On general Eulerian integral of certain products of A-function,

 and a class of polynomialsF.Y. AYANT ${ }^{1}$

1 Teacher in High School, France

ABSTRACT
The object of this paper is to establish an general Eulerian integral involving the product of the A-function defined by Gautam et al [1] and a general class of multivariable polynomials and a generalized hypergeometric function which provide unification and extension of numerous results. We will study the particular case concerning the multivariable H-function defined by Srivastava et al [7] and the Srivastava-Daoust polynomial [4].

Keywords: Eulerian integral, Lauricella function of several variables, multivariable A-function, generalized hypergeometric function, multivariable H-function, Srivastava-Daoust polynomial.

2010 Mathematics Subject Classification :33C05, 33C60

1. Introduction

In this paper, we evaluate a general Eulerian integral concerning the product of the multivariable A-functions defined by Gautam et al [1], a generalized hypergeometric function and a class of multivariable polynomials. We will give a serie expansion of a multivariable A-function. The multivariable A-function is an extension of the multivariable H -function defined by Srivastava et al [7]. We will given a contracted form.

The serie representation of the multivariable A-function is given by Gautam [1] as
$A\left[u_{1}, \cdots, u_{v}\right]=A_{A, C:\left(M^{\prime}, N^{\prime}\right) ; \cdots ;\left(M^{(v)}, N^{(v)}\right)}^{0, \lambda:\left(\alpha^{\prime}, \beta^{\prime}\right) \cdots ;\left(\alpha^{(v)} \beta^{(v)}\right)}\left(\begin{array}{c|c}\mathrm{u}_{1} \\ \cdot & {\left[\left(\mathrm{~g}_{j}\right) ; \gamma^{\prime}, \cdots, \gamma^{(v)}\right]_{1, A}:} \\ \cdot \\ \mathrm{u}_{v} & {\left[\left(\mathrm{f}_{j}\right) ; \xi^{\prime}, \cdots, \xi^{(v)}\right]_{1, C}:}\end{array}\right.$

$$
\left.\begin{array}{c}
\left(\mathrm{q}^{(1)}, \eta^{(1)}\right)_{1, M^{(1)}} ; \cdots ;\left(q^{(v)}, \eta^{(v)}\right)_{1, M^{(v)}} \tag{1.1}\\
\cdots \\
\cdots \\
\left(\mathrm{p}^{(1)}, \epsilon^{(1)}\right)_{1, N^{(1)}} ; \cdots ;\left(p^{(v)}, \epsilon^{(v)}\right)_{1, N^{(v)}}
\end{array}\right)=\sum_{G_{i}=1}^{\alpha^{(i)}} \sum_{g_{i}=1}^{\infty} \phi_{1} \frac{\prod_{i=1}^{v} \phi_{i} u_{i}^{\eta_{G_{i}, g_{i}}(-)^{\sum_{i=1}^{v} g_{i}}}}{\prod_{i=1}^{v} \epsilon_{G_{i}}^{(i)} g_{i}!}
$$

where

$$
\begin{equation*}
\phi_{1}=\frac{\prod_{j=1}^{\lambda} \Gamma\left(1-g_{j}+\sum_{i=1}^{v} \gamma_{j}^{(i)} \eta_{G_{i}, g_{i}}\right)}{\prod_{j=\lambda^{\prime}+1}^{A} \Gamma\left(g_{j}-\sum_{i=1}^{v} \gamma_{j}^{(i)} U_{i}\right) \prod_{j=1}^{C} \Gamma\left(1-f_{j}+\sum_{i=1}^{v} \xi_{j}^{(i)} \eta_{G_{i}, g_{i}}\right)} \tag{1.2}
\end{equation*}
$$

$\phi_{i}=\frac{\prod_{j=1, j \neq m_{i}}^{\alpha^{(i)}} \Gamma\left(p_{j}^{(i)}-\epsilon_{j}^{(i)} \eta_{G_{i}, g_{i}}\right) \prod_{j=1}^{\beta^{(i)}} \Gamma\left(1-q_{j}^{(i)}+\eta_{j}^{(i)} \eta_{G_{i}, g_{i}}\right)}{\prod_{j=\alpha^{(i)}+1}^{N^{(i)}} \Gamma\left(1-p_{j}^{(i)}+\epsilon_{j}^{(i)} \eta_{G_{i}, g_{i}}\right) \prod_{j=\beta^{(i)}+1}^{M^{(i)}} \Gamma\left(q_{j}^{(i)}-\eta_{j}^{(i)} \eta_{G_{i}, g_{i}}\right)}, i=1, \cdots, v$
and $\eta_{G_{i}, g_{i}}=\frac{p_{G_{i}}^{(i)}+g_{i}}{\epsilon_{G_{i}}^{(i)}}, i=1, \cdots, v$
which is valid under the following conditions : $\epsilon_{m_{i}}^{(i)}\left[p_{j}^{(i)}+p_{i}^{\prime}\right] \neq \epsilon_{j}^{(i)}\left[p_{m_{i}}+g_{i}\right]$
and
$u_{i} \neq 0, \sum_{j=1}^{A} \gamma_{j}^{(i)}-\sum_{j=1}^{C} \xi_{j}^{(i)}+\sum_{j=1}^{M^{(i)}} \eta_{j}^{(i)}-\sum_{j=1}^{N^{(i)}} \epsilon_{j}^{(i)}<0, i=1, \cdots, v$
Here $\lambda, A, C, \alpha_{i}, \beta_{i}, m_{i}, n_{i} \in \mathbb{N}^{*} ; i=1, \cdots, v ; f_{j}, g_{j}, p_{j}^{(i)}, q_{j}^{(i)}, \gamma_{j}^{(i)}, \xi_{j}^{(i)}, \eta_{j}^{(i)}, \epsilon_{j}^{(i)} \in \mathbb{C}$
The A-function of r-variables is defined and represented in the following manner.
$A\left(z_{1}, \cdots, z_{r}\right)=A_{p, q: p_{1}^{\prime}, q_{1}^{\prime} ; \cdots ; p_{r}^{\prime}, q_{r}^{\prime}}^{m, n: m_{r}^{\prime}, n_{1}^{\prime} ; \cdots ; m_{r}^{\prime}, n_{r}^{\prime}}\left(\begin{array}{c|l}\mathrm{z}_{1} & \left(\mathrm{a}_{j} ; A_{j}^{(1)}, \cdots, A_{j}^{(r)}\right)_{1, p}: \\ \cdot & \\ \cdot & \\ \cdot & \left(\mathrm{b}_{j} ; B_{j}^{(1)}, \cdots, B_{j}^{(r)}\right)_{1, q}: \\ \mathrm{z}_{r} & \end{array}\right.$

