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ABSTRACT – Domination is a very fast developing area in 
Graph Theory. This paper deals with combination of 
domination, total domination, proper colouring and 
transversal sets. Also demonstrate the domination transversal 
number for different types of graphs. We also extend some 
relation between domination and total domination colour 
transversal number of graphs. We also provide some 
examples to justify our results. We also obtain an upper bound 
of this number which increases monotonically. 
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1. INTRODUCTION 

 
Graphs are mathematical structures used to model 

pair-wise relations between objects from a certain collection. 
Graph can be defined a set V of vertices and set of edges. 
Where, V is collection of |V| = n abstract data types. Vertices 
can be any abstract data types and can be presented with the 
points in the plane. These abstract data types are also called 
nodes. A line (line segment) connecting these nodes is called 
an edge. Again, more abstractly saying, edge can be an 
abstract data type that shows relation between the nodes 
(which again can be an abstract data types). 

Euler proposed that any given graph can be traversed 
with each edge traversed exactly once if and only if it had, 
zero or exactly two nodes with odd degrees. The graph 
following this condition is called, Eulerian circuit or path. We 
can easily infer this theorem. Exactly two nodes are, (and 
must be) starting and end of your trip. If it has even nodes 
than we can easily come and leave the node without repeating 
the edge twice or more. In actual case of seven bridges of 
Konigsberg, once the situation was presented in terms of 
graph, the case was simplified as the graph had just 4 nodes, 
with each node having odd degree. So, Euler concluded that 

these bridges cannot be traversed exactly once.  
 
2. DOMINATING COLOUR TRANSVERSAL NUMBER 

 
An std-set D is minimal if and only if for every u ∈ D 

any one of the following holds: 
(i) u is an isolate of D 
(ii) There exists a vertex v ∈ V−D such that N(v)∩D = {u} 
(iii) For every χ-partition, Π = {V1, V2,..., Vχ }, there exists 
one Vi such that Vi ∩ D = {u} or ∅. 
 
Proof 
Let D be an std-set. If D is minimal, then D −{u} is not an std-
set for every u ∈ D.  
This implies that either D −{u} is not a dominating set or not a 
transversal of every χ-partition of G. 
 
Case 1:  

Suppose D −{u}is not a dominating set. Then there 
exists a vertex v ∈ (V−D)∪{u} that is not adjacent to any 
vertex of D −{u}.  
If u = v, then u is an isolate of D. If u≠v, then v is adjacent to 
u but not to any other vertex of D.  

Hence N(v)∩D = {u}.  
Case 2:  

Suppose D −{u} is not a transversal for every χ-
partition {V1,V2,...,Vχ}. This implies that D − {u}∩Vi = ∅ for 
some i. That is Vi ∩D = {u} or ∅ for some i.  

Hence (iii) is satisfied. 
 

Conversely assume any one of the three conditions. 
We prove that D is a minimal std-set. Suppose not. Then D is 
an std-set but not minimal. This implies that D and D −{u} are 
std-sets for some u ∈ D.  
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Let {V1,V2,...,Vχ} be a χ-partition of V for which D 
−{u}and D are transversals. Then D −{u}∩Vi ≠ ∅ and D ∩Vi 

≠ ∅ for every i.  
This implies that D ∩ Vi ≠{u} or ∅ contradicting 

condition (iii). 
 
Theorem: For any graph G, γ ≤ γg ≤ γst. 
Proof : 
Let D be any std-set of G. So there exists a χ-partition 
Π={V1,V2,...,Vχ} such that D ∩ Vi ≠∅ for every i. Each Vi is 
an independent set and so is a clique in G.  Since D∩Vi ≠∅ for 
every i, D is a dominating set for G. Hence D is a global 
dominating set and γg ≤ γst. 
 
Result : If G has k-components say G1,G2,...,Gk such that 
χ(G1) ≥ χ(Gi) for i = 2, 3, ..., k, then γst(G) ≤ γst(G1) + 
∑ 𝛾𝛾𝑘𝑘
𝑖𝑖=2 (Gi). 

Proof:  It is given that G =∑ 𝐺𝐺𝑘𝑘
𝑖𝑖=1 i. As χ(G1) ≥ χ(Gi), for every 

i, any γst-set of G1 is a transversal of every χ-partition of G. 
Hence the union of a γst-set of G1 and γ-sets of Gi, i = 2,3, ..., k 
is an std-set of G. So γst(G) ≤ γst(G1) + ∑ 𝛾𝛾𝑘𝑘

𝑖𝑖=2 (Gi). 
 

