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Abstract:  

Herstein  38  proved that a ring R which satisfies the identity  
n n nxy x y , where n is a fixed positive integer greater 

than 1, must have nil commutator ideal. Abu-Khuzam  1  provethat if n is a fixed positive integer greater than 1 and R is 

an n (n-1) – torsion free ring with unity such that  
n n nxy x y for all x,y in R, then R is commutative. In 32  Gupta 

proved that if R is a semi prime ring satisfying    
2 2 2xy x y Z R  for all x,y in R, where Z(R) in the center of R, then 

R is commutative. In  3  it is proved that a semi prime ring R such that for each x in R there exists a positive integer 

  1n n x  such that    
n n nxy x y Z R  and    2 2

n
n nx y x y Z R   for all y in r then R is commutative. In 

this direction we prove that if R is an n (n+1)-torsion free periodic ring such that    
n n nxy y x Z R  and 

   
1 1 1n n nxy y x Z R
    or    

1 1 1n n nxy x y Z R
    and if the set of nilpotent elements of R is commutative. 

Then R is commutative. 

 We know that R is periodic if for every x in R, there exist distinct positive integers m and n such that 
m nx x . By a 

theorem of Chancron  22 , R is periodic if and only if for each x in R, there exists a positive integer k = k(x) and a 

polynomial    xf f  with integer coefficients such that  1k kx x f x . Throughout this section R is an 

associative ring, Z(R) denotes the center of R and N denotes the set of nilpotent elements of R. 

Keywords: center, periodic ring, direct sum, left and right ideals. 

1.   Introduction: 

During the last seven or e9ight decades abstract algebra has been developing very rapidly. In algebra the 

theory of rings serves as the building blocks for all branches of mathematics. In ring theory, the study of both 

associative and non-associative rings has evoked great interest and assumed importees. 

The results on non – associative rings in which one does assume a type of partial associative have been 

scattered though out the literature. Many mathematicians of recent years studies a certain special properties. Their 

general non – associative rings. Among those mathematicians Max Zorn, A.A. Albert, N.Jocobson, R.D.Schafer, Erwin 

Kleinfeld, R.L.Sansoucie, A.H.Boers and Armin They are the ones whose contributions to this filed are outstanding. 

2. Preliminaries:  

Associative Ring: An associative ring R, sometimes called a ring in short, is an algebraic system with two binary 

operations addition ‘+’ and multiplication ‘.’ Such that 

(i) The elements of R form an abelian group under addition and a semi group under multiplication, 

(ii) Multiplication is distributive on the right as well as on the left over addition i,e., (x+y)z = xz+yz, z(x+y)=zx+zy for 

all x, y, z in R. 
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Non – associative Ring: A non – associative ring R is an additive abelian group in which multiplication is defined, 

which is distributive over addition on the left as well as on the right, i.e., (x+y)z = xz+yz, z(x+y)=zx + zy, for all x, y, z 

in R.  

 A non-associative ring differs from an associative ring in that the full associative law of multiplication is no 

longer assumed to be associative, i.e., it is not necessarily associative. Strictly speaking the associative law of 

multiplication has not been done away with, it has merely weakened. 

 The well known examples of non-associative rings are alternative rings, Lie rings and Jordan rings. In 1930 

Artin and Max Zorn defined alternative rings. 

Alternative Ring: An alternative ring R is a ring in which (xx)y = x(xy), y(xx) =(yx)x for all x, y in R. These 

equations are known as the left and right alternative laws respectively. 

Lie Ring: A Lie ring R is a ring in which the multiplication is anti-commutative, i.e., 
2 0x  (implying xy=-yx)and 

the Jacobi identity (xy)z + (yz)x + (yz)x +(zx)y = 0 for all x,y,z in R is satisfied. 

Jordan Ring: A Jordan Ring R is a ring in which products are commutative, i.e., xy=yx and satisfy the Jordan identify 

   2 2xy x x yx for all x, y in R. 

Associator: The associator (x. y, z) is defined by (x, y, z) = (xy )z – x(yz) for all x, y, z in a ring. 