$$
\begin{align*}
& \left(\mathrm{c}_{j}^{(1)}, C_{j}^{(1)}\right)_{1, p_{1}} ; \cdots ;\left(c_{j}^{(r)}, C_{j}^{(r)}\right)_{1, p_{r}} \\
& \left.\left(\mathrm{~d}_{j}^{\prime(1)}, D_{j}^{(1)}\right)_{1, q_{1}} ; \cdots ;\left(d_{j}^{\prime(r)}, D_{j}^{(r)}\right)_{1, q_{r}}\right) \tag{1.7}\\
& \quad=\frac{1}{(2 \pi \omega)^{r}} \int_{L_{1}} \cdots \int_{L_{r}} \phi\left(s_{1}, \cdots, s_{r}\right) \prod_{i=1}^{r} \theta_{i}\left(s_{i}\right) z_{i}^{s_{i}} \mathrm{~d} s_{1} \cdots \mathrm{~d} s_{r}
\end{align*}
$$

where $\phi\left(s_{1}, \cdots, s_{r}\right), \theta_{i}\left(s_{i}\right), i=1, \cdots, r$ are given by :

$$
\begin{equation*}
\phi\left(s_{1}, \cdots, s_{r}\right)=\frac{\prod_{j=1}^{m} \Gamma\left(b_{j}-\sum_{i=1}^{r} B_{j}^{(i)} s_{i}\right) \prod_{j=1}^{n} \Gamma\left(1-a_{j}+\sum_{i=1}^{r} A_{j}^{(i)} s_{j}\right)}{\prod_{j=n+1}^{p} \Gamma\left(a_{j}-\sum_{i=1}^{r} A_{j}^{(i)} s_{j}\right) \prod_{j=m+1}^{q} \Gamma\left(1-b_{j}+\sum_{i=1}^{r} B_{j}^{(i)} s_{j}\right)} \tag{1.9}
\end{equation*}
$$

$\theta_{i}\left(s_{i}\right)=\frac{\prod_{j=1}^{n_{i}^{\prime}} \Gamma\left(1-c_{j}^{(i)}+C_{j}^{(i)} s_{i}\right) \prod_{j=1}^{m_{i}^{\prime}} \Gamma\left(d_{j}^{\prime}{ }^{(i)}-D_{j}^{(i)} s_{i}\right)}{\prod_{j=n_{i}^{\prime}+1}^{p_{i}} \Gamma\left(c_{j}^{(i)}-C_{j}^{(i)} s_{i}\right) \prod_{j=m_{i}^{\prime}+1}^{q_{i}} \Gamma\left(1-d_{j}^{\prime(i)}+D_{j}^{(i)} s_{i}\right)}$

Here $m, n, p, m_{i}^{\prime}, n_{i}^{\prime}, p_{i}^{\prime}, c_{i}^{\prime} \in \mathbb{N}^{*} ; i=1, \cdots, r ; a_{j}, b_{j}, c_{j}^{(i)}, d_{j}^{\prime(i)}, A_{j}^{(i)}, B_{j}^{(i)}, C_{j}^{(i)}, D_{j}^{(i)} \in \mathbb{C}$
The multiple integral defining the A -function of r variables converges absolutely if :
$\left|\arg \left(\Omega_{i}\right) z_{k}\right|<\frac{1}{2} \eta_{k} \pi, \xi^{*}=0, \eta_{i}>0$
$\Omega_{i}=\prod_{j=1}^{p}\left\{A_{j}^{(i)}\right\}^{A_{j}^{(i)}} \prod_{j=1}^{q}\left\{B_{j}^{(i)}\right\}^{-B_{j}^{(i)}} \prod_{j=1}^{q_{i}^{\prime}}\left\{D_{j}^{(i)}\right\}^{D_{j}^{(i)}} \prod_{j=1}^{p_{i}^{\prime}}\left\{C_{j}^{(i)}\right\}^{-C_{j}^{(i)}} ; i=1, \cdots, r$
$\xi_{i}^{*}=\operatorname{Im}\left(\sum_{j=1}^{p} A_{j}^{(i)}-\sum_{j=1}^{q} B_{j}^{(i)}+\sum_{j=1}^{q_{i}^{\prime}} D_{j}^{(i)}-\sum_{j=1}^{p_{i}^{\prime}} C_{j}^{(i)}\right) ; i=1, \cdots, r$
$\eta_{i}=\operatorname{Re}\left(\sum_{j=1}^{n} A_{j}^{(i)}-\sum_{j=n+1}^{p} A_{j}^{(i)}+\sum_{j=1}^{m} B_{j}^{(i)}-\sum_{j=m+1}^{q} B_{j}^{(i)}+\sum_{j=1}^{m_{i}^{\prime}} D_{j}^{(i)}-\sum_{j=m_{i}^{\prime}+1}^{q_{i}^{\prime}} D_{j}^{(i)}+\sum_{j=1}^{n_{i}^{\prime}} C_{j}^{(i)}-\sum_{j=n_{i}^{\prime}+1}^{p_{i}^{\prime}} C_{j}^{(i)}\right)$
$i=1, \cdots, r$
Srivastava and Garg [5] introduced and defined a general class of multivariable polynomials as follows

$$
\begin{equation*}
S_{L}^{h_{1}, \cdots, h_{u}}\left[z_{1}, \cdots, z_{u}\right]=\sum_{R_{1}, \cdots, R_{u}=0}^{h_{1} R_{1}+\cdots h_{u} R_{u} \leqslant L}(-L)_{h_{1} R_{1}+\cdots+h_{u} R_{u}} B\left(E ; R_{1}, \cdots, R_{u}\right) \frac{z_{1}^{R_{1}} \cdots z_{u}^{R_{u}}}{R_{1}!\cdots R_{u}!} \tag{1.15}
\end{equation*}
$$

