W-Hausdorffness in Soft Bitopological Spaces

D.Sasikala ${ }^{\# 1}$, V.M.Vijayalakshmi ${ }^{\# 2}$, A.Kalaichelvi ${ }^{\# 3}$
\#1 Research Scholar, Department of Mathematics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
${ }^{\text {\#2 }}$ Assistant professor, Department of Science and Humanities, Faculty of Engineering, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
${ }^{\text {\#3 }}$ Associate Professor, Department of Mathematics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India

Abstract

In this paper the concept of WHausdorffness in soft bitopological spaces is introduced in three different ways by referring the definition of soft W- Hausdorffness introduced by Sruthi, Vijayalakshmi and Kalaichelvi [9].

Keywords: Soft set, Soft topological space, Soft W-Hausdorff space, Soft Bitopological space.

I. Introduction

Soft set theory is one of the recent topics gaining significance in finding rational and logical solutions to various real life problems which involve uncertainty, impreciseness and vagueness. In 1999, Molodstov[6] initiated a novel concept of soft set theory, which is completely a new approach for modeling vagueness and uncertainty. In 2011, Shabir and Naz[8] defined soft topological spaces and studied separation axioms. In 1963, Kelly[4], first initiated the concept of bi topological space. He defined a bitopological space ($\mathrm{X}, \tau_{1}, \tau_{2}$) to be a set X equipped with two topologies τ_{1} and τ_{2} on X and initiated the systematic study of bitopological space. Also he studied separation properties of bitopological space.

In section II of this paper, preliminary definitions regarding soft sets, soft topological spaces and soft bitopological spaces are given. In section III of this paper, the concept of W-Hausdorffness in soft bitopological spaces is introduced in three different ways by referring the definition of soft WHausdorffness introduced by Sruthi, Vijayalakshmi, Kalaichelvi[9].

II. PRELIMINARY DEFINITIONS

Throughout this paper, X denotes initial universe and E denotes the set of parameters for the universe X.

Definition: 2.1 [6]

Let X be an initial universe and E be a set of parameters. Let $P(X)$ denotes the power set of X and A be a nonempty subset of E. A pair (F, A) denoted
by F_{A} is called a soft set over X, where F is a mapping given by $\mathrm{F}: \mathrm{A} \rightarrow \mathrm{P}(\mathrm{X})$.In other words, a soft set over X is a parameterized family of subsets of the universe X. For a particular $e \in A, F(e)$ may be considered the set of e-approximate elements of the soft set (F, A) and if $e \notin A$, then $F(e)=\phi$ i.e. $F_{A}=\{F(e): e \in A \subseteq E ; F: A \rightarrow P(X)\}$.

The family of all these soft sets over X with respect to the parameter set E is denoted by $\mathrm{SS}(\mathrm{X})_{\mathrm{E}}$.

Definition 2.2[8]

Let $F_{A}, G_{B} \in \operatorname{SS}(X)_{E}$. Then F_{A} is soft subset of G_{B}, denoted by $F_{A} \widetilde{\subseteq} G_{B}$, if
(1) A $\subseteq B$, and
(2) $F(e) \subseteq G(e), \forall e \in A$.

In this case, F_{A} is said to be a soft subset of G_{B} and G_{B} is said to be a soft superset of $F_{A}, G_{B} \cong F_{A}$

Definition 2.3 [8]

Two soft subsets F_{A} and G_{B} over a common universe X are said to be soft equal if F_{A} is a soft subset of G_{B} and G_{B} is a soft subset of F_{A}.

Definition 2.4 [2]

The complement of a soft set (F, A) denoted by (F , $\mathrm{A})^{\prime}$ is defined by $(\mathrm{F}, \mathrm{A})^{\prime}=\left(\mathrm{F}^{\prime}, \mathrm{A}\right), \mathrm{F}^{\prime}: \mathrm{A} \longrightarrow \mathrm{P}(\mathrm{X})$ is a mapping given by $F^{\prime}(e)=X-F(e) ; \forall e \in A$ and F^{\prime} is called the soft complement function of F.Clearly $\left(\mathrm{F}^{\prime}\right)^{\prime}$ is the same as F and $\left((\mathrm{F}, \mathrm{A})^{\prime}\right)^{\prime}=(\mathrm{F}, \mathrm{A})$.

Definition 2.5 [8]

A soft set (F, A) over X is said to be a NULL softset denoted by $\tilde{\phi}$ or ϕ_{A} if for all $e \in A, F(e)=\phi$ (null set).

Definition 2.6 [8]

A soft set (F, A) over X is said to be an absolute soft set denoted by \widetilde{A} or X_{A} if for all $e \in A, F(e)=X$. Clearly we have $\mathrm{X}_{\mathrm{A}}^{\prime}=\phi_{\mathrm{A}}$ and $\phi_{\mathrm{A}}^{\prime}=\mathrm{X}_{\mathrm{A}}$.

