On characterization of fuzzy η -continuous functions where $\eta \in \{\alpha, p, q, \text{ semi, pre, }\beta, strongly pre\}_{G.Sutha^1, P.Thangavelu2}$

G.Sutha⁺, P. I hangavelu2 ¹Department of Mathematics, Govindammal Aditanar College for Women, Tiruchendur-628215, India ²Ramanujam Centre for Mathematical Sciences, Thiruppuvanam-630611, India

Abstract

In this paper we characterize the C-fuzzy α -continuous function, C-fuzzy p-continuous function, C-fuzzy qcontinuous function, C-fuzzy semi-continuous function, C-fuzzy pre-continuous function, C-fuzzy β -continuous function and C-fuzzy strongly pre-continuous function.

Mathematical Subject Classification 2010: 54A40, 3E72.

Key Words: Fuzzy topology, C-fuzzy α -continuous, C-fuzzy p-continuous, C-fuzzy, q-continuous, C-fuzzy semicontinuous, C-fuzzy pre-continuous, C-fuzzy β -continuous and C-fuzzy strongly pre-continuous.

1. Introduction

Sutha.et. al. introduced and studied the concepts of C-fuzzy α -open sets, C-fuzzy semi-open sets, C-fuzzy pre-open sets, C-fuzzy β -open sets, C-fuzzy β -open sets, C-fuzzy β -closed sets, C-fuzzy α -closed sets, C-fuzzy semi-closed sets, C-fuzzy pre-closed sets, C-fuzzy β -closed sets and C-fuzzy strongly pre-closed sets. In this paper we characterize theC-fuzzy α -continuous function, C-fuzzy pre-continuous function, C-fuzzy β -continuous function, C-fuzzy semi-continuous function, C-fuzzy pre-continuous function, C-fuzzy pre-continuous function, C-fuzzy strongly pre-continuous function andC-fuzzy strongly pre-continuous function.

The concepts that are needed in this paper are discussed in the second section. The third section is devoted to applications of C-fuzzy α -open, C-fuzzy semi-open, C-fuzzy pre-open, C-fuzzy β -open, C-fuzzy strongly pre-open, C-fuzzy p-sets, C-fuzzy q-sets and C-fuzzy α -closed, C-fuzzy semi-closed, C-fuzzy pre-closed, C-fuzzy β -closed, C-fuzzy strongly pre-closedsets to fuzzy continuous functions.

Throughout this paper (X, τ) is a fuzzy topological space in the sense of Chang[4].

2. Preliminaries

Definition 2.1

Let (X,τ) be a fuzzy topological space. Then a fuzzy subset λ of X is called(i) fuzzy regular open in (X, τ) if *Int Cl* $\lambda = \lambda$ [1]

(ii) fuzzy α -open in (X, τ) if $\lambda \leq Int \ Cl \ Int \lambda[2]$

- (iii) fuzzy semi-open in (X, τ) if $\lambda \leq Cl Int\lambda[1]$
- (iv) fuzzy pre-open in (X, τ) if $\lambda \leq Int \ Cl \ \lambda[2]$

A fuzzy subset λ of a fuzzy topological space (X, τ) is said to befuzzy α -closed(resp. fuzzy semi closed, fuzzy pre closed) if $1-\lambda$ isfuzzy α -open(resp.fuzzy semi-open, fuzzy pre-open).

Definition 2.2

Let λ be a fuzzy subset of a fuzzy topological space (X, τ) . Let C: $[0, 1] \rightarrow [0, 1]$ be a complement function. Then λ

is

- (i) C-fuzzy α -open if C(λ) is fuzzy α -closed,
- (ii) C-fuzzy semi-open if $C(\lambda)$ is fuzzy semi-closed,
- (iii) C-fuzzy pre-open if $C(\lambda)$ is fuzzy pre-closed,
- (iv) C-fuzzy β -open if C(λ) is fuzzy β -closed,
- (v) C-fuzzy strongly pre-open if $C(\lambda)$ is fuzzy strongly pre-closed.[9]

Definition 2.3

Let λ be a fuzzy subset of a fuzzy topological space (X, τ) .

