On Point Wise Products of Uniformly Continuous Functions on Uniform Space

Ku. S.B.Tadam, Dr. S.M.Padhye

Shri R.L.T. College of Science, Akola

Abstract: In this paper we obtain the sufficient conditions on a uniform space (X, U) for which UC(X), the family of all uniformly continuous functions on X is an algebra. It is proved that Theorem A: If (X, U) is a uniformly continuous uniform space then UC(X) is an algebra.

Theorem B: If (X, U) is precompact uniform space. Then UC(X) is an algebra.

We prove that $UC_{\mathbb{R}}(X)$, the family of all uniformly continuous real valued functions on X is a lattice of functions which need not be a complete lattice in the sense that every subset of $UC_{\mathbb{R}}(X)$ may not have supremum or infimum in $UC_{\mathbb{R}}(X)$ by providing a counter example.

Keywords: Uniform space, Uniformly continuous space, Lattice, Complete Lattice.

Introduction: Let (X, U) be a uniform space. We shall denote by UC(X), the family of all uniformly continuous functions on X and $UC_{\mathbb{R}}(X)$, the family of all uniformly continuous real valued functions on X.

Definition:1] Lattice: A lattice is a partially ordered set in which every pair of elements has both an infimum and a supremum.

Definition:2] Complete Lattice: A complete lattice is a partially ordered set in which all susets have both a supremum and an infimum.

Theorem 3: Let (X, U) be a uniform space. Let UC(X) be the family of all uniformly continuous functions on X. Then for any $f, g \in UC(X)$

1] $f \pm g$ is uniformly continuous.

2] αf is uniformly continuos, where α is any scalar

3] |f| is uniformly continuous.

4]] If $f, g \in \mathcal{UC}_{\mathbb{R}}(X)$ then max(f, g), min(f, g) are uniformly continuous.

Hence $\mathcal{UC}(X)$ is a complex vector space.

Proof:

1] We show that the mapping f + g is uniformly continuous.

Let $\varepsilon > 0$ be given. Then $\exists U \in \mathcal{U}$ such that whenever $(x, y) \in U \Rightarrow |f(x) - f(y)| < \frac{\varepsilon}{2}$.

Also $\exists V \in \mathcal{U}$ such that whenever $(x, y) \in V \Rightarrow |g(x) - g(y)| < \frac{\varepsilon}{2}$.

Now $U, V \in \mathcal{U} \Rightarrow W = U \cap V \in \mathcal{U}$.

Then for any $(x, y) \in W \Rightarrow |f(x) - f(y)| < \frac{\varepsilon}{2}$ and $|g(x) - g(y)| < \frac{\varepsilon}{2}$. Thus |(f + g)(x) - (f + g)(y)| = |f(x) + g(x) - f(y) - g(y)| = |f(x) - f(y) + g(x) - g(y)| $\leq |f(x) - f(y)| + |g(x) - g(y)|$ $< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$

 \Rightarrow *f* + *g* is uniformly continuous.

Similarly, f - g is uniformly continuous.

2] We show that αf is uniformly continuous, where α is any scalar.

Case I: $\alpha = 0$.

Then $\alpha f = 0$ is uniformly continuous.

Case II: $\alpha \neq 0$.

Let $\varepsilon > 0$ then $\exists U \in \mathcal{U}$ such that $(x, y) \in U \Rightarrow |f(x) - f(y)| < \frac{\varepsilon}{|\alpha|}$

Then $|\alpha f(x) - \alpha f(y)| = |\alpha (f(x) - f(y))|$ = $|\alpha||f(x) - f(y)|$

$$< |\alpha| \frac{\varepsilon}{|\alpha|} = \varepsilon.$$

 $\Rightarrow \alpha f$ is uniformly continuos.

3] We show that |f| is uniformly continuous.

Let $\varepsilon > 0$ then $\exists U \in \mathcal{U}$ such that $(x, y) \in U \Rightarrow |f(x) - f(y)| < \varepsilon$.

We know, $||f(x)| - |f(y)|| \le |f(x) - f(y)| < \varepsilon$.

i.e. for a given $\varepsilon > 0$, $\exists U \in U$ such that $(x, y) \in U \Rightarrow ||f(x)| - |f(y)|| < \varepsilon$.

Thus |f| is uniformly continuous.

4] Put $h = \max(f, g)$.

Firstly we show that for any two real numbers α, β , $\max(\alpha, \beta) = \frac{\alpha + \beta + |\alpha - \beta|}{2}$.

