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ABSTRACT – Domination and its variations in graphs are 
now well studied. However, the original domination number 
of a graph continues to attract attention. Many bounds have 
been proven and results obtained for special classes of graphs 
such as cubic graphs and products of graphs. On the other 
hand, the decision problem to determine the domination 
number of a graph remains NP-hard even when restricted to 
cubic graphs or planar graphs of maximum degree 3. In this 
paper we consider the domination of planar graphs with small 
diameter. 
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1. INTRODUCTION 

Domination and its variations in graphs are now well 
studied. However, the original domination number of a graph 
continues to attract attention. Many bounds have been proven 
and results obtained for special classes of graphs such as cubic 
graphs and products of graphs. On the other hand, the decision 
problem to determine the domination number of a graph 
remains NP-hard even when restricted to cubic graphs or 
planar graphs of maximum degree 3. Hence it is of interest to 
determine upper bounds on the domination number of a graph.  

 
 In this paper we consider the domination of planar 
graphs with small diameter. It is trivial that a tree of radius 2 
and diameter 4 can have arbitrarily large domination number. 
So the interesting question is what happens when the diameter 
is 2 or 3.  
            MacGillivray and Seyffarth “Domination numbers of 
planar graphs”proved that planar graphs with diameter two or 
three have bounded domination numbers. In particular, this 
implies that the domination number of such a graph can be 
determined in polynomial time. On the other hand, they 
observed that in general graphs with diameter 2 have 
unbounded domination number. 

 

We show that there is a unique planar graph of 
diameter 2 with domination number 3. Hence every planar 
graph of diameter 2, different from this unique planar graph, 
has domination number at most 2. We then prove that every 
planar graph of diameter 3 and of radius 2 has domination 
number at most 6. We then show that every sufficiently large 
planar graph of diameter 3 has domination number at most 7.  
 
Theorem : Every planar graph of diameter 2 has domination 
number at most 2 except for the graph F of Figure 3.1 which 
has domination number 3. 
Proof : To prove Theorem, suppose G is a planar graph of 
diameter two satisfying γ (G) > 2. If a and b are two vertices 
in G, then there is always a vertex not dominated by {a, b}. 
We Shall denote one such vertex by υab. Fix an embedding 
G*of G in the plane.   

 
From the Jordan Closed Curve Theorem, we Know 

that a cycle C in G* separates the plane into two regions, 
which we call the sides of C. Vertices of different sides of C 
are said to be separated by C.      The side of C that consists of 
the unbounded region we call the outside of C, while the side 
of C that consists of the bounded region we call the inside of 
C. If C has length n and there are vertices both inside and 
outside C, then we say that C is a cut-n-cycle. A cut-3-cycle is 
also called a cut-triangle. Since a cut-set dominates a graph of 
diameter 2, it follows that G is 3-connected; therefore G has 
an essentially unique embedding in the plane and so we may 
speak of cut-cycles of G rather than of G*,lemma3.1.2 
establishes the existence of a 4-cycle. Then we show that this 
cycle is neither both induced and dominating, nor both non-
induced and dominating, and therefore not dominating.  
Finally, we show that it follows that G is isomorphic to F. 

 
2. DOMINATION IN  PLANAR  GRAPHS  WITH  

SMALL   DIAMETER II 
The domination number of G, denoted by (G), is the 

minimum cardinality of a dominating set, while the total 
domination number of G, denoted by γt(G), is the minimum 
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cardinality of a total dominating set. Domination and its 
variations in graphs are now well studied. To simplify the 
notation, if X dominates Y we write X  Y while if X totally 
dominates Y we write X t Y . Further, if a vertex u is 
adjacent with a vertex υ, we write u ∼ v, while if u and v are 
nonadjacent, we write u≁υ. We denote the eccentricity of a 
vertex υ in G by eccG(υ), or simply ecc(υ) if G is clear from 
the context. The subgraph induced by a subset S ⊆ V (G) is 
denoted by G[S]. 

 
Theorem :  Every planar graph of diameter 3 and of radius 2 
has total domination number at most 5. 
 
Proof :  The focus is on cut-cycles. Note that in a planar graph 
of diameter 3,there cannot on both sides of a cut-cycle be 
vertices not dominated by the cycle. We define a basic cycle 
as follows.  

Let vertex x have eccentricity 2 in G.  
Then a basic cycle C is an induced cycle x, υ 1, υ 2, . . 

. , υr, x such that on both sides of the cycle there is a vertex 
whose neighbors on the cycle are a subset of the two 
consecutive vertices fartherest from x, specifically υ(r−1)/2 
and υ(r+1)/2 if r is odd, and υr/2 and υr/2+1 if r is even. A 
special basic cycle is one with the added condition that there 
is on the dominated side of the cycle a vertex with only one 
neighbor on the cycle and that neighbor is not x. Our strategy 
is as follows. In Subsection 3.1 we show the existence of 
aspecial basic cycle of length 3 or 4 or of a basic 5-cycle in G. 
Thereafter, in Subsection 4.2 we prove some lemmas about 
how to totally dominate vertices at distance 2 from two or 
more vertices, in particular the Divider Lemma.  