Let C: $[0, 1] \rightarrow [0, 1]$ be a complement function. Then λ is

- (i) C-fuzzy α -closed if C λ is fuzzy α -open,
- (ii) C-fuzzy semi-closed if $C\lambda$ is fuzzy semi-open,
- (iii) C-fuzzy pre-closed if $C\lambda$ is fuzzy pre-open,
- (iv) C-fuzzy β -closed if C λ is fuzzy β -open,
- (v) C-fuzzy strongly pre-closed set if C\u03c6 is fuzzy strongly pre-open set.[10]

Definition 2.4

Let λ be a fuzzy subset of a fuzzy topological space (X, τ) . Let C: $[0, 1] \rightarrow [0, 1]$ be a complement function. Then λ

is a

- (i) C-fuzzy p-set if $C(\lambda)$ is a fuzzy p-set,
- (ii) C-fuzzy q-set if $C(\lambda)$ is a fuzzy q-set.[11]

Definition 2.5

 $f: (X, \tau) \rightarrow (Y, \sigma)$ is called a fuzzy semi-continuous function if $f^{-1}(\mu)$ is a fuzzy semi-open subset of X for each fuzzy open subset μ of Y.[1]

Definition 2.6

 $f: (X, \tau) \rightarrow (Y, \sigma)$ is fuzzy α -continuous if the inverse image of every fuzzy open set in (Y, σ) is fuzzy α -open in (X, τ) . [2]

Definition 2.7

 $f: (X, \tau) \rightarrow (Y, \sigma)$ is called a fuzzy pre-continuous function if $f^{-1}(\mu)$ is a fuzzy pre-open set in (X, τ) for each fuzzy open set μ in (Y, σ) .[2]

Definition 2.8

 $f: (X, \tau) \rightarrow (Y, \sigma)$ is fuzzy β -continuous if the inverse image of every fuzzy open set in (Y, σ) is fuzzy β -open in (X, τ) . [5]

Definition 2.9

 $f: (X, \tau) \to (Y, \sigma)$ is fuzzy p-continuous if $f^{-1}(\mu)$ is a fuzzy p-set in (X, τ) for each fuzzy open set μ in (Y, σ) . [8]

Definition 2.10

 $f: (X, \tau) \to (Y, \sigma)$ is fuzzy q-continuous if $f^{-1}(\mu)$ is a fuzzy q-set in (X, τ) for each fuzzy open set μ in (Y, σ) . [8]

Definition 2.11

 $f: (X, \tau) \rightarrow (Y, \sigma)$ is called a fuzzy strongly pre-continuous function if $f^{-1}(\mu)$ is a fuzzy strongly pre-open set in (X, τ) for each fuzzy open set μ in (Y, σ) .[7]

3. Onfuzzy η-continuous functions

Theorem 3.1

Suppose $f: X \to Y$ be a mapping from a fuzzy topological space (X, τ) to a fuzzy topological space (Y, σ) and C: [0, 1] \to [0, 1] satisfies the involutive condition. Then f is fuzzy semi-continuous if and only if for every fuzzy open set λ in Y, C(f⁻¹(λ)) is C-fuzzy semi-closed in X.

Proof

Suppose f is fuzzy semi-continuous. Then by using Definition 2.5, $f^{-1}(\lambda)$ is fuzzy semi-open in X for every fuzzy open set λ in Y. Since C satisfies the involutive condition, $C(C(f^{-1}(\lambda)))$ is fuzzy semi-open in X. Then byDefinition 2.3(ii), $C(f^{-1}(\lambda))$ is C-fuzzy semi-closed. Conversly, assume that, $C(f^{-1}(\lambda))$ is C-fuzzy semi-closed in X for every fuzzy open set λ in Y. Again by Definition 2.3(ii), $C(C(f^{-1}(\lambda)))$ is fuzzy semi-open in X. Since C satisfies the involutivecondition, $f^{-1}(\lambda)$ fuzzy semi-open in X. Again by using Definition 2.5, f is fuzzy semi-continuous.