2. Integral representation of generalized Lauricella function of several variables

The following generalized hypergeometric function in terms of multiple contour integrals is also required [6,page 39 eq .30]
$\frac{\prod_{j=1}^{P} \Gamma\left(A_{j}\right)}{\prod_{j=1}^{Q} \Gamma\left(B_{j}\right)}{ }_{P} F_{Q}\left[\left(A_{P}\right) ;\left(B_{Q}\right) ;-\left(x_{1}+\cdots+x_{r}\right)\right]$
$=\frac{1}{(2 \pi \omega)^{r}} \int_{L_{1}} \cdots \int_{L_{r}} \frac{\prod_{j=1}^{P} \Gamma\left(A_{j}+s_{1}+\cdots+s_{r}\right)}{\prod_{j=1}^{Q} \Gamma\left(B_{j}+s_{1}+\cdots+s_{r}\right)} \Gamma\left(-s_{1}\right) \cdots \Gamma\left(-s_{r}\right) x_{1}^{s_{1}} \cdots x_{r}^{s_{r}} \mathrm{~d} s_{1} \cdots \mathrm{~d} s_{r}$
where the contours are of Barnes type with indentations, if necessary, to ensure that the poles of $\Gamma\left(A_{j}+s_{1}+\cdots+s_{r}\right)$ are separated from those of $\Gamma\left(-s_{j}\right), j=1, \cdots, r$. The above result (1.23) can be easily established by an appeal to the calculus of residues by calculating the residues at the poles of $\Gamma\left(-s_{j}\right), j=1, \cdots, r$
In order to evaluate a number of integrals of multivariable I-function, we first establish the formula
$\int_{a}^{b}(t-a)^{\alpha-1}(b-t)^{\beta-1} \prod_{j=1}^{l}\left[1-\tau_{j}(t-a)^{h_{i}}\right]^{-\lambda_{j}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{\sigma_{j}} \mathrm{~d} t=(b-a)^{\alpha+\beta-1} B(\alpha, \beta) \prod_{j=1}^{k}\left(a f_{j}+g_{j}\right)^{\sigma_{j}}$
$F_{\substack{1: 0, \cdots, 0 ; 0, \cdots, 0}}^{1: 1, \cdots, 1 ; 1 \cdots, 1}\left(\begin{array}{c}\left(\alpha: h_{1}, \cdots, h_{l}, 1, \cdots, 1\right):\left(\lambda_{1}: 1\right), \cdots,\left(\lambda_{l}: 1\right) ;\left(-\sigma_{1}: 1\right), \cdots,\left(-\sigma_{k}: 1\right) \\ \cdots \\ \left(\alpha+\beta: h_{1}, \cdots, h_{l}, 1, \cdots, 1\right):-, \cdots,-;-, \cdots,-\end{array}\right.$
$\left.; \tau_{1}(b-a)^{h_{1}}, \cdots, \tau_{l}(b-a)^{h_{l}},-\frac{(b-a) f_{1}}{a f_{1}+g_{1}}, \cdots,-\frac{(b-a) f_{k}}{a f_{k}+g_{k}}\right)$
where $a, b \in \mathbb{R}(a<b), \alpha, \beta, f_{i}, g_{i}, \sigma_{i}, \tau_{j}, h_{j} \in \mathbb{C}, \lambda_{j} \in \mathbb{R}^{+}(i=1, \cdots, k ; j=1, \cdots, l)$
$\min (\operatorname{Re}(\alpha), \operatorname{Re}(\beta))>0, \max _{1 \leqslant j \leqslant l}\left\{\left|\tau_{j}(b-a)^{h_{j}}\right|\right\}<1, \max _{1 \leqslant j \leqslant k}\left\{\left|\frac{(b-a) f_{i}}{a f_{i}+g_{i}}\right|\right\}<1$,
and $F_{1: 0, \cdots, 0 ; 0, \cdots, 0}^{1: 1, \cdots, 1 ; 1 \cdots, 1}$ is a particular case of the generalized Lauricella function introduced by Srivastava-Daoust[4,page 454] given by :
$F_{\substack{1: 0, \cdots, 0 ; 0, \cdots, 0}}^{1: 1, \cdots, 1 ; 1 \cdots, 1}\left(\begin{array}{c}\left(\alpha: h_{1}, \cdots, h_{l}, 1, \cdots, 1\right):\left(\lambda_{1}: 1\right), \cdots,\left(\lambda_{l}: 1\right) ;\left(-\sigma_{1}: 1\right), \cdots,\left(-\sigma_{k}: 1\right) \\ \cdots \\ \left(\alpha+\beta: h_{1}, \cdots, h_{l}, 1, \cdots, 1\right):-, \cdots,-;-, \cdots,-\end{array}\right.$

$$
\begin{align*}
& \left.; \tau_{1}(b-a)^{h_{1}}, \cdots, \tau_{l}(b-a)^{h_{l}},-\frac{(b-a) f_{1}}{a f_{1}+g_{1}}, \cdots,-\frac{(b-a) f_{k}}{a f_{k}+g_{k}}\right)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \prod_{j=1}^{l} \Gamma\left(\lambda_{j}\right) \prod_{j=1}^{k} \Gamma\left(-\sigma_{j}\right)} \\
& \frac{1}{(2 \pi \omega)^{l+k}} \int_{L_{1}} \cdots \int_{L_{l+k}} \frac{\Gamma\left(\alpha+\sum_{j=1}^{l} h_{j} w_{j}+\sum_{j=1}^{k} w_{l+j}\right)}{\Gamma\left(\alpha+\beta+\sum_{j=1}^{l} h_{j} w_{j}+\sum_{j=1}^{k} w_{l+j}\right)} \prod_{j=1}^{l} \Gamma\left(\lambda_{j}+w_{j}\right) \prod_{j=1}^{k} \Gamma\left(-\sigma_{j}+w_{l+j}\right) \\
& \prod_{j=1}^{l+k} \Gamma\left(-w_{j}\right) z_{1}^{w_{1}} \cdots z_{l}^{w_{l}} z_{l+1}^{w_{l+1}} \cdots, w_{l+k}^{w_{l+k}} \mathrm{~d} w_{1} \cdots \mathrm{~d} w_{l+k} \tag{2.3}
\end{align*}
$$

Here the contour $L_{j}^{\prime} s$ are defined by $L_{j}=L_{w \zeta_{j} \infty}\left(\operatorname{Re}\left(\zeta_{j}\right)=v_{j}^{\prime \prime}\right)$ starting at the point $v_{j}^{\prime \prime}-\omega \infty$ and terminating at the point $v_{j}^{\prime \prime}+\omega \infty$ with $v_{j}^{\prime \prime} \in \mathbb{R}(j=1, \cdots, l)$ and each of the remaining contour L_{l+1}, \cdots, L_{l+k} run from $-\omega \infty$ to $\omega \infty$ (2.2) can be easily established by expanding $\prod_{j=1}^{l}\left[1-\tau_{j}(t-a)^{h_{i}}\right]^{-\lambda_{j}}$ by means of the formula :
$(1-z)^{-\alpha}=\sum_{r=0}^{\infty} \frac{(\alpha)_{r}}{r!} z^{r}(|z|<1)$
integrating term by term with the help of the integral given by Saigo and Saxena [2 page 93, eq.(3.2)] and applying the definition of the generalized Lauricella function [4, page 454].