 This plays a key role in the study of non-associative rings. It can be viewed as a measure of the non-

associativity of a ring. This definition is due to Maxzorn wherein he proved that a finite alternative division ring is 

associative. 

 In terms of associators, a ring R is called left alternative if (x,x,y)=0, right alternative if (y, x, x)=0 for all x, y 

in R and alternative if both the conditions hold.  

Commutator: The commutator  ,x y  is defined by ,x y  = xy – yx for all x, y in a ring. 

Commutative Ring: If the multiplication in a ring R is such that xy=yx for all x, y in R then we call R a commutative 

ring. 

 A non-commutative ring differs from commuatative ring in that the multiplication is not assumed to be 

commutative. i.e., we do not assume xy = yx for all x, y in R as an axiom. However, it does not mean that there always 

exist elements x,y in R such that xy yx . 

 The ring of 2x2 matrices over rationals and the ring of real quaternions due to Hamilton are the examples of 

non-commuatative rings. 

Periodic element: An element x R is called a periodic element if there exists distinct ,m n z such that 
n mx x  

Potent element:  An element x of R is called potent if 
nx x for some positive integer   1.n n x   

Assosymmetric Ring: An Assosymmetric ring R is one in which (x, y, z) = (P(x), P(y) P(z)), where P is any 

permutation of x, y, z in R. 

Standard Ring: A ring R is defined to be standard if it satisfies the following two identities: 

(i) (wx, y, z) + (xz, y, w) + (wz, y, x) = 0 

(ii) (x, y, z) + (z, x, y) – (x, z, y) =0, for all w, x, y and z in R. 

Accessible Ring: A ring R is called accessible in case it satisfies the identities: 

(i) (x, y, z) + (z, x, y) – (x, z, y) =0 



International Journal of Mathematics Trends and Technology (IJMTT) – Volume 43 Number 2- March 2017 

ISSN: 2231-5373                      http://www.ijmttjournal.org                          Page 95 

(ii) ((w, x), y, z) = 0, for all w, x, y and z in R. 

Periodic Ring: A ring R is called a periodic ring if for every x in R, there exists distinct positive integers m=m(x), 

n=n(x) such that 
m nx x . Due to Chacron R is periodic if and only if for each x R , there exists a positive integers 

k=k(x) and a polynomial    xf f  with integer co-efficients such that  1k kx x f x . 

s-Unital Ring: A ring R is called a left (respectively right) s – unital ring if x R x (respectively x xR ) for each 

x R . Further R is called s-unital if it is both left as well as right s-unital, i.e., if ,x xR Rx  for each x R .  

Weakly Periodic Ring: A ring R is called a weakly periodic ring if every element of R is expressible as a sum of a 

nilpotent element and a potent element of R, R=N+P, where N is the set of nilpotent elements of R and P is the set of 

potent elements of R. It is well-known that if R is periodic, then it is weakly periodic. 

Quasi – Periodic Ring: A ring R is called quasi-periodic if for each x R there exist integers n, m with n>m1 such 

that 
n mx kx for some integer k. 

Generalised Quasi – Periodic Ring: A ring R is called generalized quasi – periodic if for each x R there exist 

distinct positive integers m, n and non-zero integers r, s with (r,s) = 1 for which 
m nrx sx . 

Prime Ring: A ring R is called a primo ring if whenever A and B are ideals of R such that AB = 0, then either A=0 or 

B=0. 

Semi Prime Ring: A ring R is semi prime if for any ideal A of R, 
2A = 0 implies A = 0. These rings are also referred 

to as rings free from trivial ideals. 

Simple Ring: A ring R is said to be simple if whenever A is an ideal of R, then either A = R or A = 0. 

Semi – Simple Ring: A ring is semi simple in case the radical. (i.e., the maximal ideal consisting of all nilpotent 

elements) is the zero ideal. 

 Obviously a simple ring is prime, which in turn is free from trivial ideals. 

Primitive Ring: A ring R is defined as primitive in case it possesses a regular maximal right ideal, which contains no 

two-sided ideal of the ring other than the zero ideal. 

Division Ring: A ring R is said to be a division ring if its non-zero elements form a group with respect to 

multiplication. 