Theorem 3.2

Suppose $f: X \to Y$ be a mapping from a fuzzy topological space (X, τ) to a fuzzy topological space (Y, σ) and C: [0, 1] \to [0, 1] satisfies the involutivecondition. Then f is fuzzy α -continuous if and only if for every fuzzy open set λ in Y, C(f⁻¹(λ)) is C-fuzzy α -closed in X.

Proof

Suppose f is fuzzy α -continuous. Then by using Definition 2.6, f⁻¹(λ) is fuzzy α -open in X for every fuzzy open set λ in Y. Since C satisfies the involutivecondition, C(C(f⁻¹(λ))) is fuzzy α -open in X. Then by Definition 2.3(i), C(f⁻¹(λ)) is C-fuzzy α -closed in X. Conversly, assume that, C(f⁻¹(λ)) is C-fuzzy α -closed in X for every fuzzy open set λ in Y. Again by Definition 2.3(i), C(C(f⁻¹(λ))) is fuzzy α -open in X. Since C satisfies the involutive condition, f⁻¹(λ) fuzzy α -open in X. Again by using Definition 2.6, f is fuzzy α -continuous.

Theorem 3.3

Suppose $f: X \to Y$ be a mapping from a fuzzy topological space (X, τ) to a fuzzy topological space (Y, σ) and C: [0, 1] \to [0, 1] satisfies the involutivecondition. Then f is fuzzy pre-continuous if and only if for every fuzzy open set λ in Y, C(f⁻¹(λ)) is C-fuzzy pre-closed in X.

Proof

Suppose f is fuzzy pre-continuous. Then by using Definition 2.7, $f^{-1}(\lambda)$ is fuzzy pre-open in X for every fuzzy open set λ in Y. Since C satisfies the involutivecondition, $C(C(f^{-1}(\lambda)))$ is fuzzy pre-open in X. Then by Definition 2.3(iii), $C(f^{-1}(\lambda))$ is C-fuzzy pre-closed in X. Conversly, assume that, $C(f^{-1}(\lambda))$ isC-fuzzy pre-closed in X for every fuzzy open set λ in Y. Again by Definition 2.3(iii), $C(C(f^{-1}(\lambda)))$ is fuzzy pre-open in X. Since C satisfies the involutivecondition, $f^{-1}(\lambda)$ fuzzy pre-open in X. Again by using Definition 2.7, f isfuzzy pre-continuous.

Theorem 3.4

Suppose $f: X \to Y$ be a mapping from a fuzzy topological space (X, τ) to a fuzzy topological space (Y, σ) and C: [0, 1] \to [0, 1] satisfies the involutive condition. Then f is fuzzy β -continuous if and only if for every fuzzy open set λ in Y, C(f⁻¹(λ)) is C-fuzzy β -closed in X.

Proof

Suppose f is fuzzy β -continuous. Then by using Definition 2.8, $f^{-1}(\lambda)$ is fuzzy β -open in X for every fuzzy open set λ in Y. Since C satisfies the involutivecondition, $C(C(f^{-1}(\lambda)))$ is fuzzy β -open in X. Then by Definition 2.3(iv), $C(f^{-1}(\lambda))$ is C-fuzzy β -closed. Conversly, assume that, $C(f^{-1}(\lambda))$ is C-fuzzy β -closed in X for every fuzzy open set λ in Y. Again by Definition 2.3(iv), $C(C(f^{-1}(\lambda)))$ is fuzzy β -open in X. Since C satisfies the involutivecondition, $f^{-1}(\lambda)$ fuzzy β -open in X. Again by using Definition 2.8, f is fuzzy β -continuous.

