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Abstract

In this work, we have studied a general class of linear first-order partial differential
equations which is used as mathematical models in many physically significant fields and
applied science. The homotopy perturbation method (HPM) has been used for solving
generalized linear first-order partial differential equation. Also, we have tested the HPM
on the solving of different implementations which show the efficiency and accuracy of the
method. The approximated solutions are agree well with analytical solutions for the tested
problems Moreover, the approximated solutions proved that the proposed method to be
efficient and high accurate.

Keyword: First order; Homotopy; HPM; Partial Differential Equation ;PDE.

1 Introduction
The most important mathematical models for physical phenomena is the differential equa-
tion. Motion of objects, Fluid and heat flow, bending and cracking of materials, vibrations,
chemical reactions and nuclear reactions are all modeled by systems of differential equa-
tions. Moreover, Numerous mathematical models in science and engineering are expressed
in terms of unknown quantities and their derivatives. Many applications of differential
equations (DEs), particularly ODEs of different orders, can be found in the mathematical
modeling of real life problems(Mechee et al. (2014)).

The homotopy perturbation method (HPM), which is a well-known, is efficient tech-
nique to find the approximate solutions for ordinary and partial differential equations which
describe different fields of science, physical phenomena, engineering, mechanics, and so
on. HPM was proposed by Ji-Huan He in 1999 for solving linear and nonlinear differential
equations and integral equations. Many researchers used HPM to approximate the solutions
of differential equations and integral equations(Yıldırım (2010), Jalaal et al. (2010) & Ma
et al. (2008)).

Many researchers published some papers in solving some classes differential equa-
tions using HPM. For example, Chun & Sakthivel (2010) used HPM for solving a linear
and nonlinear second-order two-point boundary value problems while Gülkaç (2010) was
solved the Black-Scholes equation for a simple European option in this method to obtain
a new efficient recurrent relation to solve Black-Scholes equation. Moreover, numerous
researches used HPM for solving nonlinear differential equations, Vahidi et al. (2011) was
solved nonlinear DEs, which yields the Maclaurin series of the exact solution, Chang &
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Liou (2006) developed a third-order explicit approximation to find the roots of the disper-
sion relation for water waves that propagate over dissipative media, Zhou & Wu (2012)
solved the nonlinear PB equation describing spherical and planar colloidal particles im-
mersed in an arbitrary valence and mixed electrolyte solution, Öziş & Akçı (2011) solved
certain non-linear, non-smooth oscillators, Yazdi (2013) solved nonlinear vibration analysis
of functionally graded plate while He (2004) applied HPM for solving nonlinear oscillators
with discontinuities, nonlinear Duffing equation and some nonlinear ODEs. For class of
linear partial differential equations, Al-Saif & Abood (2011) solved the Korteweg-de Vries
(KdV) equation and convergence study of HPM, Babolian et al. (2009) used HPM to solve
time-dependent differential equations, Aswhad & Jaddoa (2016) solved advection Prob-
lem, vibrating beam equation linear and nonlinear PDEs and the system of nonlinear PDEs
and Babolian et al. (2009) used the homotopy perturbation method to solve time-dependent
differential. Also, many researchers used HPM for solving the class of non-linear PDEs
, Yazdi (2013) was approximated solution for free nonlinear vibration of thin rectangu-
lar laminated FGM plates, Liao (2004) has solved nonlinear PDEs, Yildirim (2009) was
used to implement the nonlinear Korteweg-de Vries equation, Md Nasrudin et al. (2014)
combined HPM-Pad[U+FFFD]proximant to acquire the approximate analytical solution of
the KdV equation, Taghipour (2010) solved Parabolic equations and Periodic equation lin-
ear and nonlinear PDEs, Janalizadeh et al. (2008) obtained the solution of a second-order
non-linear wave equation, Fereidoon et al. (2011) utilized to derive approximate explicit an-
alytical solution for the nonlinear foam drainage equation, Momani & Odibat (2007) mod-
ified the algorithm which provides approximate solutions in the form of convergent series
with easily computable components, Babolian et al. (2009) solved time-dependent differen-
tial equations while He (2000), solved non-linear problems using the homotopy technique.
However, for the system of DEs, Bataineh et al. (2009) solved systems of second-order
BVPs, Javidi (2009) solved SEIR model, Wang & Song (2007) solution of a model for
HIV infection of CD4 + T cells, Rafei et al. (2007) solution of the system of nonlinear
ordinary differential equations governing on the problem, Noor et al. (2013) solved the
system of linear equations. Noor & Mohyud-Din (2008) solution of linear and non-linear
sixth-order boundary value problems and system of differential equations, Javidi (2009)
solved system of linear Fredholm integral equations (LFIEs). Yusufoğlu (2009) has solved
a linear Fredholm type integro-differential equations with separable kernel. Javidi (2009)
solved non-linear Fredholm integral equations, Saberi-Nadjafi & Tamamgar (2008) used
modified HPM for solving the system linear and nonlinear of Volterra integral equations,
Kumar et al. (2011) solved generalized Abel integral equation. Lastly, for the differential
equations of fractional type, Odibat & Momani (2008) solved nonlinear differential equa-
tions of fractional order, Jafari et al. (2010) solved nonlinear problems of fractional Ric-
cati differential equation & Yildirim & Agirseven (2009) solved the space-time fractional
advection-dispersion equation.