3. Eulerian integral

In this section, we evaluate a general Eulerian integral with the product of the multivariable Aleph-function, the multivariable A-function defined by Gautam et al [1], a class of multivariable polynomials and generalized hypergeometric function. We note
$B_{u}=\frac{(-L)_{h_{1} R_{1}+\cdots+h_{u} R_{u} B\left(E ; R_{1}, \cdots, R_{u}\right)}^{R_{1}!\cdots R_{u}!}}{\text { 位 }}$
and $B_{u, v}=(b-a)^{\sum_{i=1}^{v}\left(a_{i}^{\prime}+b_{i}^{\prime}\right) \eta_{G_{i}, g_{i}}+\sum_{i=1}^{u}\left(a_{i}+b_{i}\right) R_{i}}\left\{\prod_{j=1}^{h}\left(a f_{j}+g_{j}\right)^{-\sum_{i=1}^{v} \lambda_{i}^{\prime \prime \prime} \eta_{G_{i}, g_{i}}-\sum_{i=1}^{u} \lambda_{i}^{\prime \prime} R_{i}}\right\} G_{v}$
where $G_{v}=\phi_{1} \frac{\prod_{i=1}^{v} \phi_{i} u_{i}^{\eta_{G_{i}, g_{i}}}(-)^{\sum_{i=1}^{v} g_{i}}}{\prod_{i=1}^{v} \epsilon_{G_{i}}^{(i)} g_{i}!}$
ϕ_{1}, ϕ_{i} for $i=1, \cdots, v$ are defined respectively by (1.2) and (1.3)
$\theta_{i}=\prod_{j=1}^{l}\left[1-\tau_{j}(t-a)^{h_{i}}\right]^{-\zeta_{j}^{(i)}}, \zeta_{j}^{(i)}>0(i=1, \cdots, r) ; \theta_{i}^{\prime}=\prod_{j=1}^{l}\left[1-\tau_{j}(t-a)^{h_{i}}\right]^{-\zeta_{j}^{\prime(i)}}, \zeta_{j}^{(i)}>0(i=1, \cdots, s)$
$\theta_{i}^{\prime \prime}=\prod_{j=1}^{l}\left[1-\tau_{j}(t-a)^{h_{i}}\right]^{\left.-\zeta_{j}^{\prime \prime(}\right)}, \zeta_{j}^{\prime \prime(i)}>0(i=1, \cdots, u)$
$\theta_{i}^{\prime \prime \prime}=\prod_{j=1}^{l}\left[1-\tau_{j}(t-a)^{h_{i}}\right]^{-\zeta_{j}^{\prime \prime \prime}(i)}, \zeta_{j}^{\prime \prime \prime(i)}>0(i=1, \cdots, v)$
$X=m_{1}, n_{1} ; \cdots ; m_{r}, n_{r} ; 1,0 ; \cdots ; 1,0 ; 1,0 ; \cdots ; 1,0 ; 1,0 ; \cdots ; 1,0$
$Y=p_{1}, q_{1} ; \cdots ; p_{r}, q_{r} ; 1,0 ; \cdots ; 1,0 ; 0,1 ; \cdots ; 0,1 ; 0,1 ; \cdots ; 0,1$
$A=\left(a_{j} ; A_{j}^{(1)}, \cdots, A_{j}^{(r)}, 0, \cdots, 0,0, \cdots, 0,0, \cdots, 0\right)_{1, p}$
$B=\left(b_{j} ; B_{j}^{(1)}, \cdots, B_{j}^{(r)}, 0 \cdots, 0,0 \cdots, 0,0 \cdots, 0\right)_{1, q}$
$\mathrm{C}=\left(\mathrm{c}_{j}^{(1)}, C_{j}^{(1)}\right)_{1, p_{1}} ; \cdots ;\left(c_{j}^{(r)}, C_{j}^{(r)}\right)_{1, p_{r}} ;(1,0) \cdots ;(1,0) ;$
$(1,0) ; \cdots ;(1,0) ;(1,0) ; \cdots ;(1,0)$
$D=\left(\mathrm{d}_{j}^{(1)}, D_{j}^{(1)}\right)_{1, q_{1}} ; \cdots ;\left(d_{j}^{(r)}, D_{j}^{(r)}\right)_{1, q_{r}} ;(1,0) ; \cdots ;(1,0)$
$(0,1) ; \cdots ;(0,1) ;(0,1) ; \cdots ;(0,1)$
$K_{1}=\left(1-\alpha-\sum_{i=1}^{u} R_{i} a_{i}-\sum_{i=1}^{v} \eta_{G_{i}, g_{i}} a_{i}^{\prime} ; \mu_{1}, \cdots, \mu_{r}, \mu_{1}^{\prime}, \cdots, \mu_{s}^{\prime}, h_{1}, \cdots, h_{l}, 1, \cdots, 1\right)$
$K_{2}=\left(1-\beta-\sum_{i=1}^{u} R_{i} b_{i}-\sum_{i=1}^{v} \eta_{G_{i}, g_{i}} b_{i}^{\prime} ; \rho_{1}, \cdots, \rho_{r}, \rho_{1}^{\prime}, \cdots, \rho_{s}^{\prime}, 0, \cdots, 0,0 \cdots, 0\right)$
$K_{P}=\left[1-A_{j} ; 0, \cdots, 0,1, \cdots, 1,0, \cdots, 0,0, \cdots, 0\right]_{1, P}$
$K_{j}=\left[1-\lambda_{j}-\sum_{i=1}^{u} R_{i} \zeta_{j}^{\prime \prime(i)}-\sum_{i=1}^{v} \eta_{G_{i}, g_{i}} \zeta_{j}^{\prime \prime \prime(i)} ; \zeta_{j}^{(1)}, \cdots, \zeta_{j}^{(r)}, \zeta_{j}^{\prime(1)} \cdots, \zeta_{j}^{\prime(s)}\right.$,
$0, \cdots, 1, \cdots, 0,0 \cdots, 0]_{1, l}$
$K_{j}^{\prime}=\left[1+\sigma_{j}-\sum_{i=1}^{u} R_{i} \lambda_{j}^{\prime \prime(i)}-\sum_{i=1}^{v} \eta_{G_{i}, g_{i}} \lambda_{j}^{\prime \prime \prime(i)} ; \lambda_{j}^{(1)}, \cdots, \lambda_{j}^{(r)}, \lambda_{j}^{\prime(1)} \cdots, \lambda_{j}^{\prime(s)}\right.$,
$0, \cdots, 0,0 \cdots, \underset{\mathrm{j}}{1, \cdots, 0]_{1, k}}$
$L_{1}=\left(1-\alpha-\beta-\sum_{i=1}^{u} R_{i}\left(a_{i}+b_{i}\right)-\sum_{i=1}^{v}\left(a_{i}^{\prime}+b_{i}^{\prime}\right) \eta_{G_{i}, g_{i}} ; \mu_{1}+\rho_{1}, \cdots, \mu_{r}+\rho_{r}, \mu_{1}^{\prime}+\rho_{1}^{\prime}, \cdots, \mu_{r}^{\prime}+\rho_{r}^{\prime}\right.$,
$\left.h_{1}, \cdots, h_{l}, 1, \cdots, 1\right)$
$L_{Q}=\left[1-B_{j} ; 0, \cdots, 0,1, \cdots, 1,0, \cdots, 0,0 \cdots, 0\right]_{1, Q}$
$L_{j}=\left[1-\lambda_{j}-\sum_{i=1}^{u} R_{i} \zeta_{j}^{\prime \prime(i)}-\sum_{i=1}^{s} \zeta_{j}^{\prime \prime \prime(i)} \eta_{G_{i}, g_{i}} ; \zeta_{j}^{(1)}, \cdots, \zeta_{j}^{(r)}, \zeta_{j}^{(1)} \cdots, \zeta_{j}^{\prime(s)}, 0, \cdots, 0,0 \cdots, 0\right]_{1, l}$
$L_{j}^{\prime}=\left[1+\sigma_{j}-\sum_{i=1}^{u} R_{i} \lambda_{j}^{\prime \prime(i)}-\sum_{i=1}^{v} \lambda_{j}^{\prime \prime \prime(i)} \eta_{G_{i}, g_{i}} ; \lambda_{j}^{(1)}, \cdots, \lambda_{j}^{(r)}, \lambda_{j}^{\prime(1)} \cdots, \lambda_{j}^{\prime(s)}, 0, \cdots, 0,0, \cdots, 0\right]_{1, k(3.19)}$

