is 59 which is not divisible by 37 . Therefore the given number is not divisible by 37.
(d) Subtracting $14 \times$ (units digit) recursively, we get

$$
\begin{array}{rl}
N_{1}=817934 & 125-6 \times 14=817934041 \rightarrow 8179340-1 \times 14=8179326 \\
& \rightarrow 817932-6 \times 14=817848 \rightarrow 81784-8 \times 14=81672 \\
& \rightarrow 8167-2 \times 14=8139 \rightarrow 813-9 \times 14=687 \rightarrow 68-7 \times 14=-30 .
\end{array}
$$

The last value of $N_{1}$ is -30 which is not divisible by 47 . Therefore the given number is not divisible by 47.

The procedure of division as discussed above involves multiplication of a single digit number by a number of 1 or 2 digits and then addition of the result in a number. The processes of addition and (such a simple) multiplication are much simpler than the process of usual division. As such the procedures for checking divisibility given here are preferable to the usual process of division.

## References

1. I. Niven, H. S, Zuckerman and H. L. Montgomery, An Introduction to The Theory of Numbers, Wiley- India, 2010.
2. Ya. I. Perelman, Algebra Can be Fun, Mir Publishers, Moscow, 1979.