3. TOTAL DOMINATING COLOR  TRANSVERSALS 
IN GRAPH 

 
Let G = (V, E) be a graph with chromatic 

number χ and minimum total dominating set S. If < S > 
contains a complete sub graph of order χ, then   γtstd (G) = 
γt(G). 
 
Proof:  Suppose S is a minimum total dominating set of G and 
< S > contains complete sub graph H of order χ.  All the 
vertices of H must be assigned distinct χ colors and hence S is 
a transversal of every χ −partition of G. Hence S is a total 
dominating color transversal set of G.  

Therefore γtstd(G) ≤ γt(G).  As γt(G) ≤ 
γtstd(G), Hence γtstd (G) = γt(G). 

 
Theorem: If χ(G) = 2 then γtstd (G) = γt(G). 
Proof : Given that γ(G) = 2.  We know that if S is a minimum 
total dominating set of G then < S > contains complete sub 
graph of order 2.  Hence by the above theorem, γtstd (G) = 
γt(G). 
 
Corollary: 
For n ≥ 2, γtstd (Pn) = γt (Pn) and γtstd(T) = γt(T) 
Proof : Let Pn and T are bipartite graph.  We know that if S is 
a minimum total dominating set of G then < S > contains 

complete sub graph of order 2.  Hence γtstd(Pn) = γt (Pn) and 
γtstd(T) = γt(T). 
Result: For n ≥ 2, γt (Pn) = 𝑛𝑛

2
 , if n≡ 0 mod(4) 

             = 𝑛𝑛+2
2

 , if n≡ 2 mod(4) 

            = 𝑛𝑛+1
2

 , otherwise. 
 
Result: For n ≥ 3, γt (Cn) = γt (Pn). 
Theorem: 
For n ≥ 4, γtstd (Cn) = γt (Cn) = 𝑛𝑛

2
 , if n≡ 0 mod(4) 

     = 𝑛𝑛+2
2

 , if n≡ 2 mod(4) 

        = 𝑛𝑛+1
2

 , otherwise. 
Proof: We first note that cycle with even vertices is bipartite 
and otherwise it is tripartite. Divide vertices of Cn into groups 
of four like {v1,v2,v3,v4}, {v5,v6,v7,v8},…..where the last 
group may contain one, two, three or four vertices. 
 
Case 1: n≡ 0 mod(4) or n≡ 2 mod(4) 
  In such case Last group has four vertices or two 
vertices. So cycle Cn will have even number of vertices and 
hence Cn will be bipartite. Hence by theorem 4.2 and by γt (Cn) 
= γt (Pn), we have n ≥ 4, γtstd (Cn) = γt (Cn) = 𝑛𝑛

2
 , if n≡ 0 mod(4) 

         = 𝑛𝑛+2
2

 , if n≡ 2 mod(4). 
 
Case 2: n≡ 1mod(4) 

Here we first note that γtstd (Cn) ≥ γt (Cn) = 𝑛𝑛+2
2

 .In this 
case last group has one vertex. So cycle Cn will have odd 
number of vertices and hence Cn will be tripartite.  Select 
middle two vertices from each group of four vertices except 
second last group and from second last group select three 
vertices.  The resultant set S, will be a total dominating set 
with cardinality is 𝑛𝑛−5

2
+ 3 = 𝑛𝑛+1

2
.  

Consider the χ- coloring of vertices of each group by 
using 1,2, and 3 colors as 
{1,2,1,3},{2,1,2,3},{2,1,2,3},{2,1,2,3}. Note that the set S 
will be a transversal of χ-partition of G formed by such χ-
coloring of G is a minimum total dominating color transversal 
set of G with cardinality𝑛𝑛+1

2
.  Hence γtstd(Cn) = 𝑛𝑛+1

2
, if 

n≡1mod(4). 
 

Case3: n≡ 3 mod(4) 
Here we first that γtstd(Cn) ≥ γt(Cn) = 𝑛𝑛+1

2
. 

In this case cycle Cn will be tripartite.  Select middle two 
vertices from each group except from last group and from last 
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group select last two vertices.  The resultant set S, will be a 
total dominating set with cardinality 𝑛𝑛−3

2
+ 2 = 𝑛𝑛+1

2
.  

 
Consider the χ-coloring of vertices of each group by 

using 1,2 and 3 colors as 
{1,2,1,3},{2,1,2,3},{2,1,2,3},……,{1,2,3}. Note that the S 
will be a transversal of χ-partition of G formed by such χ-
coloring of G and this set S is a minimum total dominating 
color transversal set of G with cardinality𝑛𝑛+1

2
. Hence γtstd(Cn) = 

𝑛𝑛+1
2

, if n≡3mod(4). Hence the theorem. 
 