We have the general Eulerian integral

$$
\begin{aligned}
& \int_{a}^{b}(t-a)^{\alpha-1}(b-t)^{\beta-1} \prod_{j=1}^{l}\left[1-\tau_{j}(t-a)^{k_{j}}\right]^{-\lambda_{j}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{\sigma_{j}} \\
& S_{L}^{h_{1}, \cdots, h_{u}}\left(\begin{array}{c}
\mathrm{z}_{1}^{\prime \prime} \theta_{1}^{\prime \prime}(t-a)^{a_{1}}(b-t)^{b_{1}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime \prime(1)}} \\
\vdots \\
\mathrm{z}_{u}^{\prime \prime} \theta_{u}^{\prime \prime}(t-a)^{a_{u}}(b-t)^{b_{u}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime \prime(u)}}
\end{array}\right)
\end{aligned}
$$

$$
A\left(\begin{array}{c}
\mathrm{z}_{1}^{\prime \prime \prime} \theta_{1}^{\prime \prime \prime}(t-a)^{a_{1}^{\prime}}(b-t)^{b_{1}^{\prime}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime \prime \prime}(1)} \\
\cdot \\
\mathrm{z}_{v}^{\prime \prime \prime} \theta_{v}^{\prime \prime \prime}(t-a)^{a_{v}^{\prime}}(b-t)^{b_{v}^{\prime}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime \prime \prime}(v)}
\end{array}\right)
$$

$$
A\left(\begin{array}{c}
\mathrm{z}_{1} \theta_{1}(t-a)^{\mu_{1}}(b-t)^{\rho_{1}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{(1)}} \\
\vdots \\
\mathrm{z}_{r} \theta_{r}(t-a)^{\mu_{r}}(b-t)^{\rho_{r}} \\
\prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{(r)}}
\end{array}\right)
$$

${ }_{P} F_{Q}\left[\left(A_{P}\right) ;\left(B_{Q}\right) ;-\sum_{i=1}^{s} z_{i}^{\prime} \theta_{i}^{\prime}(t-a)^{\mu_{i}^{\prime}}(b-t)^{\rho_{i}^{\prime}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime(i)}}\right] \mathrm{d} t=$

$$
(b-a)^{\alpha+\beta-1} \frac{\prod_{j=1}^{Q} \Gamma\left(B_{j}\right)}{\prod_{j=1}^{P} \Gamma\left(A_{j}\right)} \prod_{j=1}\left(a f_{j}+g_{j}\right)^{\sigma_{j}} \sum_{g_{1}, \cdots, g_{v}=0}^{\infty} \sum_{G_{1}=0}^{\alpha^{(1)}} \cdots \sum_{G_{v}=0}^{\alpha^{(v)}} \sum_{R_{1}, \cdots, R_{u}=0}^{h_{1} R_{1}+\cdots h_{u} R_{u} \leqslant L} \prod_{i=1}^{v} z_{i}^{\prime \prime \prime \prime} \bar{G}_{i}, g_{i} \prod_{k=1}^{u} z^{\prime \prime K_{k}} B_{u} B_{u, v}
$$

$A_{p+P+l+k+2, q+Q+l+k+1 ; Y}^{m, n+P+l+k+2 ; X}$	$\left(\begin{array}{c} \frac{z_{1}(b-a)^{\mu_{1}+\rho_{1}}}{\prod_{j=1}^{k}\left(a f_{j}+g_{j}\right)^{\lambda_{j}^{(1)}}} \tag{3.20}\\ \cdots \cdot \\ \cdots \cdot \\ \frac{z_{r}(b-a)^{\mu_{r}+\rho_{r}}}{\prod_{j=1}^{k}\left(a f_{j}+g_{j}\right)^{\lambda_{j}^{(r)}}} \\ \frac{z_{1}^{\prime}(b-a)^{\mu_{1}^{\prime}+\rho_{1}^{\prime}}}{\prod_{j=1}^{k}\left(a f_{j}+g_{j}\right)^{\lambda_{j}^{\prime(1)}}} \\ \cdots \cdot \\ \cdots \\ \frac{z_{s}^{\prime}(b-a)^{\mu_{s}^{\prime}+\rho_{s}^{\prime}}}{\prod_{j=1}^{k}\left(a f_{j}+g_{j}\right)^{\lambda_{j}^{\prime}(s)}} \\ \tau_{1}(b-a)^{h_{1}} \\ \cdots \cdot \\ \cdots \cdot \\ \tau_{l}(b-a)^{h_{l}} \\ \frac{(b-a) f_{1}}{a f_{1}+g_{1}} \\ \cdots \cdot \\ \cdots \cdot \\ \frac{(b-a) f_{k}}{a f_{k}+g_{k}} \end{array}\right.$	$\mathrm{A} ; \mathrm{K}_{1}, K_{2}, K_{3}, K_{j}, K_{j}^{\prime}: C$ $\mathrm{B}, \mathrm{~L}_{1}, L_{2}, L_{j}, L_{j}^{\prime}: D$