Definition 2.7 [8]

The union of two soft sets (F, A) and (G, B) over the common universe X is the soft set (H, C), where $C=$ $A \cup B$ and for all $e \in C$,
$H(e)=\left\{\begin{array}{c}F(e), e \in A-B, \\ G(e), e \in B-A, \\ F(e) \cup G(e), e \in A \cap B\end{array}\right.$

Definition 2.8 [8]

The intersection of two soft sets (F, A) and (G, B) over the common universe X is the soft set (H, C), where $\mathrm{C}=\mathrm{A} \cap \mathrm{B}$ and for all $\mathrm{e} \in \mathrm{C}, \mathrm{H}(\mathrm{e})=\mathrm{F}(\mathrm{e}) \cap$ $G(e)$.

Definition 2.9 [8]

Let τ be the collection of soft sets over X , then τ is said to be a soft topology on X , if
(1) ϕ, X belong to τ
(2) the union of any number of soft sets in τ belongs to τ
(3) the intersection of any two soft sets in τ belongs to τ

Definition 2.10 [1]

Let ($\mathrm{X}, \tau, \mathrm{E}$) be a soft topological space, (F , $\mathrm{E}) \in \operatorname{SS}(\mathrm{X})_{\mathrm{E}}$ and Y be a non null subset of X . Then the soft subset of (F, E) over Y denoted by $\left(\mathrm{F}_{\mathrm{Y}}, \mathrm{E}\right)$ is defined as follows:
$F_{Y}(e)=Y \cap F(e), \forall e \in E$
In other words, $\left(\mathrm{F}_{\mathrm{Y}}, \mathrm{E}\right)=\mathrm{Y}_{\mathrm{E}} \cap(\mathrm{F}, \mathrm{E})$.

Definition 2.11 [1]

Let ($\mathrm{X}, \tau, \mathrm{E}$) be a soft topological space and Y be a non null subset of X. Then $\tau_{Y}=\left\{\left(\mathrm{F}_{\mathrm{Y}}, \mathrm{E}\right):(\mathrm{F}, \mathrm{E}) \in \tau\right\}$ is said to be the relative soft topology on Y and $\left(\mathrm{Y}, \tau_{\mathrm{Y}}, \mathrm{E}\right)$ is called a soft subspace of $(\mathrm{X}, \tau, \mathrm{E})$

Definition 2.12 [6]

Let $\mathrm{F}_{\mathrm{A}} \in \operatorname{SS}(\mathrm{X})_{\mathrm{E}}$ and $\mathrm{G}_{\mathrm{B}} \in \mathrm{SS}(\mathrm{Y})_{\mathrm{K}}$. The cartesian product $F_{A} \otimes G_{B}$ is defined by $\left(F_{A} \otimes G_{B}\right)(e, k)=F_{A}(e)$ $\times G_{B}(k), \forall(e, k) \in A \times B$.According to this definition $F_{A} \otimes G_{B}$ is a soft set over $X \times Y$ and its parameter set is $\mathrm{E} \times \mathrm{K}$.

Definition 2.13[2]

Let ($\mathrm{X}, \tau_{\mathrm{X}}, \mathrm{E}$) and ($\mathrm{Y}, \tau_{\mathrm{Y}}, \mathrm{K}$) be two soft topological spaces. The soft product topology $\tau_{\mathrm{X}} \otimes \tau_{\mathrm{Y}}$ over $\mathrm{X} \times \mathrm{Y}$ with respect to $\mathrm{E} \times \mathrm{K}$ is the soft topology having the collection $\left\{\mathrm{F}_{\mathrm{E}} \otimes \mathrm{G}_{\mathrm{K}} / \mathrm{F}_{\mathrm{E}} \in \tau_{\mathrm{X}}, \mathrm{G}_{\mathrm{K}} \in \tau_{\mathrm{Y}}\right\}$ as the basis.

Definition 2.14 [9]

A soft topological space ($\mathrm{X}, \tau, \mathrm{E}$) is said to be soft WHausdorff space of type 1 denoted by (SW -H$)_{1}$ if for every $\mathrm{e}_{1}, \mathrm{e}_{2} \in \mathrm{E}, \mathrm{e}_{1} \neq \mathrm{e}_{2}$ there exist $\mathrm{F}_{\mathrm{A}}, \mathrm{G}_{\mathrm{B}} \in \tau$, such that $F_{A}\left(e_{1}\right)=X, G_{B}\left(e_{2}\right)=X$ and $F_{A} \cap G_{B}=\tilde{\phi}$.