4. RELATION BETWEEN DOMINATING AND TOTAL 
DOMINATING COLOR TRANSVERSAL NUMBER OF 

GRAPH. 
Theorem: For any graph G, γstd(G) ≤ γtstd(G) ≤ 2γstd(G) 
Proof: γstd(G) ≤ γtstd(G) as total dominating set is always a 
dominating set. If dominating color transversal set S is not a 
total dominating color transversal set then there exists isolates 
in S.  

At most |S| number of vertices in S can be isolates. 
As G is a graph without isolated vertices, each vertex in S has 
adjacent vertex in G and hence by adding at most |S| vertices 
to S from V\S, we obtain a total dominating color transversal 
set. Hence γtstd(G) ≤ 2γstd(G). 

 
Example: Consider a disconnected graph G 

v1          v1 

  

 
 
  v2       v2 

Figure-1: Disconnected Graph G 

γtstd(G) = 4 and γstd(G) =2. 

Example: Consider a graph G 
v1            v2                        v3  
 
 
v4     v6  
 
          v5   
  
v7 

Figure-2: Connected Graph G 
 

γ = {v2, v4, v5}, γ(G) =3 

γt = {v2, v4, v5}, γt(G) =3 

χ(G) = 4 , γstd = γtstd = 3 

 

Example: Consider a graph G 
v1            v2                        v3  
 
 
v4     v6  
 
          v5   
  
v7 

Figure-3: Connected Graph G 
 

γtstd(G) = γstd(G) = χ(G) = 4 but γ(G) = γt(G) = 3. 
 
Example: Consider a graph G (≠Kn) for which γtstd(G) = 
γstd(G) ≠ χ(G) and γ(G)  ≠ γt(G). 
          v2             v4 
   
 
 
 v1                     v3            v5 

 
Figure-4: Bipartite Graph G 

 
γtstd(G) = γstd(G) =2 ≠ χ(G) =3 and γ(G) =2 ≠ γt(G) = 3. 

 
Example:  
 Consider a graph G is connected. 
           v7        

      v3                      v8  

                             

   v4         v10 
v1   v2             v6       v9  

     
                 v5                 

      

                                          v11 
Figure-5 : Connected Graph G 
 

γtstd – set of G is { v2, v3, v6, v8, v9, v10} and  

γstd – set of G is { v2, v6, v10} 

So, γtstd(G) =6 and γstd(G) =3. 

Hence γtstd(G) = 2γstd(G).        

   

5. TOTAL DOMINATING COLOR TRANSVERSAL 
NUMBER OF GRAPHS AND MONOTONICITY 
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Theorem: Let G = (V, E) be a graph with k – components say 
G1, G2, ...., Gk and each component is without isolated vertex. 
If χ(G) ≤ 2k then             γtstd(G) = γt(G). 
Proof : Let χ(G) = 2k. Let γt(Gi) denote the Total Domination 
number of Gi (i =1, 2, 3,...., k). Each γt - set has at least two 
adjacent vertices. So assign two distinct colors to two adjacent 
vertices in γt - set of component G1.  Again, assign two 
arbitrary colors, not used early, to two different vertices in γt - 

set of component G2.  
 

Likewise continue assigning two arbitrary distinct 
colors, not used early, to two distinct vertices of γt - set of 
components of G till we reach upto γt - set to of component 𝐺𝐺𝑥𝑥

2
 

(= Gk) of G. Hence ⋃ 𝛾𝛾𝑡𝑡 (𝐺𝐺𝑖𝑖)𝑘𝑘
𝑖𝑖=1 = γt(G) is a transversal of such 

χ – Partition of G. Therefore γtstd(G) = γt(G). For χ(G) < 2k, 
the result is obvious by applying the above method of coloring 
the γt – set of components of G. 

 
Theorem: Let G = (V, E) be a graph with k – components, 
say G1, G2,...., Gk, such that χ(G1) ≥ χ(Gi),∀ i ∈{2,....., k}. 
Then γtstd(G) ≤ γtstd (G1) +∑ 𝛾𝛾𝑡𝑡𝑘𝑘

𝑖𝑖=2 (𝐺𝐺𝑖𝑖) . 
Proof : Trivially as χ(G1) ≥ χ (Gi), ∀ i∈ {2,....., k} we have 
χ(G) = χ(G1). Then any γtstd -set of G1 is a transversal of every 
χ– Partition of G. So union of γtstd -set of G1 and γt -Sets of 
each Gi (i = 2, 3,....., k) yields Total Dominating Color 
Transversal set of G. Hence γtstd(G) ≤ γtstd (G1) +∑ 𝛾𝛾𝑡𝑡𝑘𝑘

𝑖𝑖=2 (𝐺𝐺𝑖𝑖). 
 

