Algorithm on relation between Gamma function and Sine/Cosine function, Exponential Function

Karan Jain Student of Mech. Engg at N.S.I.T, Dwarka

Algorithm

Equation A

$$\frac{(m)!\cos\frac{\pi m}{2}}{b^m} = \int_0^\infty \cos(bx^{\frac{1}{m}})dx$$

Where m E n

• let's assume 'k' to be a variable and k & n i.e. 'k' belongs to asset of natural numbers

Results 1: if m = (4k)

$$\int_0^\infty \cos(bx^{1/4k})dx = \frac{(4k)!}{b^{4k}}$$

Where $k \in N$

Result2: if m = (4k-2)

$$\int_0^\infty \cos[(bx^{\frac{1}{(4k-2)}})dx = \frac{-(4k-2)!}{b^{4k-2}}$$

Where $k \in N$

Result 3: if m = (2k-1) then;

$$\int_0^\infty \cos(bx^{\frac{1}{2k-1}})dx = 0$$

Where $k \in N$

Equation B

$$\frac{(m)!\sin\frac{\pi m}{2}}{b^m} = \int_0^\infty \sin(bx^{\frac{1}{m}})dx$$

Where m E n

Lets assumes the same variable 'k' following the same condition, that is $m \mathcal{E} n$

Result1: If m=2k

$$\int_0^\infty \sin(bx^{\frac{1}{(2k)}})dx = \mathbf{0}$$

Where $k \in N$

Result 2: if m=(4k-3)

$$\int_0^\infty \sin(bx^{\frac{1}{(4k-3)}})dx = \frac{(4k-3)!}{b^{4k-3}}$$

Where $k \in N$

Result 3: if m = (4k-1)

$$\int_0^\infty \sin(bx^{\frac{1}{(4k-1)}})dx = \frac{-(4k-1)!}{b^{4k-1}}$$

Where $k \in N$

The result written is derived in the following pages starting from the basic definition of gamma function.

Deriving a relation between gamma function trigonometry function (sine or cos) using complex number approach.

To start from basic definition of gamma function $\Gamma(t) = \int_0^\infty u^{t-1} e^{-u} du$

Where t ∉Z ¯

Now make the following substitution: $u = sx^n$

Where s is the complex number of the (a+ib) Differentiating both sides

$$du = (s)(n)x^{n-1} dx$$

 $n \mathcal{E} R - \{0\}$ i.e. n cannot be equal to 0.

After making the substitution:

$$\Gamma(t) = \int_0^\infty [(sx^n)^{t-1}] (e^{-sx^n})(s)(n) x^{(n-1)} dx$$

$$\Gamma(t) = \int_0^\infty s^{(t-1+1)} x^{(nt-n+n-1)} e^{-sx^n} n dx$$

$$\Gamma(t) = \int_0^\infty (ns^t) x^{nt-1} e^{-sx^n} dx$$

$$\frac{\Gamma(t)}{n(s^t)} = \int_0^\infty x^{(nt-1)} e^{-sx^n} dx$$
-----(1)

Where $t \notin \mathbb{Z}^{-} \& n \neq 0$

Since we assumed 's' to be a complex number of the form (a+ib), we can rewrite Equation(1) by replacing 's' with its complex conjugate, \bar{s} . \bar{s} is of the form (a - ib).

Replacing 's' by \$\overline{s}\$

$$\frac{\Gamma(t)}{n(\bar{s})^t} = \int_0^\infty x^{(nt-1)} e^{-\bar{s}x^n} dx - \dots$$
 (2)

Where $t \notin \mathbb{Z}^{-} \& n \neq 0$

Equation 1
$$\frac{\Gamma(t)}{n(s^t)} = \int_0^\infty x^{(nt-1)} e^{-sx^n} dx$$

Where $t \notin \mathbb{Z}^{-} \& n \neq 0$

Equation 2

$$\frac{\Gamma(t)}{n(\overline{s}^t)} = \int_0^\infty x^{(nt-1)} e^{-\overline{s}x^n} dx$$