Definition 2.15 [9]

Let ($\mathrm{X}, \tau, \mathrm{E}$) be a soft topological space and $\mathrm{H} \subseteq \mathrm{E}$. Then ($\mathrm{X}, \tau_{\mathrm{H}}, \mathrm{H}$) is called soft p -subspace of ($\mathrm{X}, \tau, \mathrm{E}$)
relative to the parameter set H where $\tau_{\mathrm{H}}=\left\{\left(\mathrm{F}_{\mathrm{A}}\right) / \mathrm{H}\right.$: $\left.H \subseteq A \subseteq E, F_{A} \in \tau\right\}$ and $\left(F_{A}\right) / H$ is the restriction map on H .

Proposition 2.16 [9]

(1) Soft subspace of a $(\mathrm{SW}-\mathrm{H})_{1}$ space is (SW - H) ${ }_{1}$.
(2) Soft p-subspace of a $(\mathrm{SW}-\mathrm{H})_{1}$ space is $(\mathrm{SW}-\mathrm{H})_{1}$.
(3) Product of two $(\mathrm{SW}-\mathrm{H})_{1}$ spaces is $(\mathrm{SW}-\mathrm{H})_{1}$.

Definition 2.17[4]

Let X be a non-empty set and τ_{1} and τ_{2} be two different topologies on X . Then ($\mathrm{X}, \tau_{1}, \tau_{2}$) is called a bitopological space.

Definition 2.18 [3]
Let ($\mathrm{X}, \tau_{1 \mathrm{X}}, \mathrm{E}$) and ($\mathrm{X}, \tau_{2 \mathrm{X}}, \mathrm{E}$) be the two different soft topological spaces on X . Then ($\mathrm{X}, \tau_{1 \mathrm{l}}, \tau_{2 \mathrm{X}}, \mathrm{E}$) is called a Soft bi topological space if the two soft topologies $\tau_{1 \mathrm{X}}$ and $\tau_{2 \mathrm{X}}$ independently satisfy the axioms of soft topology. The members of $\tau_{1 x}$ are called $\tau_{1 \mathrm{X}}$ soft open sets and the complements of $\tau_{1 \mathrm{X}}$ soft open sets are called $\tau_{1 x}$ soft closed sets. Similarly, The members of $\tau_{2 \mathrm{X}}$ are called $\tau_{2 \mathrm{X}}$ soft open sets and the complements of $\tau_{2 x}$ soft open sets are called $\tau_{2 X}$ soft closed sets.

Definition 2.19 [3] Let ($\mathrm{X}, \tau_{1 \mathrm{X}}, \tau_{2 \mathrm{X}}, \mathrm{E}$) be a soft bi topological space over X and Y be a non-empty subset of X. Then $\tau_{1 Y}=\left\{\left(F_{Y}, E\right):(F, E) \in \tau_{1 X}\right\}$ and $\tau_{2 \mathrm{Y}}=\left\{\left(\mathrm{G}_{\mathrm{Y}}, \mathrm{E}\right):(\mathrm{G}, \mathrm{E}) \in \tau_{2 \mathrm{X}}\right\}$ are said to be the relative topologies on Y and $\left\{\mathrm{Y}, \tau_{1 \mathrm{Y}}, \tau_{2 \mathrm{Y}}, \mathrm{E}\right\}$ is called a Soft subspace of (X, $\left.\tau_{1 X}, \tau_{2 X}, \mathrm{E}\right)$.

III. W-Hausdorffness in Soft bitopological spaces

Definition 3.1

A soft bitopological space ($\mathrm{X}, \tau_{1 \mathrm{X}}, \tau_{2 \mathrm{X}}, \mathrm{E}$) is said to be Soft W-Hausdorff space of type 1 or soft W- T_{2} space of type 1 denoted by $(\mathrm{SBW}-\mathrm{H})_{1}$ if it is
(SW - H) ${ }_{1}$ with respect to $\tau_{1 \mathrm{X}}$ or $(\mathrm{SW}-\mathrm{H})_{1}$ with respect to $\tau_{2 x}$.

Definition 3.2

A soft bitopological space ($\mathrm{X}, \tau_{1 \mathrm{X}}, \tau_{2 \mathrm{X}}, \mathrm{E}$) is said to be Soft W- Hausdorff space of type 2 denoted by (SBW $-H)_{2}$ if for every $e_{1}, e_{2} \in E, e_{1} \neq e_{2}$ there exist $F_{A} \in \tau_{1 X}, G_{B} \in \tau_{2 X}$ such that $F_{A}\left(e_{1}\right)=$ $\mathrm{X}, \mathrm{G}_{\mathrm{B}}\left(\mathrm{e}_{2}\right)=\mathrm{X}$ and $\mathrm{F}_{\mathrm{A}} \cap \mathrm{G}_{\mathrm{B}}=\tilde{\phi}$.