Theorem 3.5

Suppose $f: X \to Y$ be a mapping from a fuzzy topological space (X, τ) to a fuzzy topological space (Y, σ) and C: [0, 1] \to [0, 1] satisfies the involutivecondition. Then f is fuzzy p-continuous if and only if for every fuzzy open set λ in Y, C(f⁻¹(λ)) is C-fuzzy p-set in X.

Proof

Suppose f is fuzzy p-continuous. Then by using Definition 2.9, $f^{-1}(\lambda)$ is fuzzy p-set in X for every fuzzy open set λ in Y. Since C satisfies the involutivecondition, $C(C(f^{-1}(\lambda)))$ is fuzzy p-set. Then by Definition 2.4(i), $C(f^{-1}(\lambda))$ is C-fuzzy p-set for every fuzzy open set λ in Y. Againby using Definition 2.4(i), $C(C(f^{-1}(\lambda)))$ is fuzzy p-set. Since C satisfies the involutivecondition, $f^{-1}(\lambda)$ fuzzy p-set in X. Again by using Definition 2.9, f is fuzzy p-continuous.

Theorem 3.6

Suppose $f: X \to Y$ be a mapping from a fuzzy topological space (X, τ) to a fuzzy topological space (Y, σ) and C: [0, 1] \to [0, 1] satisfies the involutivecondition. Then f is fuzzy q-continuous if and only if for every fuzzy open set λ in Y, C(f⁻¹(λ)) is C-fuzzy q-set in X.

Proof

Suppose f is fuzzy q-continuous. Then by using Definition 2.10, $f^{-1}(\lambda)$ is fuzzy q-set in X for every fuzzy open set λ in Y. Since C satisfies the involutivecondition, $C(C(f^{-1}(\lambda)))$ is fuzzy q-set. Then by Definition 2.4(ii), $C(f^{-1}(\lambda))$ is C-fuzzy q-set. Conversly, assume that, $C(f^{-1}(\lambda))$ is C-fuzzy q-closed for every fuzzy open set λ in Y. Again by using Definition 2.4(ii), $C(C(f^{-1}(\lambda)))$ is fuzzy q-set. Since C satisfies the involutivecondition, $f^{-1}(\lambda)$ fuzzy q-set in X. Again by using Definition 2.10, f is fuzzy q-continuous.

Theorem 3.7

Suppose $f: X \to Y$ be a mapping from a fuzzy topological space (X, τ) to a fuzzy topological space (Y, σ) and C: [0, 1] \to [0, 1] satisfies the involutivecondition. Then f is fuzzy strongly pre-continuous if and only if for every fuzzy open set λ in Y, C(f⁻¹(λ)) is C-fuzzy strongly pre-closed in X.

Proof

Suppose f is fuzzy strongly pre-continuous. Then by using Definition 2.11, $f^{-1}(\lambda)$ is fuzzy strongly pre-open in X for every fuzzy open set λ in Y. SinceC satisfies the involutivecondition, $C(C(f^{-1}(\lambda)))$ is fuzzy strongly pre-open in X. Then by Definition 2.3(v), $C(f^{-1}(\lambda))$ is C-fuzzy strongly pre-closed in X.Conversly,assume that, $C(f^{-1}(\lambda))$ is C-fuzzy strongly pre-closed in X for every fuzzy open set λ in Y. Again by Definition 2.3(v), $C(C(f^{-1}(\lambda)))$ is fuzzy strongly pre-open in X. Since C satisfies the involutivecondition, $f^{-1}(\lambda)$ fuzzy strongly pre-open in X. Again by using Definition 2.11, f is fuzzy strongly pre-continuous.

Theorem 3.8

Suppose $f: X \to Y$ be a mapping from a fuzzy topological space (X, τ) to a fuzzy topological space (Y, σ) and C: [0, 1] \to [0, 1] satisfies the involutivecondition. Then f is fuzzy semi-continuous if and only if for every fuzzy closed set λ in Y, C(f⁻¹(λ)) is C-fuzzy semi-closed in X.

