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Abstract. This paper deals with the asymptotic and oscillatory properties of solutions of a class of second order non-

linear damped neutral difference equations of the form 

 

where  is a ratio of positive odd integers, ,  and  

are sequences of real numbers,  and  are integers, and  is a real valued continuous function. We 

established some new sufficient conditions under which every solution of   is either oscillatory or tends to zero as 

. The results are illustrated with examples. 
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1.  Introduction  

In this paper, we deals with the asymptotic and oscillatory properties of a class of second order nonlinear 

damped neutral difference equations of the form 

 

where 

 

is the forward difference operator defined by  is a ratio of positive odd integers, 

,  and  are sequences of real numbers, and  is a real valued continuous 

function with  for  

 Throughout this paper, the following conditions are assumed to be hold: 

 is a sequence of nonnegative real number and there exist a constant  such       

that ; 

 is a sequence of positive real numbers; 

 is a sequence of real numbers such that ,       

 is a sequence of nonnegative real numbers and   is not identically zero   

for all sufficiently large n; 

 where      
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There exist a constant  such that  for all  where  is a ratio of   

               positive odd integers with  

      is a nonnegative integer and  is an integers. 

By a solution of (1.1), we mean a real sequence which is defined for  

and satisfies (1.1) for  . We consider only such solution which are nontrivial for all large . A solution  

of (1.1) is said to be nonoscillatory if the terms  of the sequence are eventually positive eventually negative. 

Otherwise it is called oscillatory. 

Recently, neutral delay difference equations, that is, difference equations in which the highest order 

difference of the unknown sequence appears both with and without delays, have considerable attention in the study 

of qualitative properties of these equations. The problem of asymptotic and oscillatory properties of solutions of 

neutral difference equations is of both theoretical and practical interest. One reason for this is that they arise, for 

example, in applications to electric networks containing lossless transmission lines such networks appear in 

highspeed computers where lossless transmission lines are used to inter connect switching circuits. They also occur 

in problems dealing with vibrating masses attached to an elastic bar and in the solution of variational problems with 

time delays. 

On reviewing the literature, it becomes apparent that most results concerning the oscillation of all solutions 

of (1.1) are for the special case when  Regarding the oscillation of undamped neutral difference equations, 

that is, special case of (1.1) with , many papers have been published for different cases of  such as 

      and . We refer the reader to [3, 4, 7, 11, 18] and the 

references cited therein as examples of recent results on this topic. 

In [9], we established sufficient conditions under which every solution of (1.1) is either oscillatory or tends 

to zero and derived sufficient conditions for oscillation of all bounded solutions of (1.1) for the case 

 and . 

Saker et al. [20] established sufficient conditions which ensures oscillation of all solutions of the equation 

(1.1) for the case  and . 

Tunc et al. [19] consider the following second order nonlinear damped neutral differential equation of the 

form 

 

and they established sufficient conditions under which every solution of (1.3) is either oscillatory or tends to zero as 

. Motivated by the above observations, we establish sufficient conditions under which every solution of (1.1) 

is either oscillatory or tends to zero as .. Our obtained results are discrete analogues of the some well-known 

results due to [19]. For the general background of difference equations, one can refer to the papers [8, 10, 12-15, 17, 

21], monographs [1, 2, 5] and references cited therein. 
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2. Main Results 

  To simplify the formulation of our results, we will use the following notations: 

 

 

 

Also for any sequence we get 

. 

The following lemmas are very useful to prove our main results. 

Lemma 2.1. [6]. If A and B are nonnegative and  then 

 

where the equality holds if and only if   

Lemma 2.2. [6] If  and B are positive real numbers and  then 

 

or 

 

There is obviously equality when  or  

Theorem 2.3. Assume that there exist a positive sequence  such that for all sufficiently large  and for 

, 

 

with  then every solution of (1.1) is either oscillatory or tends to zero. 

 

Proof. Let  be a nonoscillatory solution of (1.1). Without loss of generality we may suppose that   is an 

eventually positive solution of (1.1). Then there exist an integer  such that 

 

Multiplying (1.1) by  we have 

 

which implies that 

 

so  is eventually decreasing sequence, say for We claim that 

 

 If this is not so, then there exists  such that  In view of (2.7), there is  such that 
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Hence 

 

from which it follows that 

 

In view of  and  , we follows that 

 

Thus, there are two cases to consider. 

 Case 1: If { is unbounded, then there exists a sequence  such that 

  and ,  , where  

 

Then from (1.2), we have 

 

 

 

which  contradicts (2.11). 

 Case 2: If  is bounded, then, in view of the definition of  and the fact that , 

it follows that  is bounded, which again contradicts (2.11). Thus, in view of Cases 1 and 2, we conclude that 

(2.8) holds. 