Where $t \notin \mathbb{Z}^{-} \& n \neq 0$ Where s is the complex number of the (a+ib)

$$s = a + ib$$

$$s = |s|e^{i\alpha}$$
where $|s| = \sqrt{a^2 + b^2}$ $\tan \alpha = \frac{b}{a}$

$$s^t = |s|^t e^{it\alpha}$$

$$\overline{s} = a - ib \qquad \overline{s} = |s|^t e^{-i\alpha}$$

$$(\overline{s})^t = (|s|)^t e^{-it\alpha}$$
-----(4)

- Substituting the results of (3) and (4) in equations (1) and (2) respectively.

-Substituting the following values

$$\begin{array}{ll}
- & s = a + ib \\
- & \bar{s} = a - ib
\end{array}$$

Modified equation (1)

$$\frac{\Gamma(t)}{n|s|^t e^{it\alpha}} = \int_0^\infty x^{(nt-1)} e^{-(\alpha+ib)x^n} dx$$

Where $t \notin \mathbb{Z}^- \& n \neq 0$

Modified equation (2)

$$\frac{\Gamma(t)}{n|s|^t e^{-it\alpha}} = \int_0^\infty x^{(nt-1)} e^{-(a-ib)x^n} dx$$

Where $t \notin \mathbb{Z}^{-} \& n \neq 0$

Case(i):

Adding equation (1) and (2)

• *Case(ii)*:

Subtracting equation (1) from (2)

Simplifying case (i)

$$\sum_{\substack{n|s|^t \\ 0}} \frac{\Gamma(t)}{(e^{-i\alpha} + e^{i\alpha})} =$$

$$\int_0^\infty (x^{(nt-1)} e^{-ax^n} [e^{-ibx^n} + e^{ibx^n}]) dx$$

Applying Euler's formula, which is given by:- $\cos y = \frac{e^{iy} + e^{-iy}}{2}$

$$\cos y = \frac{e^{iy} + e^{-iy}}{2}$$

on LHS and RHS

$$\geq \frac{\frac{\Gamma(t) \cos(t\alpha)}{n|s|^t}}{\int_0^\infty x^{(nt-1)} e^{-ax^n} \cos(bx^n) dx}$$

$$\frac{\Gamma(t)\cos(t\alpha)}{n|s|^t} = \int_0^\infty x^{(nt-1)} e^{-ax^n} \cos(bx^n) dx$$
equation(5)

Where $t \notin \mathbb{Z}^{-} \& n \neq 0$

Simplifying case (ii)

$$\frac{\Gamma(t)}{n|s|^{t}e^{t(i+\alpha)}} - \frac{\Gamma(t)}{n|s|^{t}e^{t(-i+\alpha)}} =$$

$$\int_{0}^{\infty} (x^{(nt-1)} \left[e^{-(a+ib)x^{n}} - e^{-(a-ib)x^{n}} \right]) dx$$

$$\geq \frac{\Gamma(t)}{n|s|^{t}} \left(e^{t(-i+\alpha)} - e^{t(i+\alpha)} \right) =$$

$$\int_{0}^{\infty} (x^{(nt-1)} e^{-ax^{n}} \left[e^{-ibx^{n}} - e^{ibx^{n}} \right]) dx$$

Apply Euler's formula which is given by:- $\sin y = \frac{e^{iy} - e^{-iy}}{2}$

on LHS and RHS

$$\frac{\Gamma(t) \sin(t\alpha)}{n|s|^t} = \int_0^\infty x \frac{(nt-1)}{n} e^{-ax^n} \sin(bx^n) dx$$

$$\frac{\Gamma(t) \sin(t\alpha)}{n|s|^t} = \int_0^\infty x \frac{(nt-1)}{n} e^{-ax^n} \sin(bx^n) dx - \cdots - (6)$$
Where $t \notin \mathbb{Z}^- \& n \neq 0 \& t \neq 0$

Equation (5)

$$\frac{\Gamma(t)\cos(t\alpha)}{n|s|^t} = \int_0^\infty x^{(nt-1)} e^{-ax^n} \cos(bx^n) dx$$
Where $t \notin \mathbb{Z}^- \& n \neq \emptyset \& t \neq \emptyset$