Recently, we have studied a wide class of linear first-order partial differential equations
which are used as mathematical models in many physically significant fields and applied
science. The approximated solutions of this class of partial differential equations have
studied using homotopy perturbation method (HPM). The proposed method applied for
solving different examples for this class of partial differential equations. The approximated
solutions for different tested problems show that the HPM is more efficient in the iterations
complexity and high accurate in the absolute errors. It has been highlighted that the use of
HPM is more suitable to approximate the solutions of general partial differential equations.
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2 Preliminary

3 Preliminary

3.1 Homotopy Perturbation Method(HPM)
In this section, we present a brief description of the HPM, to illustrate the basic ideas of the
homotopy perturbation method, we consider the following differential equation (Neamaty
& Darzi (2010), Chun & Sakthivel (2010), Batiha (2015) & Abbasbandy (2006)):

A(u)− f (τ) = 0, τ ∈ Ω (1)

with boundary conditions:

B(u,
∂u
∂τ

) = 0, τ ∈ ∂Ω (2)

where A is general differential operator, B is a boundary operator, f (τ) a known analytic
function and ∂Ω is the boundary of the domain Ω. The operator A can be generally divied
into two parts of L and N where L is linear part, while N is the nonlinear part in the DE,
Therefore Equation (1) can be rewritten as follows (He (1999)):

L(u)+N(u)− f (τ) = 0. (3)

By using homotopy technique, One can construct a homotopy

V (τ , p) : Ω× [0,1] 7→ R

which satisfies:

H(v, p) = (1− p)[L(v)−L(u0)]+ p[L(v)+N(v)− f (τ)] = 0, (4)

or

H(v, p) = L(v)−L(u0)+ pL(u0 + p[N(v)− f (τ)]) = 0, (5)

where p ∈ [0,1], τ ∈ Ω & p is called homotopy parameter and uo is an initial approx-
imation for the solution of equation (1) which satisfies the boundary conditions obviously,
Using equation (4) or (5), we have the following equation:

H(v,0) = L(v)−L(u0) = 0, (6)

and

H(v,1) = L(v)+N(v)− f (τ) = 0. (7)

Assume that the solution of (4) or (5) can be expressed as a series in p as follows:

V = v0 + pv1 + p2v2 + p3v3 + · · · =
∞

∑
i=0

pivi, (8)

set p → 1 results in the approximate solution of (1).
Consequently,

u(τ) = lim
p→1

V = v0 + v2 + v3 + · · · =
∞

∑
i=0

vi. (9)

It is worth to note that the major advantage of He’s homotopy perturbation method is that
the perturbation equation can be freely constructed in many ways and approximation can
also be freely selected
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4 Analysis of HPM for Solving First-order Partial
Differential Equation

In this section, we study the general first-order partial differential equation and introduce
a review of the homotopy perturbation method for solving first-order partial differential
equation.
The general form of first-order partial differential equation as follows:

n

∑
i=1

Ai(Tn)
∂u(Tn)