This result is an extansion the formula given by Saxena et al [3]. Provided that
(A) $a, b \in \mathbb{R}(a<b) ; \mu_{i}, \mu_{u}^{\prime}, \rho_{i}, \rho_{u}^{\prime}, \lambda_{j}^{(i)}, \lambda_{j}^{\prime(u)}, h_{v} \in \mathbb{R}^{+}, f_{i}, g_{j}, \tau_{v}, \sigma_{j}, \lambda_{v} \in \mathbb{C}(i=1, \cdots, r ; j=1, \cdots ; k$;
$u=1, \cdots, s ; v=1, \cdots, l), a_{i}, b_{i}, \lambda_{j}^{\prime \prime(i)}, \zeta_{j}^{\prime \prime(i)} \in \mathbb{R}^{+},(i=1, \cdots, u ; j=1, \cdots, k)$
$a_{i}^{\prime}, b_{i}^{\prime}, \lambda_{j}^{\prime \prime \prime(i)}, \zeta_{j}^{\prime \prime \prime(i)} \in \mathbb{R}^{+},(i=1, \cdots, v ; j=1, \cdots, k)$
(B) $m, n, p, m_{i}^{\prime}, n_{i}^{\prime}, p_{i}^{\prime}, q_{i}^{\prime} \in \mathbb{N}^{*} ; i=1, \cdots, r ; \max _{1 \leqslant j \leqslant k}\left\{\left|\frac{(b-a) f_{i}}{a f_{i}+g_{i}}\right|\right\}<1$
(D) $R e\left[\alpha+\sum_{i=1}^{v} a_{i}^{\prime} \min _{1 \leqslant j \leqslant \alpha^{(i)}} \frac{p_{j}^{(i)}}{\epsilon_{j}^{(i)}}+\sum_{i=1}^{r} \mu_{i} \min _{1 \leqslant j \leqslant m_{i}^{\prime}} \frac{d_{j}^{(i)}}{D_{j}^{(i)}}\right]>0$ and
$R e\left[\beta+\sum_{i=1}^{v} b_{i}^{\prime} \min _{1 \leqslant j \leqslant \alpha^{(i)}} \frac{p_{j}^{(i)}}{\epsilon_{j}^{(i)}}+\sum_{i=1}^{r} \rho_{i} \min _{1 \leqslant j \leqslant m_{i}^{\prime}} \frac{d_{j}^{(i)}}{D_{j}^{(i)}}\right]>0$
(E) $R e\left(\alpha+\sum_{i=1}^{v} \eta_{G_{i}, g_{i}} a_{i}^{\prime}+\sum_{i=1}^{u} R_{i} a_{i}+\sum_{i=1}^{r} \mu_{i} s_{i}+\sum_{i=1}^{l} h_{i} w_{i}\right)>0 ; R e\left(\beta+\sum_{i=1}^{v} \eta_{G_{i}, g_{i}} b_{i}^{\prime}+\sum_{i=1}^{u} R_{i} b_{i}+\sum_{i=1}^{r} \rho_{i} s_{i}\right)>0$
$\operatorname{Re}\left(\lambda_{j}+\sum_{i=1}^{v} \eta_{G_{i}, g_{i}} \lambda_{j}^{\prime \prime \prime(i)}+\sum_{i=1}^{u} R_{i} \lambda_{j}^{\prime \prime(i)}+\sum_{i=1}^{r} s_{i} \zeta_{j}^{(i)}\right)>0(j=1, \cdots, l)$
$R e\left(-\sigma_{j}+\sum_{i=1}^{v} \eta_{G_{i}, g_{i}} \lambda^{\prime \prime \prime(i)}+\sum_{i=1}^{u} R_{i} \lambda_{j}^{\prime \prime(i)}+\sum_{i=1}^{r} s_{i} \lambda_{j}^{(i)}\right)>0(j=1, \cdots, k)$
(F) $\left|\arg \left(\Omega_{i}\right) z_{k}\right|<\frac{1}{2} \eta_{i} \pi, \xi^{*}=0, \eta_{i}>0$
$\Omega_{i}=\prod_{j=1}^{p}\left\{A_{j}^{(i)}\right\}^{A_{j}^{(i)}} \prod_{j=1}^{q}\left\{B_{j}^{(i)}\right\}^{-B_{j}^{(i)}} \prod_{j=1}^{q_{i}^{\prime}}\left\{D_{j}^{(i)}\right\}^{D_{j}^{(i)}} \prod_{j=1}^{p_{i}^{\prime}}\left\{C_{j}^{(i)}\right\}^{-C_{j}^{(i)}} ; i=1, \cdots, r$
$\xi_{i}^{*}=\operatorname{Im}\left(\sum_{j=1}^{p} A_{j}^{(i)}-\sum_{j=1}^{q} B_{j}^{(i)}+\sum_{j=1}^{q_{i}^{\prime}} D_{j}^{(i)}-\sum_{j=1}^{p_{i}^{\prime}} C_{j}^{(i)}\right) ; i=1, \cdots, r$
$\eta_{i}=\operatorname{Re}\left(\sum_{j=1}^{n} A_{j}^{(i)}-\sum_{j=n+1}^{p} A_{j}^{(i)}+\sum_{j=1}^{m} B_{j}^{(i)}-\sum_{j=m+1}^{q} B_{j}^{(i)}+\sum_{j=1}^{m_{i}^{\prime}} D_{j}^{(i)}-\sum_{j=m_{i}^{\prime}+1}^{q_{i}^{\prime}} D_{j}^{(i)}+\sum_{j=1}^{n_{i}^{\prime}} C_{j}^{(i)}-\sum_{j=n_{i}^{\prime}+1}^{p_{i}^{\prime}} C_{j}^{(i)}\right)$
$-\mu_{i}-\rho_{i}-\sum_{l=1}^{k} \lambda_{l}^{(i)}>0 ; i=1, \cdots, r$
(G) $\left|\arg \left(z_{i} \prod_{j=1}^{l}\left[1-\tau_{j}(t-a)^{h_{i}}\right]^{-\zeta_{j}^{(i)}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{(i)}}\right)\right|<\frac{1}{2} \eta_{i} \pi \quad(a \leqslant t \leqslant b ; i=1, \cdots, r)$
(H) $P \leqslant Q+1$. The equality holds, when, in addition,
either $P>Q$ and $\left|\left(z_{i}^{\prime} \sum_{i=1}^{l}\left[1-\tau_{j}(t-a)^{h_{i}}\right]^{-\zeta_{j}^{\prime(i)}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime(i)}}\right)\right|^{\frac{1}{Q-P}}<1(a \leqslant t \leqslant b)$
or $P \leqslant Q$ and $\max _{1 \leqslant i \leqslant k}\left[\left|\left(z_{i}^{\prime} \sum_{j=1}^{l}\left[1-\tau_{j}(t-a)^{h_{i}}\right]^{-\zeta_{j}^{\prime(i)}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime(i)}}\right)\right|\right]<1(a \leqslant t \leqslant b)$
(I) The multiple series occuring on the right-hand side of (3.20) is absolutely and uniformly convergent.

Proof

To prove (3.20), first, we express in serie the multivariable A-function with the help of (1.1), a class of multivariable polynomials defined by Srivastava et al [6] $S_{L}^{h_{1}, \cdots, h_{u}}[$.$] in serie with the help of (1.15) and we interchange the order$ of summations and t-integral (which is permissible under the conditions stated). Expressing the A-functions of rvariables defined by Gautam et al [1] and in terms of Mellin-Barnes type contour integral with the help of (1.8), the generalized hypergeometric function ${ }_{P} F_{Q}($.$) in Mellin-Barnes contour integral with the help of (2.1) and interchange$ the order of integrations which is justifiable due to absolute convergence of the integral involved in the process. Now collect the power of $\left[1-\tau_{j}(t-a)^{h_{i}}\right]$ with $(i=1, \cdots, r ; j=1, \cdots, l)$ and collect the power of $\left(f_{j} t+g_{j}\right)$ with $j=1, \cdots, k$. Use the equations (2.2) and (2.3) and express the result in Mellin-Barnes contour integral. Interpreting the $(r+s+k+l)$ dimensional Mellin-Barnes integral to multivariable A-function, we obtain the equation (3.20).