Hence from (2.7) and (2.8) and the definition of , we conclude that there exists such that, 

for , either 

 

 

 

or 

 

 

 

Assume that (2.13) holds. We note that  and set 

 

Then  for  and, form (1.1) and (2.15) we obtain 
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By using Lemma 2.2, we have 

 

Using (2.17) and (2.16), we get 

 

 

 

 

 

 

 

 

In view of the fact that  for  it follows from (2.19) that 

 

 

 

Since  is nonincreasing, we see that 

 

 

 

 

from which it follows that  
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Using the fact that  is eventually decreasing for  we have 

 

and  thus we have, for all   that 

 

 

 

 

 

holds, where . Using (2.21) and (2.23) in (2.20) we obtain  

 

where  

 Now if  in view of the fact that  is increasing, we have 

 

Using (2.25) in (2.24), we get 

 

Now, if  we can choose  such that  for all . Thus from the fact that 

 is eventually decreasing, we have 

 

 

 

that is  
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Again 

 

 

 

that is, 

 

From (2.28) and (2.30), we have 

 

or  

 

Using (2.31) in (2.24), we see that 

 

Combining (2.26) and (2.32), we see that 

 

Summing the inequality (2.33) from  to , yields 

 

which contradicts condition (2.5). 

 Now, let (2.14) hold. In view of  and , we have 

 

where  is a constant, and so  is bounded for sufficiently large  We assert that  is also bounded. 

Otherwise if  is unbounded, then there exists a sequence   such that  and 

, where is defined by (2.12) and so, from the definition of  and  , we see that 

 

 

which contradicts the fact that for , and so  is bounded. Therefore, we have 

 

If , then there exists a sequence  such that  and  Let 

 then for all large , we have  From this and the definition of , we obtain 
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which contradicts the fact that , and hence . Now, in view of the fact that , 

we conclude that , which completes the proof of Theorem 2.3. 

 

Theorem 2.4. If there exists a positive sequence  such that for all sufficiently large  and for  

 

where   then every solution of (1.1) is either oscillatory or tends to zero. 

 

Proof. Let  be a nonoscillatory solution of (1.1). Without loss of generality, we may suppose that  is an 

eventually positive. Then there exist an integer  such that 

 

Proceeding as in the proof of Theorem 2.3, we see that (2.13) or (2.14) holds. If (2.13) holds, as in the proof of 

Theorem 2.3, we obtain (2.17), (2.20), (2.21), (2.23), (2.25) and (2.31). Using (2.15) and (2.31) in (2.17), we have,  

 

 

Using (2.15), (2.23),  and the fact that  in the middle term of the right hand side of (2.41), we 

have 

 

 

or  

 

 

for  where . Letting  
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and  in Lemma 2.1, (2.42) implies 

 

 

Summing the above inequality from  to , we have 

 

which contradicts condition (2.39). 

 Finally, if (2.14) holds, proceeding as in the proof Theorem 2.3, we see that , which 

completes the proof of Theorem 2.4. 

Theorem 2.5. Assume that  Suppose that there exists a positive sequence such that for all 

sufficiently large  and for  

 

where   then every solution of (1.1) is either oscillatory or tends to zero. 

 

Proof. Let  be a nonoscillatory solution of (1.1). Without loss of generality, we may suppose that  is an 

eventually positive. Then there exist an integer  such that 

 

Proceeding as in the proof of Theorem 2.3 and 2.4, we see that (2.13) or (2.14) holds. If (2.13) holds, as in the proof 

of Theorem 2.4, we obtain (2.42) which can be rewritten as 

 

 

for . From (2.15), we have 
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From (2.21), we have 

 

From (2.23) and the fact that , we obtain, 

 

Substituting (2.49) and (2.50) into (2.48), we have 

 

Using (2.51) in (2.47), we obtain 

 

 

Completing sequence with respect to , it follows from (2.52), that 

 

Summing the last inequality from  to , we obtain 

 

which contradicts condition (2.45). 

 Finally, if (2.14) holds, proceeding as in the proof of Theorem 2.3, we see that , which 

completes the proof of Theorem 2.4. 

Remark 2.6. If , then we have  in Theorem 2.3-2.5. 

 

3. Examples 

Examples 3.1.  Consider the following second order neutral advanced difference equation of the form 

 

Clearly, we have       and ,  

 Also we can see that 
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and 

 

Choose then  Now, 

 

 

 

which implies that by Theorem 2.3, every solution of (3.1) is either oscillatory to tends to zero. 

 

Example 3.2. Consider the following second order neutral delay difference equation 

 

 

Here , we have          and  Let 

us choose  Then  Now 

 

Also, 

 

 

Now 

 

Now we can show that 

 

 

Then by Theorem 2.4 every solution of (3.2) is either oscillatory or teds to zero. 
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