∂ ti
+C(Tn)u(Tn) = G(Tn), (10)

subject to the initial condition

u(Tn−1,0) = f (Tn−1)

such that
Tn = (t1, t2, t3, . . . , tn), Tn−1 = (t1, t2, t3, . . . , tn−1),

and An(Tn) 6= 0 where Ai(Tn) , C(Tn) , G(Tn) and f (Tn−1) are the given functions.
We describe a general technique for solving first-order partial differential equations in
which the solution u : ℜn → ℜ is a function of n variables according the following al-
gorithm:

4.1 The Proposed method
Firstly, we start with the initial approximation u(Tn−1,0) = f (Tn),
Secondly, we can construct a homotopy for the general PDE (10) as follow:

H(u, p) = (1− p)(
∂u(Tn)

∂ tn
−

∂u0(Tn)

∂ tn
)+ p(

n

∑
i=1

Ai(Tn)
∂u(Tn)

∂ ti
+C(Tn)u(Tn)

− G(Tn)) = 0. (11)

Thirdly, suppose that the solution of the Equation (11) is in the form

x(t) = x0 + px1 + p2x2 + p3x3 + . . . (12)

Therefore,

H(u, p) = (1− p)(
∞

∑
j=0

p j ∂u j(Tn)

∂ tn
−

∂u0(Tn)

∂ tn
)+ p(

n

∑
i=1

Ai(Tn)
∞

∑
j=0

p j ∂u j(Tn)

∂ ti

+ C(Tn)
∞

∑
j=0

p ju j(Tn)−G(Tn)) = 0. (13)
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Fourthly, collecting terms of the same power of p gives, as show in the following equations:
By collecting the terms of the same powers of p we obtain the following equation:

p0 :
∂u0(Tn)

∂ tn
−

∂u0(Tn)

∂ tn
= 0, (14)

p1 :
∂u1(Tn)

∂ tn
+

n

∑
i=1

Ai(Tn)
∂u0(Tn)

∂ ti
+C(Tn)u0(Tn)−G(Tn) = 0, (15)

p2 :
∂u2(Tn)

∂ tn
+

n−1

∑
i=1

Ai(Tn)
∂u1(Tn)

∂ ti
+C(Tn)u1(Tn) = 0, (16)

p3 :
∂u3(Tn)

∂ tn
+

n−1

∑
i=1

Ai(Tn)
∂u2(Tn)

∂ ti
+C(Tn)u2(Tn) = 0, (17)

p4 :
∂u4(Tn)

∂ tn
+

n−1

∑
i=1

Ai(Tn)
∂u3(Tn)

∂ ti
+C(Tn)u3(Tn) = 0, (18)

p5 :
∂u5(Tn)

∂ tn
+

n−1

∑
i=1

Ai(Tn)
∂u4(Tn)

∂ ti
+C(Tn)u4(Tn) = 0, (19)

. . .

Hence, for n = 2,3,4, . . . we have,

pm :
∂um(Tn)

∂ tn
+

n−1

∑
i=1

Ai(Tn)
∂um−1(Tn)

∂ ti
+C(Tn)um−1(Tn) = 0 (20)

. . .

Finally, using the Equations (14-20) with some simplifications, then we get the following
sequence of the solutions:

u0(Tn) = f (Tn),

u1(Tn) = −

∫
(

n

∑
i=1

Ai(Tn)
∂u0(Tn)

∂ ti
+C(Tn)u0(Tn)−G(Tn))dtn,

u2(Tn) = −

∫
(

n−1

∑
i=1

Ai(Tn)
∂u1(Tn)

∂ ti
+C(Tn)u1(Tn))dtn

u3(Tn) = −

∫
(

n−1

∑
i=1

Ai(Tn)
∂u2(Tn)

∂ ti
+C(Tn)u2(Tn))dtn

u4(Tn) = −

∫
(

n−1

∑
i=1

Ai(Tn)
∂u3(Tn)

∂ ti
+C(Tn)u3(Tn))dtn

and

u5(Tn) = −

∫
(

n−1

∑
i=1

Ai(Tn)
∂u4(Tn)

∂ ti
+C(Tn)u4(Tn))dtn

. . .

Hence, the general term has the following form:

un(Tn) =

∫
(

n−1

∑
i=1

Ai(Tn)
∂um−1(Tn)

∂ ti
+C(Tn)um−1(Tn))dtn n = 2,3,4, . . . .

. . .