4. Particular cases

a)If $A_{j}^{(i)}, B_{j}^{(i)}, C_{j}^{(i)}, D_{j}^{(i)} \in \mathbb{R}$ and $m=0$, the multivariable A-functions reduces to multivariable H -functions defined by Srivastava et al [7], we obtain the following integral

$$
\int_{a}^{b}(t-a)^{\alpha-1}(b-t)^{\beta-1} \prod_{j=1}^{l}\left[1-\tau_{j}(t-a)^{h_{i}}\right]^{-\lambda_{j}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{\sigma_{j}}
$$

$$
S_{L}^{h_{1}, \cdots, h_{u}}\left(\begin{array}{c}
\mathrm{z}_{1}^{\prime \prime} \theta_{1}^{\prime \prime}(t-a)^{a_{1}}(b-t)^{b_{1}} \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
\left.\mathrm{z}_{u}^{\prime \prime} \theta_{u}^{\prime \prime}(t-a)^{a_{u}}(b-t)^{b_{u}} t+g_{j}\right)^{-\lambda_{j}^{\prime \prime(1)}} \\
j=1
\end{array}\right)
$$

$$
A\left(\begin{array}{c}
\mathrm{z}_{1}^{\prime \prime \prime} \theta_{1}^{\prime \prime \prime}(t-a)^{a_{1}^{\prime}}(b-t)^{b_{1}^{\prime}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime \prime \prime(1)}} \\
\cdot \\
\cdot \\
\cdot \\
\mathrm{z}_{v}^{\prime \prime \prime} \theta_{v}^{\prime \prime \prime}(t-a)^{a_{v}^{\prime}}(b-t)^{b_{v}^{\prime}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime \prime \prime}(v)}
\end{array}\right) H\left(\begin{array}{c}
\mathrm{z}_{1} \theta_{1}(t-a)^{\mu_{1}}(b-t)^{\rho_{1}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{(1)}} \\
\cdot \\
\cdot \\
\cdot \\
\mathrm{z}_{r} \theta_{r}(t-a)^{\mu_{r}}(b-t)^{\rho_{r}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{(r)}}
\end{array}\right)
$$

$$
{ }_{P} F_{Q}\left[\left(A_{P}\right) ;\left(B_{Q}\right) ;-\sum_{i=1}^{s} z_{i}^{\prime} \theta_{i}^{\prime}(t-a)^{\mu_{i}^{\prime}}(b-t)^{\rho_{i}^{\prime}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime(i)}}\right] \mathrm{d} t=
$$

$$
(b-a)^{\alpha+\beta-1} \frac{\prod_{j=1}^{Q} \Gamma\left(B_{j}\right)}{\prod_{j=1}^{P} \Gamma\left(A_{j}\right)} \prod_{j=1}\left(a f_{j}+g_{j}\right)^{\sigma_{j}} \sum_{g_{1}, \cdots, g_{v}=0}^{\infty} \sum_{G_{1}=0}^{\alpha^{(1)}} \cdots \sum_{G_{v}=0}^{\alpha^{(v)}} \sum_{R_{1}, \cdots, R_{u}=0}^{h_{1} R_{1}+\cdots h_{u} R_{u} \leqslant L} \prod_{i=1}^{v} z_{i}^{\prime \prime \prime \prime} \eta_{h_{i}, k_{i}}^{u} \prod_{k=1}^{u} z^{\prime \prime K_{k}} B_{u} B_{u, v}
$$

$\begin{gathered} \frac{z_{1}(b-a)^{\mu_{1}+\rho_{1}}}{\prod_{j=1}^{k}\left(a f_{j}+g_{j}\right)^{\lambda_{j}^{(1)}}} \\ \cdots \cdot \\ \frac{z_{r}(b-a)^{\mu_{r}+\rho_{r}}}{\prod_{j=1}^{k}\left(a f_{j}+g_{j}\right)^{\lambda_{j}^{(r)}}} \\ \frac{z_{1}^{\prime}(b-a)^{\mu_{1}^{\prime}+\rho_{1}^{\prime}}}{\prod_{j=1}^{k}\left(a f_{j}+g_{j}\right)^{\lambda_{j}^{\prime(1)}}} \\ \cdots \cdot \\ \cdots \cdot \\ \frac{z_{s}^{\prime}(b-a)^{\mu_{s}^{\prime}+\rho_{s}^{\prime}}}{\prod_{j=1}^{k}\left(a f_{j}+g_{j}\right)^{\lambda_{j}^{\prime(s)}}} \\ \tau_{1}(b-a)^{h_{1}} \\ \cdots \cdot \\ \cdots \cdot \\ \tau_{l}(b-a)^{h_{l}} \\ \frac{(b-a) f_{1}}{a f_{1}+g_{1}} \\ \cdots \cdot \\ \cdots \\ \frac{(b-a) f_{k}}{a f_{k}+g_{k}} \end{gathered}$	A ; $\mathrm{K}_{1}, K_{2}, K_{3}, K_{j}, K_{j}^{\prime}: C$ $\mathrm{B}, \mathrm{~L}_{1}, L_{2}, L_{j}, L_{j}^{\prime}: D$

under the same notations and validity conditions that (3.20) with $A_{j}^{(i)}, B_{j}^{(i)}, C_{j}^{(i)}, D_{j}^{(i)} \in \mathbb{R}, m=0$.
b) If $B\left(L ; R_{1}, \cdots, R_{u}\right)=\frac{\prod_{j=1}^{\bar{A}}\left(a_{j}\right)_{R_{1} \theta_{j}^{\prime}+\cdots+R_{u} \theta_{j}^{(u)}} \prod_{j=1}^{B^{\prime}}\left(b_{j}^{\prime}\right)_{R_{1} \phi_{j}^{\prime}} \cdots \prod_{j=1}^{B^{(u)}}\left(b_{j}^{(u)}\right)_{R_{r} \phi_{j}^{(u)}}}{\prod_{j=1}^{\bar{C}}\left(c_{j}\right)_{R_{1} \psi_{j}^{\prime}+\cdots+R_{u} \psi_{j}^{(u)}} \prod_{j=1}^{D^{\prime}}\left(d_{j}^{\prime}\right)_{R_{1} \delta_{j}^{\prime}} \cdots \prod_{j=1}^{D^{(u)}}\left(d_{j}^{(u)}\right)_{R_{u} \delta_{j}^{(u)}}}$
then the general class of multivariable polynomial $S_{L}^{h_{1}, \cdots, h_{u}}\left[z_{1}, \cdots, z_{u}\right]$ reduces to generalized Lauricella function defined by Srivastava et al [4]. We have