Theorem 3.3
Soft subspace of a $(\mathrm{SBW}-\mathrm{H})_{1}$ space is $(\mathrm{SBW}-\mathrm{H})_{1}$.

Proof

Let (X, $\tau_{1 \mathrm{X}}, \tau_{2 \mathrm{X}}$, E) be a (SBW -H$)_{1}$ space. Then it is $(\mathrm{SW}-\mathrm{H})_{1}$ with respect to $\tau_{1 \mathrm{X}}$ or $(\mathrm{SW}-\mathrm{H})_{1}$ with respect to $\tau_{2 \mathrm{X}}$. Let Y be a non null subset of X . Let $\left\{\mathrm{Y}, \tau_{1 \mathrm{Y}}, \tau_{2 \mathrm{Y}}, \mathrm{E}\right\}$ be a soft subspace of (X, $\tau_{1 \mathrm{X}}, \tau_{2 \mathrm{X}}$, E) . From the proposition 2.16(1), a soft subspace of $(\mathrm{SW}-\mathrm{H})_{1}$ space is $(\mathrm{SW}-\mathrm{H})_{1}$. Therefore, $\left\{\mathrm{Y}, \tau_{1 \mathrm{Y}}, \tau_{2 \mathrm{Y}}\right.$, $\mathrm{E}\}$ is $(\mathrm{SW}-\mathrm{H})_{1}$ with respect to $\tau_{1 \mathrm{Y}}$ or $(\mathrm{SW}-\mathrm{H})_{1}$ with respect to $\tau_{2 \mathrm{Y}}$. Hence $\left\{\mathrm{Y}, \tau_{1 \mathrm{Y}}, \tau_{2 \mathrm{Y}}, \mathrm{E}\right\}$ is $(S B W-H)_{1}$.

Theorem 3.4

Soft subspace of a $(\mathrm{SBW}-\mathrm{H})_{2}$ space is
$(S B W-H)_{2}$.

Proof

Let $\left(\mathrm{X}, \tau_{1 \mathrm{X}}, \tau_{2 \mathrm{X}}, \mathrm{E}\right)$ be a $(\mathrm{SBW}-\mathrm{H})_{2}$ space. Let Y be a non null subset of X. Let $\left\{\mathrm{Y}, \tau_{1 \mathrm{Y}}, \tau_{2 \mathrm{Y}}, \mathrm{E}\right\}$ be a soft subspace of $\left(\mathrm{X}, \tau_{1 \mathrm{X}}, \tau_{2 \mathrm{X}}, \mathrm{E}\right)$ where
$\tau_{1 Y}=\left\{\left(F_{Y}, E\right):(F, E) \in \tau_{1 X}\right\}$ and
$\tau_{2 Y}=\left\{\left(G_{Y}, E\right):(G, E) \in \tau_{2 X}\right\}$ are said to be the relative topologies on Y. Consider $e_{1}, e_{2} \in E$, $\mathrm{e}_{1} \neq \mathrm{e}_{2}$ there exist $\mathrm{F}_{\mathrm{A}} \in \tau_{1 \mathrm{X}}, \mathrm{G}_{\mathrm{B}} \in \tau_{2 \mathrm{X}}$ such that $F_{A}\left(e_{1}\right)=X, G_{B}\left(e_{2}\right)=X \quad$ and $\quad F_{A} \cap G_{B}=\tilde{\phi}$.
Therefore $\left(\left(\mathrm{F}_{\mathrm{A}}\right)_{\mathrm{Y}}, \mathrm{E}\right) \in \tau_{1 \mathrm{Y}},\left(\left(\mathrm{G}_{\mathrm{B}}\right)_{\mathrm{Y}}, \mathrm{E}\right) \in \tau_{2 \mathrm{Y}}$
Also $\left(\mathrm{F}_{\mathrm{A}}\right)_{\mathrm{Y}}\left(\mathrm{e}_{1}\right)=\mathrm{Y} \cap \mathrm{F}_{\mathrm{A}}\left(\mathrm{e}_{1}\right)$
$=Y \cap X$
= Y
$\left(\mathrm{G}_{\mathrm{B}}\right)_{\mathrm{Y}}\left(\mathrm{e}_{2}\right)=\mathrm{Y} \cap \mathrm{G}_{\mathrm{B}}\left(\mathrm{e}_{2}\right)$
$=Y \cap X$
$=\mathrm{Y}$
$\left.\left(\left(F_{A}\right)_{Y} \cap G_{B}\right)_{Y}\right)(e)=\left(\left(F_{A} \cap G_{B}\right)_{Y}\right)(e)$
$=Y \cap\left(F_{A} \cap G_{B}\right)(e)$
$=Y \cap \tilde{\phi}(\mathrm{e})$
$=\mathrm{Y} \cap \phi$
$=\phi$
$\left(F_{A}\right)_{Y} \cap\left(G_{B}\right)_{Y}=\tilde{\phi}$
Hence $\left\{\mathrm{Y}, \tau_{1 \mathrm{Y}}, \tau_{2 \mathrm{Y}}, \mathrm{E}\right\}$ is $(\mathrm{SBW}-\mathrm{H})_{2}$.