Then the solution of the Equation (10) is

u(Tn) = u0(Tn)+u1(Tn)+u2(Tn)+u3(Tn)+u4(Tn)+u5(Tn)+ . . . (21)
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5 Implementations
In order to assess the accuracy of the solving first-order PDE using homotopy perturbation
method (HPM) of some problems, we have introduced different examples to compare the
approximated solutions with the exact solutions for tested problems, we will consider the
following problems.

5.1 Problem1
Consider the following partial differential equation:

xux(x, t)+ut(x, t) = 0, x ∈ R, t > 0, (22)

subject to the initial condition
u(x,0) = ax.

Comparing Equation(22) we have

n = 2, A1 = X , A2 = 1, G = 0 & C = 0.

The initial approximation has the form u0(x, t) = ax.
Substituting the Equation(21) into the Equation(22), we have

u1(x, t) = −

∫
(x

∂u0(x, t)
∂x

+
∂u0(x, t)

∂ t
)dt. (23)

Accordingly,

un(x, t) =
∫

(−1)nx
∂un−1

∂x
(x, t)dt; f or k = 2,3,4, . . . (24)

Making some simplification of the Equation (24), the sequence of the solutions to can be
identified as follow:

u1(x, t) = −axt,

u2(x, t) = ax
t2

2!
,

u3(x, t) = −ax
t3

3!
,

u4(x, t) = ax
t4

4!
,

u5(x, t) = −ax
t5

5!
,

. . .

Accordingly, the general solution of the Equation (22) is given as follow:

u(x, t) = u0(x, t)+u1(x, t)+u2(x, t)+u3(x, t)+u4(x, t)+u5(x, t)+ . . .

= axe−t
.
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Figure 1: Approximated solution of problem1 using HPM at a = 1

Figure 2: Approximated solution of problem1 using HPM at a = 0.5
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5.2 Problem2
Consider the Cauchy problem:

λux(x, t)+ut (x, t) = 0, x ∈ R, t > 0, (25)

subject to the initial condition
u(x,0) = h(x).

Comparing the Equation(25) we have

n = 2, A1 = λ , A2 = 1, G = 0 and C = 0

Consider the initial approximation has the following form

u(x,0) = h(x)

Substituting the Equation(21) into the Equation(25), we have

u1(x, t) = −

∫
(λ

∂u0(x, t)
∂x

+
∂u0(x, t)

∂ t
)dt

= −λ th(1)(x),

u2(x, t) = −

∫
λ

∂u1(x, t)
∂x

dt

= λ 2 t2

2!
h(2)(x),

u3(x, t) = −

∫
λ

∂u2(x, t)
∂x

dt

= −λ 3 t3

3!
h(3)(x),

u4(x, t) = −

∫
λ

∂u3(x, t)
∂x

dt

= λ 4 t4

4!
h(4)(x),

u5(x, t) = −

∫
λ

∂u4(x, t)
∂x

dt

= −λ 5 t5

5!
h(5)(x),

. . .

and,

um(x, t) = −

∫
λ

∂um−1(x, t)
∂x

dt

= (−1)mλ m tm

m!
h(m)(x).
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Then, the general solution of the Equation (25) is written as follow:

u(x, t) = u0(x, t)+u1(x, t)+u2(x, t)+u3(x, t)+u4(x, t)+u5(x, t)+ . . . ,

= h(x)−λ th(1)(x)+λ 2 t2

2!
h(2)(x)−λ 3 t3

3!
h(3)(x)+λ 4 t4

4!
h(4)(x)−λ 5 t5

5!
h(5)(x)

+ · · ·+(−1)mλ m tm

m!
h(m)(x)+ . . .

=
∞

∑
m=0

h(m)(−1)mλ m tm

m!
h(m)(x).

Now, we have study some special cases:

1. Case1: h(x) = x, approximated solution of PDE is written as follow:

u(x, t) = x−λ t

2. Case2: h(x) = ex, approximated solution of PDE is written as follow:

u(x, t) = ex−λ t
,

3. Case3: h(x) = sin(x), approximated the solution of equation is written as follow:

u(x, t) = sin(x)cos(λ t)− cos(x)sin(λ t).

5.3 Problem3
Consider the following PDE:

ux(x,y,z)+ yuy(x,y,z)+2x2zuz(x,y,z) = 0, x,y,z ∈ R, (26)

subject to the initial condition
u(x,y,z) = y.