Flexible Ring: If in a ring R, the identity (x, y, x) = 0 i.e., (xy)x=x(yx) for all x, y in R holds then R is called flexible. 

 Alternative, commutative, anti-commutative and there by Jordan and Lie rings are flexible. 

Nilpotent Ring: A ring is called nilpotent if there is a fixed positive integer t such that every product involving t 

elements is zero. 

Torsion-free Ring: A ring R is said to be m-torsion free if mx=0 implies x=0 for all x in R. 

Reduced Ring: A ring R is called reduced if N= {0}, where N is the set of nilpotent elements of R. 

Center: In a ring R, the center denoted by Z(R) is the set of all elements x R  such that xy = yx for all y R . 

Derivation: A derivation of a ring R is an additive group homomorphism :d R R satisfying

   1 2 1 2 1 2d r r dr r rdr  . 



International Journal of Mathematics Trends and Technology (IJMTT) – Volume 43 Number 2- March 2017 

ISSN: 2231-5373                      http://www.ijmttjournal.org                          Page 96 

 It is important to note that this definition does not depend on the associative of multiplication and in fact, we 

shall have occasion to deal with derivations of non-associative algebras. 

3. Main results: 

Lemma 1: If  , , 0x x y    , then  1, ,k kx y kx x y    for all integers 1.k   

Proof: The identity  1, ,k kx y k x x y    is true for integer k=1. 

Suppose we assume that  1, ,k kx y k x x y     

Now, 
1, ,k kx y x x y       =  , ,k kx x y x y x     

            1, , 4.1.1k kx x y k x x y x by   

          , , ,k kx x y k x x y  since  , , 0x x y     

          1 . ,kk x x y   for all k>1. 

i.e.,    1, 1 ,k kx y k x x y      

Therefore by Induction for all integers 1,k   1, ,k kx y k x x y     

Lemma 2: If R is a periodic ring, then R has each of the following properties: 

a) For each x R , some power of x is idempotent. 

b) For each x R , there exists an integer n(x)>1 such that 
 n x

x x is nilpotent. 

c) If f: 
*R R is an epimorphism, then f(N) coincides with the set of nilpotent elements of 

*R  

d) If N is central, then R is eommutative. 

Proof: a) If 
n mx x with n>m, then 

 j k n m jx x
 

 for each positive integer k and each .j m Thus we assume 

1 .n m m    It follows that  
1

1 1
n m

n m n mx x
 

    and hence  1
n m

n mx


 
is idempotent. 

b) Let , 1.n mx x n m    

Then 
1mx       1 2 1 2 1 10n m m n m m n m n mx x x x x x x x x x               . Therefore 

 
2

2 1 0m n mx x x    and the result follows by the obvious induction. 

c) From lemma 1 10  we know that if I is an ideal of R and x+1 is a nonzero nilpotent element of 
*R then R contains 

a nil potent element u such that x u (mod I). 

 So if : *f R R is an epimorphism, then f(N) co-incides with the set of nilpotent elements of 
*R . 
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d) Let N denote the set of nilpotent elements, the usual argument for commutative rings shows that N is an ideal. 

Moreover for x R and e an idempotent R, both ex-exe and xe-exe are in R. Hence commutative with e. Thus 

idempotents in R central. 

 We see that homomorphic images inherit the hypothesis on R. Consequently we need consider only the case 

of subdirectly irreducible R. Under this assumption, part (a) of the lemma 2 shows that R is either nil and hence 

commutative or R has a unique non-zero central idempotent necessarily a multiplicative identity element 1. 

 Considering this latter possibility we see from (a) of lemma 2 that each element of R is either nilpotent or 

invertible. Thus the set D of zero divisors is equal to N and hence is a central ideal. Moreover by lemma 4.1.2 of (b) 

R =R/D has the 
na a  property of Jacobson, hence R, is commutative and its additive group is a torsion group. Thus 

if a,bR/D the sub ring of generated by a a D and b b D    is a finite field, which has cyclic multiplicative 

group. There must therefore exist gR and 1 2,d d D such that 1

ia g d  and 2

jb g d   for some positive 

integers i,j. If follows that a and b must commute and our proof is complete. 
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