Suppose $\alpha \ge \beta$ then $\max(\alpha, \beta) = \alpha$	(i)
and $\frac{\alpha+\beta+ \alpha-\beta }{2} = \frac{\alpha+\beta+\alpha-\beta}{2} = \frac{2\alpha}{2} = \alpha$	(ii)
Similarly if $\beta \ge \alpha$ then $\max(\alpha, \beta) = \beta$	(iii)
and $\frac{\alpha+\beta+ \alpha-\beta }{2} = \frac{\alpha+\beta-\alpha+\beta}{2} = \frac{2\beta}{2} = \beta$	(iv)

From (i),(ii),(iii) and (iv) we get, $\max(\alpha,\beta) = \frac{\alpha+\beta+|\alpha-\beta|}{2} \quad \forall \alpha,\beta$.

If f, g are uniformly continuous real valued functions on X then

 $h(x) = \max(f(x), g(x)) = \frac{f(x)+g(x)+|f(x)-g(x)|}{2}$, $x \in X$, is also uniformly continuous real valued function on X, by [1] and [3].

Similarly, $k = \min(f, g) = -\max(-f, -g)$ is also uniformly continuous real valued functions on X.

Now we give sufficient conditions on (X, U) such that UC(X) is an algebra.

Theorem A: If (X, U) is a uniformly continuous uniform space then UC(X) is an algebra.

Proof: By theorem 1, UC(X) is closed under addition and scalar multiplication.

Now we show that it is closed under multiplication.

Let $f, g \in UC(X)$. i.e. f, g are uniformly continuous functions on X. Hence they are continuous on X. Since product of continuous functions is continuous, fg is continuous function on X.

As X is uniformly continuous uniform space, fg is uniformly continuous function on X.Hence $fg \in UC(X)$. Thus UC(X) is an algebra.

Lemma 4: For a uniform space every uniformly continuous function maps precompact set onto precompact set.

Proof: Let $f: (X, U) \to (Y, V)$ be a uniformly continuous function and *E* be a precompact subset of *X*. We show that f(E) is a precompact subset of *Y*.

Let $V \in V$ be given. As f is a uniformly continuous function on X, there exists $U \in U$ such that $(x, y) \in U \Rightarrow (f(x), f(y)) \in V$ (1)

E is precomact thus for $U \in U$ there exists a finite subset $\{x_1, x_2, \dots, x_n\}$ in *X* such that

 $E \subset \bigcup_{i=1}^n U[x_i]$

Now we show that $f(E) \subset \bigcup_{i=1}^{n} V[f(x_i)]$.

Let $y \in f(E)$. Then y = f(x) for some $x \in E$.

Now $x \in E \Rightarrow (x, x_i) \in U$ for some $i, 1 \le i \le n$ from (2)

 $\Rightarrow (f(x), f(x_i)) \in V \qquad \text{from } (1)$

.....(2)

i.e. $f(x) \in V[f(x_i)]$ for the above *i*.

i.e. $y \in V[f(x_i)] \subset \bigcup_{i=1}^n V[f(x_i)]$

Thus $f(E) \subset \bigcup_{i=1}^{n} V[f(x_i)].$

i.e. for $V \in \mathcal{V}$ there exists a finite subset $\{f(x_1), f(x_2), \dots, f(x_n)\}$ in Y such that

 $f(E) \subset \bigcup_{i=1}^n V[f(x_i)] \,.$

Thus f(E) is precompact.

Theorem B: If (X, U) is precompact uniform space. Then UC(X) is an algebra.

Proof: By theorem 3, we see that UC(X) is closed under addition and scalar multiplication.

Now we show that it is closed under point wise product.

Let $f, g \in \mathcal{UC}(X)$. We show that $fg \in \mathcal{UC}(X)$.

As X is precompact uniform space. By above lemma 4, f(X) and g(X) are precompact and hence are bounded. Thus there exists $k_1, k_2 > 0$ such that $|f(x)| \le k_1$ and $|g(x)| \le k_2$.

Now we show that $fg \in \mathcal{UC}(X)$.

Let r > 0 be given. Then there exists $U, V \in \mathcal{U}$ such that

 $(x,y) \in U \quad \Rightarrow \quad |f(x) - f(y)| < \frac{r}{2k_2} \quad \text{and} \ (x,y) \in V \quad \Rightarrow \quad |g(x) - g(y)| < \frac{r}{2k_1}.$

Now $U, V \in \mathcal{U} \Rightarrow U \cap V \in \mathcal{U}$.