Definition 3.5

Let (X, $\tau_{1 \mathrm{X}}, \tau_{2 \mathrm{X}}, \mathrm{E}$) be a soft bitopological space over X and $H \subseteq E$. Then $\left\{X, \tau_{1 H}, \tau_{2 H}, H\right\}$ is called Soft p-subspace of $\left(X, \tau_{1 X}, \tau_{2 X}, E\right)$ relative to the parameter set H where
$\tau_{1 \mathrm{H}}=\left\{\left(\mathrm{F}_{\mathrm{A}}\right) / \mathrm{H}: \mathrm{H} \subseteq \mathrm{A} \subseteq \mathrm{E}, \mathrm{F}_{\mathrm{A}} \in \tau_{1 \mathrm{X}}\right\}$,
$\tau_{2 H}=\left\{\left(\mathrm{G}_{\mathrm{B}}\right) / \mathrm{H}: \mathrm{H} \subseteq \mathrm{B} \subseteq \mathrm{E}, \mathrm{G}_{\mathrm{B}} \in \tau_{2 \mathrm{X}}\right\}$ and $\left(\mathrm{F}_{\mathrm{A}}\right) / \mathrm{H}$, $\left(\mathrm{G}_{\mathrm{B}}\right) / \mathrm{H}$ are the restriction maps on H .

Theorem 3.6

Soft p-subspace of a $(\mathrm{SBW}-\mathrm{H})_{1}$ space is
$(S B W-H)_{1}$.

Proof

Let $\left(\mathrm{X}, \tau_{1 \mathrm{X}}, \tau_{2 \mathrm{X}}, \mathrm{E}\right)$ be a $(\mathrm{SBW}-\mathrm{H})_{1}$ space. Then it is (SW-H) $)_{1}$ with respect to $\tau_{1 \mathrm{X}}$ or $(\mathrm{SW}-\mathrm{H})_{1}$ with respect
to $\tau_{2 \mathrm{X}}$. Let $\mathrm{H} \subseteq \mathrm{E}$. Let $\left(\mathrm{X}, \tau_{1 \mathrm{H}}, \tau_{2 \mathrm{H}}, \mathrm{H}\right)$ be a soft psubspace of ($\mathrm{X}, \tau_{1 \mathrm{X}}, \tau_{2 \mathrm{X}}, \mathrm{E}$) relative to the parameter set H. From the proposition 2.16(2), the soft psubspace of $(\mathrm{SW}-\mathrm{H})_{1}$ space is $(\mathrm{SW}-\mathrm{H})_{1}$. Therefore, the soft p-subspace of $(\mathrm{SBW}-\mathrm{H})_{1}$ is $(\mathrm{SW}-\mathrm{H})_{1}$ with respect to $\tau_{1 \mathrm{H}}$ or with respect to $\tau_{2 \mathrm{H}}$. Hence $\left(\mathrm{X}, \tau_{1 \mathrm{H}}, \tau_{2 \mathrm{H}}, \mathrm{H}\right)$ is $(\mathrm{SBW}-\mathrm{H})_{1}$.

Theorem 3.7

Soft p-subspace of a $(\mathrm{SBW}-\mathrm{H})_{2}$ space is
$(S B W-H)_{2}$.

