Number Theoretic Functions: Augmentation & Analytical Results

Shubham Agarwal¹, Anand Singh Uniyal²

^{1,2} Department of Mathematics, M.B. (Govt.) P.G. College Haldwani, Uttarakhand (India)

Abstract — In number theory, there exist many number theoretic functions, which includes Divisor function $\tau(n)$, Sigma function $\sigma(n)$, Euler phi function $\phi(n)$ and Mobius function $\mu(n)$. All these functions play very important role in the field of number theory. In this paper we have given some results for number theoretic functions.

Keywords — Number theory, Number theoretic functions.

I. INTRODUCTION

A function f is called an arithmetic function or a number-theoretic function $^{[1, 2]}$ if it assigns to each positive integer n a unique real or complex number f(n). Typically, an arithmetic function is a real-valued function whose domain is the set of positive integers.

A real function f defined on the positive integers is said to be multiplicative if

 $f(m) f(n) = f(mn), \forall m, n \in Z,$ where gcd(m, n) = 1. If

 $f(m) f(n) = f(mn), \forall m, n \in \mathbb{Z},$

then f is completely multiplicative. Every completely multiplicative function is multiplicative.

A. The Divisor Function d(n) and $\sigma_k(n)$ Function

The function $d(n)^{[3]}$ is the number of divisors of n, including 1 and n, while $\sigma_k(n)$ is the sum of the k^{th} powers of the divisors of n. Thus

$$\sigma_k(n) = \sum_{d|n} d^k, \qquad d(n) = \sum_{d|n} 1$$

and $d(n) = \sigma_0(n)$. We Write $\sigma(n)$ for $\sigma_1(n)$, the sum of the divisors of n. The divisor function is usually denoted by d(n) or $\tau(n)$.

B. Euler's Phi-Function $\phi(n)$

The function $\phi(n)^{[4]}$ was defined for n > 1, as the number of positive integers less than and prime to n. Also

$$\phi(n) = n \prod_{p|n} (1-1/p)$$

C. Mobius Function $\mu(n)$

The Mobius function $^{[3]}\,\mu(n)$ is defined as follows :

- 1) $\mu(1) = 1;$
- 2) $\mu(n) = 0$ if n has a square factor;
- 3) $\mu(p_1.p_2...p_k) = (-1)^k$ if all the primes $p_1, p_2,..., p_k$, are different.

Thus $\mu(2) = -1$, $\mu(4) = 0$, $\mu(6) = 1$.

 $\mu(n)$ is multiplicative. i.e, for any two positive numbers a and b $\mu(ab) = \mu(a) \ \mu(b)$

Also.

$$\sum_{d|n} \mu(d) = 1 \text{ (for } n=1\text{)}, \sum_{d|n} \mu(d) = 0 \text{ (for } n > 1\text{)}$$

If n > 1, and k is the number of different prime factors of n, then

$$\sum_{d|n} |\mu(d)| = 2^k$$

II. RESULTS FOR DIVISOR FUNCTION

A. If $\tau_k(p)$ is the number of divisors of p (prime) which are greater than equal to k, then

$$\tau_k(p) = \begin{cases} 2, \text{ if } k = 1\\ 1, \text{ if } 1 < k \le p\\ 0, \text{ if } k > p \end{cases}$$

eg: $\tau_3(7) = 1$, $\tau_1(13) = 2$, $\tau_{19}(7) = 0$

B. If $\tau_k(p^{\alpha})$ is the number of all the divisors of p^{α} which are greater than equal to k, then $\tau_k(p^{\alpha}) = \lambda$, if $k \le p^{\alpha+1-\lambda}$ for maximum integer value of λ . eg: $\tau_4(2^8) = 7$, since $4 \le 2^{8+1-7}$ for $\lambda = 7$.

C. If
$$\tau^{(p^{\alpha})}$$
 is the number of divisors of p^{α} lies in

the interval [p,
$$p_k^k$$
], then
 $\tau \frac{p}{p}(p^{\alpha}) = \begin{cases} k, \text{ if } k \le \alpha \\ \alpha, \text{ if } k > \alpha \end{cases}$
eg: $\tau \frac{11}{11}^4 (11^7) = 4$

III. RESULTS FOR SIGMA FUNCTION

A. If σ[(α,β); n] be the sum of prime divisors of n, which lies in the interval [α,β], where n = p₁. p₂. p₃..... p_k, then

 $\sigma[(\alpha,\beta); n] = \sigma[(\alpha,\beta); p_1] + \sigma[(\alpha,\beta); p_2] + \dots + \sigma[(\alpha,\beta); p_k]$

where, $\sigma[(\alpha,\beta); p] = [p, if p \in [\alpha,\beta] \text{ and } \alpha \le \beta$ [0, otherwise]