Equation (6)

$$\frac{\Gamma(t)\sin(t\alpha)}{n|s|^t} = \int_0^\infty x^{(nt-1)} e^{-ax^n} \sin(bx^n) dx$$

Where $t \notin \mathbb{Z}^{-} \& n \neq 0 \& t \neq 0$

Where s = a +

ib

$$|s| = \sqrt{a^2 + b^2}$$

$$\alpha = tan^{-1} \frac{b}{a}$$

Simply fying equation (5)

$$\frac{\Gamma(t)\cos(\alpha t)}{n|s|^t} = \int_0^\infty x^{(nt-1)} e^{-ax^n} \cos(bx^n) dx$$

Now simplifying some variables by assigning them

Let : a=0, $n=\frac{1}{t}$ Where $t\neq 0$ & $t \notin Z$

Since a=0; $|s| = \sqrt{b^2} = b$. But

 $\tan \alpha = \frac{b}{a}$ is not defined implying $\alpha = (n\pi +$ $\pi/2$) because $\tan \frac{\pi}{2}$ is not defined as well.

Considering only the principal argument $\bullet \quad \alpha = \frac{\pi}{2}$

•
$$\alpha = \frac{\pi}{2}$$

Thus equation 5 reduces as

$$\frac{\Gamma(t)\cos[(\frac{\pi}{2})t]}{\frac{1}{t}|b|^{t}} = \int_{0}^{\infty} x^{(nt-1)} e^{(0x^{n})} \cos(bx^{\frac{1}{t}}) dx$$

$$\frac{\Gamma(t)\cos[\frac{nt}{2}]}{b^{t}} = \int_{0}^{\infty} \cos(bx^{\frac{1}{(t)}}) dx$$
-----equation (7)

Where t ∉Z - & t≠0

Simplifying Equation (6)

$$\frac{\Gamma(t)\sin(t\alpha)}{n|s|^t} = \int_0^\infty x^{(nt-1)} e^{-ax^n} \sin(bx^n) dx$$

Now simplifying some variables by assigning them

Let a tend to zero; $a \rightarrow 0$;

$$\lim_{h \to 0} (a = h)$$

$$n = \left(\frac{1}{t}\right), Where \ t \neq 0 \ \& \ t \notin Z^-$$

Now as
$$a \rightarrow 0$$
; $|s| = \sqrt{b^2} = b$ and $\tan \alpha \rightarrow \infty$
 $\Rightarrow \alpha = \frac{\pi}{2}$. As we equate $n = \left(\frac{1}{t}\right)$ where $t \neq 0$
 $\Rightarrow (nt - 1) = 0$ i. e. exponential power of $x = 0$
These simplification reduces equation 6 to
$$\frac{t\Gamma(t)\sin(\frac{\pi t}{2})}{b^t} = \int_0^\infty \sin(bx^{\frac{1}{t}}) \ dx$$

Equations derived are:

Where $t \neq 0 \& t \notin Z$

> Equation 7

$$\frac{t\Gamma(t)\,\cos[\frac{\pi t}{2}]}{h^t} =$$

$$\int_0^\infty \cos(bx^{\frac{1}{t}})\,dx$$

$$Fallow Equation 8$$

$$\frac{t\Gamma(t)\sin(\frac{\pi t}{2})}{b^t} = \int_0^\infty \sin(bx^{\frac{1}{t}}) dx$$

$$Where t \neq$$

0 & t ∉Z -

Equation 7

$$\frac{t \Gamma(t) \cos(\frac{\pi t}{2})}{(b)^t} = \int_0^\infty \cos(bx^{\frac{1}{t}}) dx$$

Where t≠ 0 & t ∉Z

Now let us assume 'm' to be a variable belonging to the set of natural numbers i.e. $m \in N$

