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Abstract---This paper discusses some properties of solution curve of the Cauchy problem on the KdV 

equation by Lagrange coordinate, obtained the evolution consequence of monotonicity, concavity and the 

isolated extreme points. Namely under the enough smooth condition, the isolated extreme points , monotonicity 

and convexity of initial solution can be inherited to the solution curve at any 0t . 
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Introduction 

No matter in mathematical theories or application field ,the KdV equation is a very important equation. 

This equations are used to describe the shallow water wave phenomenon with small amplitude in physical 

systems.The background of the equation goes back to the concept of solitary wave is put forward .Solitary wave 

was first found by Russell in 1834 . Until 1895,Korteweg and de Vries researched the Shallow water wave and 

established a one-dimensional mathematical model under the assumption of small amplitude and the long wave 

approximation.The equation they established is 06  xxxxt  ,which is called the KdV equation. 

 Many important results on KdV equation had be obtained. In 1983,Kato proved that the 

 







0,

,,03

xu

Rtxuuuu xxt
 have only one solution    31 ;;  ss HITCHITCu  which was 

only decided by 
1

 （
s
means normH s  ）with  TIT ,0 , 0T in[1] . 

    Suppose  rA  is a Fréchet space if for some 00 r ,  0rA ,there is a 01 r  and the solution of 

problem  )(; 1rAITCu in [2]. 

 In 1970 ,Anders founded the KdV equation xxxxt uuuu   has only one solution if  xf  is a 

period function with the period 1 and   2Lxf xxx  ,where 0 ，    txutxu ,1,   and    xfxu 0,  

in [3]. 

 In 1991,Kenig,Ponce and Vega proved that the 
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   For the high order KdV equation and the discrete KdV equation ,researchers also get many results . Readers 

refer to see[5],[7] and [8]and those references within. 
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In 2011,Hannah，Himonas and Petronilho studied the regularity of period gKdV equation during the Gevrey 

space and the corresponding results are obtained, the norm of 
sG ,

is defined by 
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 in [9].   

On the other hand, by studying the relationship between the point on the curve and the time variable, we can 

obtain the evolution process of the solution curve or the solution surface with time. It is meaningful to 

understand the equations and its related problems. 

Gage proved that each level curve of evolution equation like       ,,, tNtktX t 

 

converges to a 

circle before disappearing in[10]. 

   Marcos and Ralph studied the curvature equation,which is given by 
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   The initial curve u(x,y,0) has a local isolated extremum (xm ,ym) and assume that the level curves near the 

extremum are closed and convex , then the solution u(x,y,t) admits a local extremum (xm(t),ym(t)) close 

to(xm ,ym)for any small t>0 in [11]. 

   In this paper ,we will study the following problem : 
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where (x,y) are the space variables and t the time variable. We will investigate the process of evolution of 

monotonicity, isolated extreme point and concavity of the solution curve. This discussion will be helpful for 

solving practical problem  

    In order to the accuracy and convenience, we first review the following concepts .    

Definition 1.1.The
0x is called maximum point(minimum point) of f  if   IhxUx   ,0 ，

   0xfxf  （or    0xfxf  ）,where I is the domain interval of function f . 

Definition 1.2.The U is called the monotone increasing interval of  xf  if Uxx  21, , 

21 xx  ,then    21 xfxf  . 

Definition1.3.The function f is called convex function if Ixx  21, ,  1,0  

        2121 11 xfxfxxf                                         )1(        



International Journal of Mathematics Trends and Technology (IJMTT) – Volume 43 Number 1- March 2017 

ISSN: 2231-5373             http://www.ijmttjournal.org               Page 22 

Conversely the function f is called concave function if Ixx  21, ,  1,0  

        2121 11 xfxfxxf                                          2  

where I is the interval of function f . 

    

In the next ,we will prove that under the assumption of sufficient smooth, the isolated extreme point,local 

monotonicity and local concavity of initial solution curve could be inherited at any t>0. 

 Theorem and proving 

    First , introduce following lemmas: 

Lemma 2.1[12] 
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Lemma 2.2.Assume  RHu 4
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Proof. Do product on the left of the first equation of  1.1  by 64 ,,,
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When 1tt  , use 1t  replace 0t ,so we have  
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Repeat the steps above, we find there always have  
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If  RHu 4

0  ,then  tzxyuw ,,,,  is bounded.  

In order to explain and understand the process of evolution of curve of KdV equation ,we will use 

Lagrange coordinates  
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Lemma 2.3    txytxy ,, 21  for any 0t if Rxx  21 . 

Proof. Because   txytutxyt ,,),(   
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Theorem 2.1 The monotonicity of   ttxyu ,, still hold on     txytxy ,,, 21 if )(0 xu  is monotone on 
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 21, xx  for any 0t ,where   ttxyu ,, is the solution of  1.1  and  RHu 4

0  . 

Proof. Assume  xu0 is monotonic increase on  21, xx , and
1s is the first time the monotonicity of 

  ttxyu ,, has changed on  21, xx .So  21, xxnm       1111 ,,,, ssnyussmyu 
. 
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Where    111

*

11

*

1 ,, ssUsss  .  

    This is contradictory to the hypothesis, so we know the monotonicity of   ttxyu ,, not change on 

 21, xx  at time
1s . That means the monotonicity of   ttxyu ,,  would never change on 

    txytxy ,,, 21  for any 0t  if  xu0 is monotone on  21, xx . 

Theorem 2.2.      ttxyuttxyu ,,,,0  （ or      ttxyuttxyu ,,,,0  ） if 

any  hxUx ,0

 ,    xuxu 000  （or  xuxu 000 )(  ）for any 0t ,where   ttxyu ,, is the solution of 

 1.1  and  RHu 4

0  . 

Proof. Assume 0x is an isolated maximum point of  xu0 .By the smoothness and continuity of )(0 xu  we 

know 1h ,  hxUx ,0

o ,  000 )( xuxu  ,  xu0  is increasing on  00 , xhx  ,and decreasing on 
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 hxx 00 , .Then from lemma 2.3 and theorem 2.1 we know the monotonicity of   ttxyu ,,  on 

    txythxy ,,, 00   and     thxytxy ,,, 00   will not change. So for any 0t , 

 hxUx ,0

o ,  txy ,0  still be an isolated maximum point of   ttxyu ,,  on 

    thxythxy ,,, 00  . 

   From theorem 2.1 and theorem 2.2 we know the isolated extreme point of initial curve will not change at 

any 0t . 
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   tTzxyuw  1,,,, ,                                                  12  

where    11111 ,, TTUTTT  .
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    This is contradictory to the hypothesis, so we know the concavity of   ttxyu ,, not change on  21, xx  

at time 1T . That means the concavity of   ttxyu ,,  would never change on     txytxy ,,, 21 for any 

0t  if  xu0 is convex on  21, xx ,. 

This paper discuss the evolution of geometric properties of KdV equation by Lagrange coordinates , 

explains how would the solution curve change .  
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