Then for $(x, y) \in U \cap V \Rightarrow (x, y) \in U$ and $(x, y) \in V$

$$\Rightarrow |f(x) - f(y)| < \frac{r}{2k_2} \text{ and } |g(x) - g(y)| < \frac{r}{2k_1}$$

Consider,

$$\begin{aligned} |f(x)g(x) - f(y)g(y)| &= |f(x)g(x) - f(x)g(y) + f(x)g(y) - f(y)g(y)| \\ &= |f(x)(g(x) - g(y)) + (f(x) - f(y))g(y)| \\ &\leq |f(x)||g(x) - g(y)| + |f(x) - f(y)||g(y)| \\ &\leq k_1 \frac{r}{2k_1} + \frac{r}{2k_2}k_2 = r. \end{aligned}$$

i.e. for r > 0, there exists $U \cap V \in U$ such that $(x, y) \in U \cap V \Rightarrow |f(x)g(x) - f(y)g(y)| < r.$ $\Rightarrow fg \in UC(X).$

UC_R(X) is the family of all uniformly continuous real valued functions on X. It is a partially ordered set by defining a relation f ≥ g ⇔ f(x) ≥ g(x), ∀x ∈ X.
Thus by above theorem 3[4], UC_R(X) is a lattice of functions. But UC_R(X) need not be a complete lattice in the sense that every subset of UC_R(X) may not have supremum or infimum in UC_R(X). We prove by giving a counter example.

Ex 5. Let X = [0,1] and \mathcal{U} be the uniformity on *X* defined by the pseudo metric *d*, with

 $d(x, y) = \int_0^1 |x(t) - y(t)| dt$. Then $\mathcal{UC}_{\mathbb{R}}(X)$ is a lattice which is not a complete lattice.

Proof: For each $m \in \mathbb{N}$, x_m is a function defined on X as

$$\begin{aligned} x_m(t) &= 0 \quad \text{if } t \in \left[0, \frac{1}{2}\right], \\ x_m(t) &= 1 \quad \text{if } t \in \left[a_m, 1\right] \\ & \text{where } a_m = \frac{1}{2} + \frac{1}{m}. \\ x_m(t) \text{ is linear joining the points } \left(\frac{1}{2}, 0\right) \text{ and } \left(a_m, 1\right) \text{ for } t \in \left[\frac{1}{2}, a_m\right] \end{aligned}$$

Then the function $x_m \in \mathcal{UC}_{\mathbb{R}}(X)$.

Let
$$A = \{x_m \in \mathcal{UC}_{\mathbb{R}}(X) : m \ge 1\}$$
. Take $x = {\sup_n \{x_n : n \ge 1\}}$.

Thus $x(t) = {\sup_{n} \{x_n(t) : n \ge 1\}}, t \in [0,1].$

Then for $t \in [0, \frac{1}{2}]$, $x_n(t) = 0$ for all $n \ge 1$. $\therefore x(t) = \sup_n \{x_n(t) : n \ge 1\} = 0$ if $t \in [0, \frac{1}{2}]$,(1) For $t \in (\frac{1}{2}, 1]$, $\exists \ m \in \mathbb{N}$ such that $\frac{1}{2} < \frac{1}{2} + \frac{1}{m} < t \le 1$ Then $\forall \ n \ge m, \ \frac{1}{n} < \frac{1}{m}$. $\therefore \ \frac{1}{n} + \frac{1}{2} < \frac{1}{m} + \frac{1}{2}$ (2) Thus $\forall \ n \ge m, \ \frac{1}{2} < \frac{1}{n} + \frac{1}{2} < \frac{1}{2} + \frac{1}{m} < t \le 1$ i.e. For $t \in (\frac{1}{2}, 1]$, $\exists \ m \in \mathbb{N}$ such that $\forall \ n \ge m, \ t \in (a_n, 1]$. $\therefore \ x_n(t) = 1$

From (3) and (4) we get x is not a continuous function. Hence $x \notin UC_{\mathbb{R}}(X)$.

i.e. $\mathcal{U}C_{\mathbb{R}}(X)$ does not contain supremum of *A*. Thus $\mathcal{U}C_{\mathbb{R}}(X)$ is not a complete lattice.

References:

- 1. J.L.Kelley, General Topology, Van Nostrand, Princeton, Toronto, Melbourne, London 1955.
- 2. Kundu, S. and Jain, T., Atsuji spaces: Equivalent conditions, Topology Proceedings, Vol.30, No.1, 2006, 301-325.
- 3. Russell C. Walker, The Stone-Cech Compactification, Springer-Verlag Berlin Heidelberg New York 1974
- S.B. Nadler, Jr. and Donna M. Zitney, Point wise Products Of Uniformly Continuous Functions On Sets In The Real Line, The American Mathematical Monthly, Vol.114, No.2(Feb., 2007), pp.160-163.
- 5. W.J. Pervin, Foundations of General Topology, Academic Press Inc. New York, 1964.