Case (I): $t \in (m)$

This assumption will reduce the above equation to:

$$m \Gamma(m) \cos(\frac{\pi m}{2}) = \int_0^\infty \cos(bx^{\frac{1}{m}}) dx$$

Since m is a positive natural number the following relation:

$$\Gamma(n) = (n-1)\Gamma(n-1)$$

$$\Gamma(n) = (n-1)!$$

This will reduce the above equation to

$$= \sum_{n=0}^{\infty} \frac{m(m-1)! \cos(\frac{\pi m}{2})}{(b)^m}$$

$$= \int_0^{\infty} \cos\left(bx^{\frac{1}{m}}\right) dx$$

$$= \blacktriangleright \frac{m! \cos(\pi m/2)}{(b)^m} = \int_0^\infty \cos\left(bx^{\frac{1}{m}}\right) dx$$

-----equation (7.1)

where $m \in N$

Case(II): $t \in (-m)$

This will reduce the above equation 5 to: -

$$\frac{(-m)\Gamma(-m)\cos(\frac{-\pi m}{2})}{(b)^{-m}} = \int_0^\infty \cos\left(bx^{\frac{-1}{m}}\right)dx$$

Now applying the following relation.

$$\Gamma(n)\Gamma(1-n) = \frac{\pi}{\sin(\pi n)}$$

Replacing $n \rightarrow (1+n)$

$$\Gamma(1+n) \Gamma(-n) = \frac{\pi}{\sin(\pi + \pi n)}$$

$$= \blacktriangleright \Gamma(-n) = \frac{-\pi}{(1+n)\sin(\pi n)}$$

Replacing the above situation in the formula:

$$= \blacktriangleright \frac{(-m)(-\pi)\cos(\pi m/2)}{(1+m)\sin(\pi m)(b)^{-m}}$$
$$= \int_0^\infty \cos\left(bx^{\frac{-1}{m}}\right)dx$$

$$= \blacktriangleright \frac{m\pi\cos(\pi m/2)(b)^m}{(m)!\sin(\pi m)} = \int_0^\infty \cos\left(bx^{\frac{-1}{m}}\right)dx$$

Now the above relation has the constraint : $m \in N$. Since this is in contradiction what we started with i.e. $m \in (-N)$, thus case II is nullified

Case (III): $t \in \mathbb{R}^+ - \mathbb{N}$ i.e. t belongs to a positive number, excluding all natural numbers. Let 'n' be a variable belonging to the class of $(R^+ - N)$. Let $t \in (n)$ and $t \neq 0 \& t \notin Z$

This substitution changes Equation (7) to
$$\frac{n\Gamma(n)\cos\frac{\pi n}{2}}{(b^n)} = \int_0^\infty \cos\left(bx^{\frac{1}{n}}\right) dx - \cdots - equation (7.3)$$
where $n \in (R^+ - W)$

Case(IV): $t \in -(R^+ - N)$ i.e.

t belongs to a class of negative

numbers not subsuming any negative integer.

$$\frac{(-n)\Gamma(-n)\cos(\frac{-\pi n}{2})}{(b^n)} = \int_0^\infty \cos\left(bx^{\frac{1}{n}}\right) dx$$
----equation (7.4)

where $n \in (R^+ - W)$

Since the above equation (7.4)deals with a set of a numbers similar To that in an equation (7.2) and both these equations cannot be Solved further ,thus they won't be consider further.

Equation 8

$$\frac{t\Gamma(t)\sin(\frac{\pi t}{2})}{(b^t)} = \int_0^\infty \sin\left(bx^{\frac{1}{t}}\right)dx$$
Where $t \neq 0$ & $t \notin \mathbb{Z}$

(i) Now applying similar cases which were applied in

Equation 7

(ii) Using same variables without changing the set they belonged to in cases of equation 7 keeping in mind that sin(-x) = -sin(x) which is in contrary to the equation followed by the

Cosine function: cos(-x) = cos(x)(i) $t \neq 0 \& t \notin Z$

Case (I): $t \in m$

Applying the same derivations that were applied in equation (7) to get the same result in sine function

where $m \in N$

CASE (II): $t \in (-m)$

Considering the above scenario ,case II will be nullified as happened in equation 7 (case II)