6. DOMINATION GRAPH WITH APPLICATION 
Domination in graphs has been an extensively 

researched branch of graph theory. Graph theory is one of the 
most flourishing branches of modern mathematics and 
computer applications. The last 30 years have witnessed 
spectacular growth of Graph theory due to its wide 
applications to discrete optimization problems, combinatorial 
problems and classical algebraic problems. It has a very wide 
range of applications to many fields like engineering, 
physical, social and biological sciences; linguistics etc., the 
theory of domination has been the nucleus of research activity 
in graph theory in recent times. This is largely due to a variety 
of new parameters that can be developed from the basic 
definition of domination. The NP-completeness other basic 
domination problems and its close relationship to other NP-
completeness problems have contributed to the enormous 
growth of research activity in domination theory. 

 
Applications of Domination in Graph 

Domination in graphs has applications to several 
fields. Domination arises in facility location problems, where 

the number of facilities (e.g., hospitals, fire stations) is fixed 
and one attempts to minimize the distance that a person needs 
to travel to get to the closest facility. A similar problem occurs 
when the maximum distance to a fality is fixed and one 
attempts to minimize the number of facilities necessary so that 
everyone is serviced. Concepts from domination also appear 
in problems involving finding sets of representatives, in 
monitoring communication or electrical networks, and in land 
surveying (e.g., minimizing the number of places a surveyor 
must stand in order to take height measurements for an entire 
region). 
 
6.1 School Bus Routing 

Most school in the country provide school buses for 
transporting children to and from school Most also operate 
under certain rules, one of which usually states that no child 
shall have to walk farther than, say one quarter km to a bus 
pickup point. Thus, they must construct a route for each bus 
that gets within one quarter km of every child in its assigned 
area. No bus ride can take more than some specified number 
of minutes, and Limits on the number of children that a bus 
can carry at any one time. Let us say that the following figure 
represents a street map of part of a city, where each edge 
represents one pick up block. The school is located at the large 
vertex. Let us assume that the school has decided that no child 
shall have to walk more than two blocks in order to be picked 
up by a school bus. Construct a route for a school bus that 
leaves the school, gets within two blocks of every child and 
returns to the school. 
 
6.2 Computer Communication Networks 

Consider a computer network modeled by a graph G 
= (V,E) for which vertices represents computers and edges 
represent direct links between pairs of computers. Let the 
vertices in following figure represent an array, or network, of 
16 computers, or processors. Each processor to which it is 
directly connected. Assume that from time to time we need to 
collect information from all processors. We do this by having 
each processor route its information to one of a small set of 
collecting processors (a dominating set). Since this must be 
done relatively fast, we cannot route this information over too 
long a path. Thus we identify a small set of processors which 
are close to all other processors. Let us say that we will 
tolerate at most a two unit delay between the time a processor 
sends its information and the time it arrives at a nearby 
collector. In this case we seek a distance-2 dominating set 
among the set of all processors. 
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6.3 Radio Stations 
Suppose that we have a collection of small villages in 

a remote part of the world. We would like to locate radio 
stations in some of these villages so that messages can be 
broadcast to all of the villages in the region. Since each radio 
station has a limited broadcasting range, we must use several 
stations to reach all villages. But since radio stations are 
costly, we want to locate as few as possible which can reach 
all other villages. Let each village be represented by a vertex. 
An edge between two villages is labeled with the distance, say 
in kilometers, between the two villages.  

 
6.4 Locating Radar Stations Problem 

The problem was discussed by Berge. A number of 
strategic locations are to be kept under surveillance. The goal 
is to locate a radar for the surveillance at as few of these 
locations as possible. How a set of locations in which the 
radar stations are to be placed can be determined. 

 
7. CONCLUSION 

This paper “A Review on relation between 
dominating and total dominating color transversal number of 
graph and monotonicity” is discussed about new domination 
parameters and characterize the graphs that attain some 
bounds. Every total dominating set is dominating set. A graph 
G is bipartite graph then total dominating color transversal 
number and total dominating number of graph are equal. 
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