Proof

Let $\left(\mathrm{X}, \tau_{1 \mathrm{X}}, \tau_{2 \mathrm{X}}, \mathrm{E}\right)$ be a $(\mathrm{SBW}-\mathrm{H})_{2}$ space. Let
$H \subseteq E$. Let ($\mathrm{X}, \tau_{1 \mathrm{H}}, \tau_{2 \mathrm{H}}, \mathrm{H}$) be a soft p-subspace of (X, $\tau_{1 \mathrm{X}}, \tau_{2 \mathrm{X}}, \mathrm{E}$) relative to the parameter set H where
$\tau_{1 H}=\left\{\left(\mathrm{F}_{\mathrm{A}}\right) / \mathrm{H}: \mathrm{H} \subseteq \mathrm{A} \subseteq \mathrm{E}, \mathrm{F}_{\mathrm{A}} \in \tau_{1 \mathrm{X}}\right\}$,
$\tau_{2 \mathrm{H}}=\left\{\left(\mathrm{G}_{\mathrm{B}}\right) / \mathrm{H}: \mathrm{H} \subseteq \mathrm{B} \subseteq \mathrm{E}, \mathrm{G}_{\mathrm{B}} \in \tau_{2 \mathrm{X}}\right\}$.
Consider $h_{1}, h_{2} \in H, \quad h_{1} \neq h_{2}$. Then $h_{1}, h_{2} \in \quad E$. Therefore, there exist $\mathrm{F}_{\mathrm{A}} \in \tau_{1 \mathrm{X}}, \mathrm{G}_{\mathrm{B}} \in \tau_{2 \mathrm{X}}$ such that $\mathrm{F}_{\mathrm{A}}\left(\mathrm{e}_{1}\right)=\mathrm{X}, \mathrm{G}_{\mathrm{B}}\left(\mathrm{e}_{2}\right)=\mathrm{X}$ and $\mathrm{F}_{\mathrm{A}} \cap \mathrm{G}_{\mathrm{B}}=\tilde{\phi}$.
Therefore $\left(\mathrm{F}_{\mathrm{A}}\right) / \mathrm{H} \in \tau_{1 \mathrm{H}}$, , $\left(\mathrm{G}_{\mathrm{B}}\right) / \mathrm{H} \in \tau_{2 \mathrm{H}}$
Also $\quad\left(\left(\mathrm{F}_{\mathrm{A}}\right) / \mathrm{H}\right)\left(\mathrm{h}_{1}\right)=\mathrm{F}_{\mathrm{A}}\left(\mathrm{h}_{1}\right)=\mathrm{X}$
$\left(\left(\mathrm{G}_{\mathrm{B}}\right) / \mathrm{H}\right)\left(\mathrm{h}_{2}\right)=\mathrm{G}_{\mathrm{B}}\left(\mathrm{h}_{2}\right)=\mathrm{X}$ and
$\left(\left(\mathrm{F}_{\mathrm{A}}\right) / \mathrm{H}\right) \cap\left(\left(\mathrm{G}_{\mathrm{B}}\right) / \mathrm{H}\right)=\left(\mathrm{F}_{\mathrm{A}} \cap \mathrm{G}_{\mathrm{B}}\right) / \mathrm{H}$

$$
=\tilde{\phi} / \mathrm{H}
$$

$$
=\tilde{\phi}
$$

Hence $\left(\mathrm{X}, \tau_{1 \mathrm{H}}, \tau_{2 \mathrm{H}}, \mathrm{H}\right)$ is $(\mathrm{SBW}-\mathrm{H})_{2}$.

Theorem 3.8

Product of two $(S B W-H)_{1}$ spaces is $(S B W-H)_{1}$.

Proof

Let ($\mathrm{X}, \tau_{1 \mathrm{X}}, \tau_{2 \mathrm{X}}, \mathrm{E}$) and $\left\{\mathrm{Y}, \tau_{1 \mathrm{Y}}, \tau_{2 \mathrm{Y}}, \mathrm{K}\right\}$ be two $(\mathrm{SBW}-\mathrm{H})_{1}$ spaces. Then ($\mathrm{X}, \tau_{1 \mathrm{X}}, \tau_{2 \mathrm{X}}, \mathrm{E}$) is (SW$\mathrm{H})_{1}$ with respect to $\tau_{1 \mathrm{X}}$ or $(\mathrm{SW}-\mathrm{H})_{1}$ with respect to $\tau_{2 \mathrm{X}}$ and $\left\{\mathrm{Y}, \tau_{1 \mathrm{Y}}, \tau_{2 \mathrm{Y}}, \mathrm{K}\right\}$ is $(\mathrm{SW}-\mathrm{H})_{1}$ with respect to $\tau_{1 \mathrm{Y}}$ or $(\mathrm{SW}-\mathrm{H})_{1}$ with respect to $\tau_{2 \mathrm{Y}}$. From proposition 2.16(3), the product of two (SW-H) ${ }_{1}$ spaces is (SW$\mathrm{H})_{1}$. Hence the product of two $(\mathrm{SBW}-\mathrm{H})_{1}$ spaces is $(\mathrm{SBW}-\mathrm{H})_{1}$.

Theorem 3.9

Product of two $(S B W-H)_{2}$ spaces is $(S B W-H)_{2}$.