Therefore,
$$\sigma[(\alpha,\beta); n] = \sum_{i=1}^{k} \sigma[(\alpha,\beta); p_i]$$

eg: $\sigma[(2,6); 70] = \sigma[(2,6); 2.5.7] = 2+5 = 7$

B. $\sigma_k(p^{\alpha})$ is the sum of the kth powers of positive divisors of p^{α} .

i.e.,
$$\sigma_k(p^{\alpha}) = 1 + p^k + p^{2k} + \dots + p^{\alpha k}$$
$$= \sum_{n=0}^{\alpha} p^{nk} = (p^{k(\alpha+1)} - 1) / (p^k - 1)$$
eg:
$$\sigma_3(2^5) = 1 + 2^3 + 2^{2.3} + 2^{3.3} + 2^{4.3} + 2^{5.3}$$
$$= 1 + 2^3 + 2^6 + 2^9 + 2^{12} + 2^{15}$$
$$= 37449$$

C. $\sigma \sum_{k_1}^{k_2} (n)$ be the sum of the $(k_2-k_1)^{\text{th}}$ power of

positive divisors of n. k - k

i.e,
$$\sigma_{k_{1}}^{2}(n) = \sum_{d \mid n} d^{2-1} \quad (\text{for } k_{2} > k_{1})$$
$$\sigma_{k_{1}}^{k_{2}}(p) = 1 + p$$
$$\sigma_{k_{1}}^{k_{1}}(p^{\alpha}) = \sum_{d \mid p} d^{k_{2}-k_{1}}$$
$$\sigma_{k_{1}}^{k_{2}-k_{1}}(p^{\alpha}) = \sum_{d \mid p} d^{k_{2}-k_{1}}$$
$$= 1 + p^{k_{2}-k_{1}} + p^{(k_{2}-k_{1})} + \dots + p^{(k_{2}-k_{1})}$$
$$= \sum_{r=0}^{\alpha} p^{r\binom{k_{2}-k_{1}}{2}}$$

IV. RESULTS FOR EULER PHI FUNCTION

 $\phi_{\alpha}^{\nu}(n)$ be the number of integers lies in $[\alpha, \beta]$,

which are co-prime to n.

eg:
$$\phi_{3}^{8}(15) = 3$$

Particular Cases (for $\alpha = 1$)

Case I: When $\beta = k$ then

$$\phi_1^k(n) = \phi_1^k(n)$$

be the number of integers less than equal to k, which are co-prime to n.

eg:
$$\phi^{3}(6) = 1$$

Case II: When
$$\beta = 1$$
 then

$$\phi^{1}(n) =$$

1

eg: ϕ (24) = 1

Case III: When $\beta = 2$ then

$$\phi^{2}(n) = \begin{cases} 1, \text{ if } n \text{ is even} \\ 2, \text{ if } n \text{ is odd} \end{cases}$$
eg: $\phi^{2}(72) = 1, \phi^{2}(81) = 2$

Case IV: When $\beta = n$ then

$$\phi^{n}(n) = \phi(n)$$

eg: $\phi(7) = 6 = \phi(7)$

V. RESULTS FOR MOBIUS FUNCTION

The function $[\mu(\alpha,\beta);n]$ is known as the Mobius (α,β) function for all positive numbers n, having value $(-1)^k$ and 0, depends upon prime factors of n lies in the interval $[\alpha,\beta]$. The function $[\mu(\alpha,\beta);n]$ is defined as follows:

$$[\mu(\alpha,\beta);n] = \begin{cases} (-1)^k \text{, if all } p_i \text{ are distinct and lies in} \\ \text{the interval } [\alpha,\beta]. \\ 0 \text{, if } p_i^{-2}|n \text{ and } p_i \in [\alpha,\beta]. \end{cases}$$
where $\alpha, \beta \in \mathbb{N}$ and k is the number of distinct

where, α , $\beta \in N$ and k is the number of distinct prime factors of n lies in $[\alpha, \beta]$.

and $[\mu(1,\beta);1]=1$

eg: $[\mu(3,12);195] = [\mu(3,12);3.5.13] = (-1)^2 = 1$

VI. CONCLUSION

New results for number theoretic functions are very useful in the field of number theory.

VII. FURTHER STUDY

Further we will generate the algorithms for these number theoretic functions.

REFERENCES

- G. H. Hardy & E. M. Wright, An Introduction to the Theory of Numbers, 4th ed., Oxford, Clarendon Press, (1960).
- [2] S. Y. Yan, Computational Number Theory and Modern Cryptography, John Wiley & Sons, ISBN: 978-1-118-18858-3 (2012).
- [3] G. E. Andrews, *Number Theory*, Hindustan Publ. Corp. Delhi, (1992).
- [4] D. M. Burton, *Elementary Number Theory*, Tata McGraw-Hill Publ. Comp. Ltd., New Delhi, (2006).