CASE (III): $t \in (+n)$ and $t \neq 0$

This substitution will provide a similar result as that equation 7, (case III)

$$\frac{n\Gamma(n)\sin(\frac{\pi n}{2})}{b^n} = \int_0^\infty s \, in(bx^{\frac{1}{n}}) \, dx$$
equation 8.3
$$where \, n \in (R^+ - W)$$

CASE (IV): $t \in (-n)$ and $t\neq 0$

Similar to equation 7 (case IV)

$$\frac{(-n)\Gamma(-n)\sin\left(\frac{-\pi n}{2}\right)}{b^{-n}} = \int_0^\infty \sin\left(bx^{\frac{-1}{n}}\right) dx$$

-----equation 8.4

where
$$n \in (R^+ - W)$$

since the equation 8.4 cannot be reduced to any more simpler form, equation 8.4 will not be considered. Similar is the case for equation 8.3

Final Results

Equation (7.1)

$$\frac{m!\cos(\pi m/2)}{(b)^m} = \int_0^\infty \cos\left(bx^{\frac{+1}{m}}\right) dx$$

$$WHERE \ m \in N$$

Now lets assume 'k' to be a natural number i.e. $k \in N$

CASE(I): m=(4k)

$$= \blacktriangleright \frac{(4k)!}{(b)^{4k}} = \int_0^\infty \cos\left(bx^{\frac{1}{4k}}\right) dx$$
-----result

Where $k \in N$

CASE(II) : m=(4k-2)

$$= \blacktriangleright \frac{(4k-2)! \cos[(4k-2)\pi/2]}{b^{(4k-2)}}$$
$$= \int_0^\infty \cos\left(bx^{\frac{+1}{4k-2}}\right) dx$$

-----result (2)

Where $k \in N$

CASE III : m=(4k-3) or m=(4k-1) i.e. that means: m=(2k-1)

$$= \blacktriangleright \frac{(2k-1)! \cos[(2k-1)\pi/2]}{b^{(2k-1)}} \\ = \int_0^\infty \cos\left(bx^{\frac{+1}{2k-1}}\right) dx$$

$$= \blacktriangleright \quad 0 = \int_0^\infty \cos\left(bx^{\frac{+1}{2k-1}}\right) dx - - - -$$
$$- result (3)$$

Where $k \in N$

Equation 8.1

$$\frac{m! \sin(\pi m/2)}{(b)^m} = \int_0^\infty \sin\left(bx^{\frac{1}{m}}\right) dx$$

$$WHERE \ m \in N$$

Now lets assume 'k' to ba a natural number i.e. $k \in N$

CASE(I) : m=(2k)

$$= \blacktriangleright \frac{(2k)! \sin(2k\pi/2)}{(b)^{2k}} = \int_0^\infty \sin(bx^{\frac{1}{2k}}) dx$$

$$= \blacktriangleright 0 = \int_0^\infty \sin\left(bx^{\frac{+1}{2k}}\right) dx$$
-----result (1)

Where $k \in N$

CASE (II): m=(4k-3)

$$= \blacktriangleright \frac{(4k-3)! \ sin[(4k-3)\pi/2]}{b^{(4k-3)}} \\ = \int_0^\infty sin(bx^{\frac{+1}{4k-3}}) dx$$

$$= \sum \frac{(4k-3)!}{b^{(4k-3)}} = \int_0^\infty sin\left(bx^{\frac{+1}{4k-3}}\right) dx - - - - - result (2)$$

Where $k \in N$

CASE (III): m=(4k-1)

$$= \blacktriangleright \frac{(4k-1)! \quad sin \mathbb{E}[(4k-1)\pi/2]}{b^{(4k-)}}$$
$$= \int_0^\infty sin\left(bx^{\frac{+1}{4k-1}}\right) dx$$

$$= \sum \frac{-[(4k-1)!]}{b^{(4k-1)}}$$

$$= \int_0^\infty sin(bx^{\frac{+1}{4k-1}})dx - - - -$$

$$- result(3)$$

Where $k \in N$