$$
F_{\bar{C}: D^{\prime} ; \cdots ; D^{(u)}}^{1+\overline{B^{\prime}} ; \cdots ; B^{(u)}}\left(\begin{array}{c|c}
\mathrm{z}_{1} & {\left[(\mathrm{a}) ; \theta^{\prime}, \cdots, \theta^{(u)}\right]:\left[\left(b^{\prime}\right) ; \phi^{\prime}\right] ; \cdots ;\left[\left(b^{(u)}\right) ; \phi^{(u)}\right]} \tag{4.3}\\
\cdot & \\
\cdot & {\left[(\mathrm{c}) ; \psi^{\prime}, \cdots, \psi^{(u)}\right]:\left[\left(d^{\prime}\right) ; \delta^{\prime}\right] ; \cdots ;\left[\left(d^{(u)}\right) ; \delta^{(u)}\right]}
\end{array}\right)
$$

and we have the two following formulas

$$
\begin{aligned}
& \int_{a}^{b}(t-a)^{\alpha-1}(b-t)^{\beta-1} \prod_{j=1}^{l}\left[1-\tau_{j}(t-a)^{h_{i}}\right]^{-\lambda_{j}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{\sigma_{j}} \\
& F_{\bar{C}: D^{\prime} ; \cdots ; D^{(u)}}^{1+\bar{A}: B^{\prime} ; \cdots ; B^{(u)}}\left(\begin{array}{c}
\mathrm{z}_{1}^{\prime \prime} \theta_{1}^{\prime \prime}(t-a)^{a_{1}}(b-t)^{b_{1}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime \prime(1)}} \\
\cdot \\
\cdot \\
\mathrm{z}_{u}^{\prime \prime} \theta_{u}^{\prime \prime}(t-a)^{a_{u}}(b-t)^{b_{u}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime \prime(u)}}
\end{array}\right) \\
& A\left(\begin{array}{cc}
\mathrm{z}_{1}^{\prime \prime \prime} \theta_{1}^{\prime \prime \prime}(t-a)^{a_{1}^{\prime}}(b-t)^{b_{1}^{\prime}} & \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime \prime \prime(1)}} \\
\cdot & \\
\cdot & \\
\cdot & \\
\mathrm{z}_{v}^{\prime \prime \prime} \theta_{v}^{\prime \prime \prime}(t-a)^{a_{v}^{\prime}}(b-t)^{b_{v}^{\prime}} & \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime \prime \prime(v)}}
\end{array}\right) \\
& A\left(\begin{array}{c}
\mathrm{z}_{1} \theta_{1}(t-a)^{\mu_{1}}(b-t)^{\rho_{1}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{(1)}} \\
\cdot \\
\cdot \\
\cdot \\
\mathrm{z}_{r} \theta_{r}(t-a)^{\mu_{r}}(b-t)^{\rho_{r}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{(r)}}
\end{array}\right) \\
& { }_{P} F_{Q}\left[\left(A_{P}\right) ;\left(B_{Q}\right) ;-\sum_{i=1}^{s} z_{i}^{\prime} \theta_{i}^{\prime}(t-a)^{\mu_{i}^{\prime}}(b-t)^{\rho_{i}^{\prime}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime(i)}}\right] \mathrm{d} t=
\end{aligned}
$$

$$
(b-a)^{\alpha+\beta-1} \frac{\prod_{j=1}^{Q} \Gamma\left(B_{j}\right)}{\prod_{j=1}^{P} \Gamma\left(A_{j}\right)} \prod_{j=1}\left(a f_{j}+g_{j}\right)^{\sigma_{j}} \sum_{g_{1}, \cdots, g_{v}=0}^{\infty} \sum_{G_{1}=0}^{\alpha^{(1)}} \cdots \sum_{G_{v}=0}^{\alpha^{(v)}} \sum_{R_{1}, \cdots, R_{u}=0}^{h_{1} R_{1}+\cdots h_{u} R_{u} \leqslant L} \prod_{i=1}^{v} z_{i}^{\prime \prime \prime \eta_{h_{i}, k_{i}}} \prod_{k=1}^{u} z^{\prime \prime K_{k}} B_{u}^{\prime} B_{u, v}
$$

under the same notations and conditions that (3.20)
where $B_{u}^{\prime}=\frac{(-L)_{h_{1} R_{1}+\cdots+h_{u} R_{u}} B\left(E ; R_{1}, \cdots, R_{u}\right)}{R_{1}!\cdots R_{u}!}, B\left[E ; R_{1}, \ldots, R_{v}\right]$ is defined by (4.2)

Remark:

By the following similar procedure, the results of this document can be extented to product of any finite number of multivariable I-functions and a class of multivariable polynomials defined by Srivastava et al [5].

5. Conclusion

In this paper we have evaluated a generalized Eulerian integral involving the product of the multivariable A-function defined by Gautam et al [1], a class of multivariable polynomials and generalized hypergeometric function with general arguments. The formulae established in this paper is very general nature. Thus, the results established in this research
work would serve as a key formula from which, upon specializing the parameters, as many as desired results involving the special functions of one and several variables can be obtained.

REFERENCES

[1] Gautam B.P., Asgar A.S. and Goyal A.N. On the multivariable A-function. Vijnana Parishas Anusandhan Patrika Vol 29(4) 1986, page 67-81.
[2] Saigo M. and Saxena R.K. Unified fractional integral formulas for the multivariable H-function I. J.Fractional Calculus 15 (1999), page 91-107.
[3] Saigo M. and Saxena R.K. Unified fractional integral formulas for the multivariable H-function III. J.Fractional Calculus 20 (2001), page 45-68.
[4] Srivastava H.M. and Daoust M.C. Certain generalized Neumann expansions associated with Kampé de Fériet function. Nederl. Akad. Wetensch. Proc. Ser A72 = Indag Math 31(1969) page 449-457.
[5] Srivastava H.M. And Garg M. Some integral involving a general class of polynomials and multivariable H-function. Rev. Roumaine Phys. 32(1987), page 685-692.
[6] Srivastava H.M. and Karlsson P.W. Multiple Gaussian Hypergeometric series. Ellis.Horwood. Limited. New-York, Chichester. Brisbane. Toronto , 1985.
[7] H.M. Srivastava And R.Panda. Some expansion theorems and generating relations for the H-function of several complex variables. Comment. Math. Univ. St. Paul. 24(1975), p.119-137.

Personal adress : 411 Avenue Joseph Raynaud
Le parc Fleuri , Bat B
83140 , Six-Fours les plages
Tel : 06-83-12-49-68
Department : VAR
Country : FRANCE