Proof

Suppose f is fuzzy semi-continuous. Then by Definition 2.5, $f^{-1}(\lambda)$ is fuzzy semi-closed in X for every fuzzy closed set λ in Y. Since C satisfies the involutivecondition, $C(C(f^{-1}(\lambda)))$ is fuzzy semi-closed in X. Then byDefinition 2.2(ii), $C(f^{-1}(\lambda))$ is C-fuzzy semi-open. Conversly, assume that, $C(f^{-1}(\lambda))$ is C-fuzzy semi-open in X for every fuzzy open set λ in Y. Again by Definition 2.2(ii), $C(C(f^{-1}(\lambda)))$ is fuzzy semi-closed. Since C satisfies the involutive condition, $f^{-1}(\lambda)$ fuzzy semi-closed in X. Again by Definition 2.5, f is fuzzy semi-continuous.

Theorem 3.9

Suppose $f: X \to Y$ be a mapping from a fuzzy topological space (X, τ) to a fuzzy topological space (Y, σ) and C: [0, 1] \to [0, 1] satisfies the involutive condition. Then f is fuzzy α -continuous if and only if for every fuzzy closed set λ in Y, C(f⁻¹(λ)) is C-fuzzy α -open in X.

Proof

Suppose f is fuzzy α -continuous. Then by Definition 2.6, f⁻¹(λ) is fuzzy α -closed in X for every fuzzy closed set λ in Y. Since C satisfies the involutivecondition, C(C(f⁻¹(λ))) is fuzzy α -closed in X. Then by Definition 2.2(i),C(f⁻¹(λ)) is C-fuzzy α -open. Conversly, assume that, C(f⁻¹(λ)) is C-fuzzy α -open in X for every fuzzy open set λ in Y. Again by Definition 2.2(i), C(C(f⁻¹(λ))) is fuzzy α -closed. Since C satisfies the involutivecondition, f⁻¹(λ) fuzzy α -closed in X. Again by Definition 2.6, f is fuzzy α -continuous.

Theorem 3.10

Suppose $f: X \to Y$ be a mapping from a fuzzy topological space (X, τ) to a fuzzy topological space (Y, σ) and C: [0, 1] \to [0, 1] satisfies the involutive condition. Then f is fuzzy pre-continuous if and only if for every fuzzy closed set λ in Y, C(f⁻¹(λ)) is C-fuzzy pre-open in X.

Proof

Suppose f is fuzzy pre-continuous. Then by Definition 2.7, $f^{-1}(\lambda)$ is fuzzy pre-closed in X for every fuzzy closed set λ in Y. Since C satisfies the involutivecondition, $C(C(f^{-1}(\lambda)))$ is fuzzy pre-closed in X. Then by Definition 2.2(iii), $Cf^{-1}(\lambda)$ is C-fuzzy pre-open. Conversly, assume that, $C(f^{-1}(\lambda))$ isC-fuzzy pre-open in X for every fuzzy open set λ in Y. Again by Definition 2.2(iii), $C(C(f^{-1}(\lambda)))$ is fuzzy pre-closed. Since C satisfies the involutivecondition, $f^{-1}(\lambda)$ fuzzy pre-closed in X. Again by Definition 2.7, f is fuzzy pre-continuous.

Theorem 3.11

Suppose f: X \rightarrow Y be a mapping from a fuzzy topological space (X, τ) to a fuzzy topological space (Y, σ) and C: [0, 1] \rightarrow [0, 1] satisfies the involutive condition. Then f is fuzzy β -continuous if and only if for every fuzzy closed set λ in Y, C(f⁻¹(λ)) is C-fuzzy β -open in X.

Proof

Suppose f is fuzzy β -continuous. Then by Definition 2.8, f⁻¹(λ) is fuzzy β -closed in X for every fuzzy closed set λ in

Y. Since C satisfies the involutivecondition, $C(C(f^{-1}(\lambda)))$ is fuzzy β -closed in X. Then by Definition 2.2(iv), $C(f^{-1}(\lambda))$

¹(λ)) is C-fuzzy β -open. Conversly, assume that, C(f⁻¹(λ)) is C-fuzzy β -open in X for every fuzzy open set λ in Y.