Comparing the Equation(26),we have

n = 3, A1 = y, A2 = 2x2z, A3 = 1, G = 0 & C = 0.

Consider the initial approximation has the form u(x,y,z) = y substituting the Equation (21)

9



Figure 3: Approximated solution of problem2 using HPM at λ = 1 in case 1

Figure 4: Approximated solution of problem2 using HPM at λ = 1 in case 2

Figure 5: Approximated solution of problem2 using HPM at λ = 1 in case 3
10



into the Equation(26),we have

u1(x,y,z) = −

∫
(y

∂u0(x,y,z)
∂y

+2x2z
∂u0(x,y,z)

∂ z
+

∂u0(x,y,z)
∂x

)dx

= −yx,

u2(x,y,z) = −

∫
(y

∂u1(x,y,z)
∂y

+2x2z
∂u1(x,y,z)

∂ z
)dx

= y
x2

2!
,

u3(x,y,z) = −

∫
(y

∂u2(x,y,z)
∂y

+2x2z
∂u2(x,y,z)

∂ z
)dx

= −y
x3

3!
,

u4(x,y,z) = −

∫
(y

∂u3(x,y,z)
∂y

+2x2z
∂u3(x,y,z)

∂ z
)dx

= y
x4

4!
,

u5(x,y,z) = −

∫
(y

∂u4(x,y,z)
∂y

+2x2z
∂u4(x,y,z)

∂ z
)dx

= −y
x5

5!
,

and,

um(x,y,z)) = −

∫
(y

∂um−1(x,y,z)
∂y

+2x2z
∂um−1(x,y,z)

∂ z
)dx

= (−1)my
xm

m!
.

Hence, the general solution of the Equation (26) is written as follow:

u(x,y,z) = u0(x,y,z)+u1(x,y,z)+u2(x,y,z)+u3(x,y,z)+u4(x,y,z)+u5(x,y,z)+ . . .

= ye−x
.

5.4 Problem4
Consider the following PDE:

ux(x,y,z)+ yuy(x,y,z)+ zuz(x,y,z) = 0, x,y,z ∈ R (27)

subject to the initial condition
u(x,y,z) = zy.

Comparing the Equation(27)we have

n = 3, A1 = y, A2 = z, A3 = 1, G = 0 and C = 0

Consider the initial approximation has the form u(x,y,z) = zy substituting the Equation(21)
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Figure 6: Approximated solution of problem3 using HPM

into the Equation(27),we have

u1(x,y,z) = −

∫
(y

∂u0(x,y,z)
∂y

+ z
∂u0(x,y,z)

∂ z
+

∂u0(x,y,z)
∂x

)dx

= −2xyz,

u2(x,y,z) = −

∫
(y

∂u1(x,y,z)
∂y

+ z
∂u1(x,y,z)

∂ z
)dx

= yz
2x2

2!
,

u3(x,y,z) = −

∫
(y

∂u2(x,y,z)
∂y

+ z
∂u2(x,y,z)

∂ z
)dx

= −yz
2x3

3!
,

u4(x,y,z) = −

∫
(y

∂u3(x,y,z)
∂y

+ z
∂u3(x,y,z)

∂ z
)dx

= yz
2x4

4!
,

u5(x,y,z) = −

∫
(y

∂u4(x,y,z)
∂y

+ z
∂u4(x,y,z)

∂ z
)dx

= −yz
2x5

5!
,

and,

um(x,y,z)) = −

∫
(y

∂um−1(x,y,z)
∂y

+ z
∂um−1(x,y,z)

∂ z
)dx

= (−1)myz
2xm

m!
.
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However, the general solution of Equation (27) is written as follow:

u(x,y,z) = u0(x,y,z)+u1(x,y,z)+u2(x,y,z)+u3(x,y,z)+u4(x,y,z)+u5(x,y,z)+ . . .

= yze−2x
.

6 Discussion and Conclusion
In this paper, the homotopy perturbation method (HPM) has been studied for solving gen-
eralized linear first-order partial differential equations. The approximated solutions of this
class of PDEs have been studied. Also, we have tested the HPM on the solving of differ-
ent implementations which are show the efficiency and accuracy of the proposed method.
The approximated solutions are agree well with analytical solutions for the tested problems
Moreover, the approximated solutions proved that the proposed method to be efficient and
high accurate.
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