Proof

Let $\left(\mathrm{X}, \tau_{1 \mathrm{X}}, \tau_{2 \mathrm{X}}, \mathrm{E}\right)$ and $\left\{\mathrm{Y}, \tau_{1 \mathrm{Y}}, \tau_{2 \mathrm{Y}}, \mathrm{K}\right\}$ be two (SBW -H$)_{2}$ spaces. Consider two distinct points $\left(e_{1}, k_{1}\right),\left(e_{2}, k_{2}\right) \in E \times K$. Either $e_{1} \neq e_{2}$ or
$k_{1} \neq k_{2}$.Assume $e_{1} \neq e_{2}$. Since ($\left.X, \tau_{1 X}, \tau_{2 X}, E\right)$ is (SBW $-H)_{2}$, there exist $\mathrm{F}_{\mathrm{A}} \in \tau_{1 \mathrm{X}}, \mathrm{G}_{\mathrm{B}} \in \tau_{2 \mathrm{X}}$ such that $F_{A}\left(e_{1}\right)=X, G_{B}\left(e_{2}\right)=X$ and $F_{A} \cap G_{B}=\tilde{\phi}$.
Therefore $\mathrm{F}_{\mathrm{A}} \otimes \mathrm{Y}_{\mathrm{K}} \in \tau_{1 \mathrm{X}} \otimes \tau_{1 \mathrm{Y}}, \mathrm{G}_{\mathrm{B}} \otimes \mathrm{Y}_{\mathrm{K}} \in \tau_{2 \mathrm{X}} \otimes \tau_{2 \mathrm{Y}}$ $\left(\mathrm{F}_{\mathrm{A}} \otimes \mathrm{Y}_{\mathrm{K}}\right)\left(\mathrm{e}_{1}, \mathrm{k}_{1}\right)=\mathrm{F}_{\mathrm{A}}\left(\mathrm{e}_{1}\right) \times \mathrm{Y}_{\mathrm{K}}\left(\mathrm{k}_{1}\right)$

$$
=\mathrm{X} \times \mathrm{Y}
$$

$$
\begin{aligned}
& \left(G_{B} \otimes Y_{K}\right)\left(e_{2}, k_{2}\right)=G_{B}\left(e_{2}\right) \times Y_{K}\left(k_{2}\right) \\
& =\mathrm{X} \times \mathrm{Y} \\
& \text { If for any }(\mathrm{e}, \mathrm{k}) \in(\mathrm{E} \times \mathrm{K}),\left(\mathrm{F}_{\mathrm{A}} \otimes \mathrm{Y}_{\mathrm{K}}\right)(\mathrm{e}, \mathrm{k}) \neq \phi \\
& \Rightarrow \mathrm{F}_{\mathrm{A}}(\mathrm{e}) \times \mathrm{Y}_{\mathrm{K}}(\mathrm{k}) \neq \phi \\
& \Rightarrow \mathrm{F}_{\mathrm{A}}(\mathrm{e}) \times \mathrm{Y} \neq \phi \\
& \Rightarrow \mathrm{F}_{\mathrm{A}}(\mathrm{e}) \neq \phi \\
& \Rightarrow \mathrm{G}_{\mathrm{B}}(\mathrm{e})=\phi \\
& \left(\text { since }_{A} \cap G_{B}=\tilde{\phi} \Rightarrow F_{A}(e) \cap G_{B}(e)=\phi\right) \\
& \Rightarrow \mathrm{G}_{\mathrm{B}}(\mathrm{e}) \times \mathrm{Y}_{\mathrm{K}}(\mathrm{k})=\phi \\
& \Rightarrow\left(\mathrm{G}_{\mathrm{B}} \otimes \mathrm{Y}_{\mathrm{K}}\right)(\mathrm{e}, \mathrm{k})=\phi \\
& \Rightarrow\left(\mathrm{F}_{\mathrm{A}} \otimes \mathrm{Y}_{\mathrm{K}}\right) \cap\left(\mathrm{G}_{\mathrm{B}} \otimes \mathrm{Y}_{\mathrm{K}}\right)=\tilde{\phi} \\
& \text { Assume } k_{1} \neq \mathrm{k}_{2} \text {. Since }\left\{\mathrm{Y}, \tau_{1 \mathrm{Y}}, \tau_{2 \mathrm{Y}}, \mathrm{~K}\right\} \text { is } \\
& \text { (SBW }-H)_{2} \text {, there exist } \mathrm{F}_{\mathrm{A}} \in \tau_{1 \mathrm{Y}}, \mathrm{G}_{\mathrm{B}} \in \tau_{2 \mathrm{Y}} \text {, such } \\
& \text { that } \mathrm{F}_{\mathrm{A}}\left(\mathrm{k}_{1}\right)=\mathrm{Y}, \mathrm{G}_{\mathrm{B}}\left(\mathrm{k}_{2}\right)=\mathrm{Y} \text { and } \mathrm{F}_{\mathrm{A}} \cap \mathrm{G}_{\mathrm{B}}=\tilde{\phi} \text {. } \\
& \text { Therefore } \mathrm{X}_{\mathrm{E}} \otimes \mathrm{~F}_{\mathrm{A}} \in \tau_{1 \mathrm{X}} \otimes \tau_{1 \mathrm{Y}}, \mathrm{X}_{\mathrm{E}} \otimes \mathrm{G}_{\mathrm{B}} \in \tau_{2 \mathrm{X}} \otimes \tau_{2 \mathrm{Y}} \\
& \left(X_{E} \otimes F_{A}\right)\left(e_{1}, k_{1}\right)=X_{E}\left(\mathrm{e}_{1}\right) \times \mathrm{F}_{\mathrm{A}}\left(\mathrm{k}_{1}\right) \\
& =X \times Y \\
& \left(X_{E} \otimes G_{B}\right)\left(e_{2}, k_{2}\right)=X_{E}\left(e_{2}\right) \times G_{B}\left(k_{2}\right) \\
& =X \times Y \\
& \text { If for any }(\mathrm{e}, \mathrm{k}) \in \mathrm{E} \times \mathrm{K},\left(\mathrm{X}_{\mathrm{E}} \otimes \mathrm{~F}_{\mathrm{A}}\right)(\mathrm{e}, \mathrm{k}) \neq \phi \\
& \Rightarrow \mathrm{X}_{\mathrm{E}}(\mathrm{e}) \times \mathrm{F}_{\mathrm{A}}(\mathrm{k}) \neq \phi \\
& \Rightarrow \mathrm{X} \times \mathrm{F}_{\mathrm{A}}(\mathrm{k}) \neq \phi \\
& \Rightarrow \mathrm{F}_{\mathrm{A}}(\mathrm{k}) \neq \phi \\
& \Rightarrow \mathrm{G}_{\mathrm{B}}(\mathrm{k})=\phi \\
& \left(\text { SinceF }_{\mathrm{A}} \cap \mathrm{G}_{\mathrm{B}}=\widetilde{\phi} \Rightarrow \mathrm{F}_{\mathrm{A}}(\mathrm{k}) \cap \mathrm{G}_{\mathrm{B}}(\mathrm{k})=\phi\right) \\
& \Rightarrow X_{\mathrm{E}}(\mathrm{e}) \times \mathrm{G}_{\mathrm{B}}(\mathrm{k})=\phi \\
& \Rightarrow\left(\mathrm{X}_{\mathrm{E}} \otimes \mathrm{G}_{\mathrm{B}}\right)(\mathrm{e}, \mathrm{k})=\phi \\
& \Rightarrow\left(\mathrm{X}_{\mathrm{E}} \otimes \mathrm{~F}_{\mathrm{A}}\right) \cap\left(\mathrm{X}_{\mathrm{E}} \otimes \mathrm{G}_{\mathrm{B}}\right)=\tilde{\phi} \\
& \text { Hence } \quad\left(\mathrm{X} \times \mathrm{Y}, \tau_{1 \mathrm{X}} \otimes \tau_{1 \mathrm{Y}}, \tau_{2 \mathrm{X}} \otimes \tau_{2 \mathrm{Y}}, \mathrm{E} \times \mathrm{K}\right) \quad \text { is } \\
& (S B W-H)_{2} \text {. }
\end{aligned}
$$