Again by Definition 2.2(iv), $C(C(f^{-1}(\lambda)))$ is fuzzy β -closed. Since C satisfies the involutivecondition, $f^{-1}(\lambda)$ fuzzy β closed in X. Again by Definition 2.8, f is fuzzy β -continuous.

Theorem 12.12

Suppose $f: X \to Y$ be a mapping from a fuzzy topological space (X, τ) to a fuzzy topological space (Y, σ) and C: [0,

 $1 \rightarrow [0, 1]$ satisfies the involutive condition. Then f is fuzzy strongly pre-continuous if and only if for every fuzzy

closed set λ in Y, C(f⁻¹(λ)) is C-fuzzy strongly pre-open in X.

Proof

Suppose f is fuzzy strongly pre-continuous. Then by Definition 2.11, f⁻¹(λ) is fuzzy strongly pre-closed in X for every fuzzy closed set λ in Y. Since C satisfies the involutivecondition, $C(C(f^{-1}(\lambda)))$ is fuzzy strongly pre-closed in X. Then by Definition 2.2(v), $C(f^{-1}(\lambda))$ is C-fuzzy strongly pre-open. Conversely, assume that, $C(f^{-1}(\lambda))$ is C-fuzzy strongly pre-open in X for every fuzzy open set λ in Y. Again by Definition 2.2(v), C(C(f⁻¹(λ))) is fuzzy strongly pre-closed. Since C satisfies the involutivecondition, $f^{-1}(\lambda)$ fuzzy strongly pre-closed in X. Again by Definition 2.11, f is fuzzy strongly pre-continuous.

REFERENCES

- K.K.Azad, On fuzzy semi-continuity, fuzzy almost continuity and fuzzy weakly continuity, J.Math.Anal.Appl.82 (1) (1981), 14-32. [1]
- A.S.Binshahana, On fuzzy strong semi-continuity and fuzzy precontinuity, Fuzzy Sets and Systems 44 (1991), 303-308. [2]
- [3] K.Bageerathi, A generalization of fuzzy semi-pre-open sets, Int. J. Eng. Sci. Mat.2(2) (2013), 134-151.
- [4] [5] C.L.Chang, Fuzzy topological space, J.Math.Anal.Appl. 24 (1968),182-190.
- M.A.FathAlla, On fuzzy Topological Spaces, Ph.D. Thesis, Assuit University, Egypt (1984).
- [6] George J.Klir and Bo Yuan, Fuzzy Sets and Fuzzy Logic Theory and Applications, PHI, New Delhi, Inc. (2005).
- B.Krsteska, Fuzzy strongly preopen sets and fuzzy strong precontinuity, Mat. Vesnik50 (1998), 111-123. [7]
- S. Murugesan and P. Thangavelu, On fuzzy p-continuity and Fuzzy q-continuity, Internat. J. Math. Sci. 6 (3-4) (2007), 471-482. [8]

L.A. Zadeh, Fuzzy sets, Inform. and Control8(1965), 338-353. [12]

G.Sutha, P.Thangavelu, C-fuzzy η -open sets where $\eta \in \{\text{regular}, \alpha, \text{semi, pre}, \beta, \text{strongly pre}\}$, Proceedings of the National Conference on [9] Ramanujan's Contributions and Recent Trends in Mathematics, MaduraiKamaraj University, Madurai, December 21-23(2015).

G.Sutha, P.Thangavelu, C-fuzzy η -closed sets where $\eta \in \{\text{regular}, \alpha, \text{semi, pre}, \beta, \text{strongly pre}\}$, Advances in Fuzzy Mathematics 11(2) [10] (2016), 129-140.

G.Sutha, P.Thangavelu, On C-fuzzy p-sets and C-fuzzy p-sets, International Journal of Engineering science and Computing 6(8) (2016), [11]