IV.CONCLUSION

In this paper the concept of W-Hausdorffness in soft bitopological spaces is introduced and some basic properties regarding this concept are proved.

References

[1] M. I. Ali, F. Feng, X.Liu,W. K. Min and M. Sha bir, "On some new operations in soft set theory", Computers and Mathematics with Applications, 57(2009), 1547-1553.
[2] K. V. Babitha and J. J. Sunil, "Soft set relations and Functions", Comput. Math. Appl. 60(2010) 1840-1848.
[3] Basavaraj M. Ittanagi , "Soft Bitopological Spaces", International Journal of Computer Applications (0975 8887) Vol. 107, No. 7, December 2014.
[4] J.C.Kelly," Bitopological Spaces", Proc. London Math. Soc., 13 (1963), 71-81.
[5] P. K. Maji, R.Biswas and A.R.Roy, " Soft Set Theory", Computers and Mathematics with Applications, vol.45, no.4-5, pp.555-562, 2003.
[6] D.Molodstov, " Soft Set Theory - First Results", Computers and Mathematics with Applications, vol.37, no.4-5, pp.1931, 1999.
[7] I.LReilly, "On bitopological Separation Properties", Nanta Math., 29(1972), 14-25.
[8] M.Shabir and M.Naz, " On Soft Topological Spaces", Computers and Mathematics with Applications, vol.61,no.7,pp.1786-1799, 2011.
[9] P. Sruthi , V.M.Vijayalakshmi , Dr.A.Kalaichelvi ,"Soft WHausdorff Spaces",International Journal of Mathematics Trends and Technology, vol.43, no. 1, pp.16-19, 2017.