              
Basic Cycles Exist 
 Let G be a plane graph of radius 2 and diameter 3 
with central vertex x. We say that it is edge-minimal if for 
every edge e of G, diam(G − e) >3 or ecc(x) > 2 in G − e. 
Clearly, we may assume that G is edge-minimal in proving 
Theorem 1 (since removing edges can only increase the total 
domination number). 
  
Theorem : Let G be an edge-minimal plane graph of radius 2 
and diameter 3 with central vertex x. Then, γt(G) ≤ 5, or there 
exists a special basic triangle, special basic 4-cycle, or basic 5-
cycle. 
Proof : Suppose there is neither a special basic cycle of length 
3 or 4 nora basic 5-cycle in G. Let Y = V (G) − N[x]. Let M 
be a minimal subset of N(x) that dominates Y . The set M 
exists since ecc(x) = 2. Let |M| = m. Since γt(G)≤ m + 1, we 
may assume m >=5. Let the vertices of M be n0, n1, . . . , nm−1 

in cyclic order (clockwise) around x in G. Let Y'ibe the set of 
vertices of Y whose only neighbor in M is ni.  By the 
minimality of M, each Yi is nonempty.  
 

Let Y0, Y1, . . . , Ym−1be a partition of Y such that 
Yi⊆ N(ni) for each i. Necessarily, Yi ⊆ Yi for each i. We now 
choose a vertex yi Y'i for each i. If there is a vertex of Y'I 
adjacent to both a vertex of Yi−1 and a vertex of Yi+1 (where 
addition is taken modulo m), then this vertex is unique by the 
planarity of G and we choose this as yi.  

 
If there is no such vertex of Y i , then we let y ibe any 

vertex of Y i adjacent to a vertex of Yi−1 or a vertex of Yi+1, if 
such a vertex exists, failing which we let yi be any vertex of Y 
0 i . We say that two neighbors u1 and u2 of x are separated if 
there is a vertex of M between u1 and u2 in both directions 
around x in the embedding of G. We define type-1, type-2 and 
type-3 edges as follows. 

 
A type-1 edge joins vertices u1, u2∈ N(x) such that u1 

and u2are separated. A type-2 edge joins vertices u1∈ N(x) and 
v2∈ Y with v2dominated by a vertex u2 of M such that u1 and 
u2 are separated. A type-3 edge joins vertices v1, v2∈ Y with 
v1 and v2 dominated by vertices u1 and u2 of M, respectively, 
such that u1 and u2 are separated. 
 
Theorem: There is no type-1, type-2 or type-3 edge. 
 
Proof : Let e be an edge. Suppose e = u1u2is a type-1 edge. 
Then there is a vertex ni of M inside the cycle C: x, u1, u2, x 
and a vertex nj of M outside the cycle C. Since the vertices yi 
and yj are not dominated by x, C is a basic triangle. Without 
loss of generality, C dominates its inside. By assumption, C is 
non special. That is, every vertex of Y inside C is adjacent to 
both u1and u2. By planarity, yi is the only vertex of Y inside 
the triangle C, since each such vertex must be adjacent to all 
of u1, u2 and nj. But then we can remove the edge niyi, 
contradicting the minimality of G. Hence, G has no type-1 
edge. 

 
Suppose e = u1v2 is a type-2 edge. Then again there is 

a vertex ni ofM inside the cycle C: x, u1, v2, u2, x and a vertex 
nj of M outside the cycle C with vertices yi and yj not 
dominated by {x, u2}. Furthermore, since there is no type-1 
edge, C is induced and hence a basic 4-cycle. Without loss of 
generality, C dominates its inside. By assumption, C is non-
special. That is, every vertex of Y inside C is adjacent to at 
least two vertices on the cycle. In particular, since u2  M, yi 
is adjacent to u1and v2 (and not to u2).  Hence by planarity, 
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each vertex of Y inside C is adjacent to at most one of u1 and 
u2, and therefore, since C is non-special, is adjacent to v2. But 
then we can remove the edge niyi, contradicting the minimality 
of G. Hence, G has no type-2 edge. If e = v1v2 is a type-3 
edge, then again there is a vertex yi both insideand outside the 
cycle C: x, u1, v1, v2, u2, x not dominated by {x, u1, u2}. 
Furthermore, since there is no type-1 or type-2 edge, C is 
induced and hence a basic 5-cycle, a contradiction. Hence, G 
has no type-3 edge.  
 

3. TOTAL DOMINATION IN GRAPHS WITH 
DIAMETER 2 

A hypergraph H = (V, E) is a finite set V = V(H) of 
elements, called vertices, together with a finite multiset E = 
E(H) of arbitrary subsets of V, called hyperedges or simply 
edges. A k-uniform hypergraph is a hypergraph in which 
every edge has size k. Every (simple) graph is a 2-uniform 
hypergraph. Thus, graphs are special hypergraphs. A 
hypergraph H is called an intersecting hypergraph if every two 
distinct edges of H have a nonempty intersection. 

 
A subset T of vertices in a hypergraph H is a 

transversal in H if T has a nonempty intersection with every 
edge of H. A transversal is also called a hitting set in the 
literature. The transversal number τ (H) of H is the minimum 
size of a transversal in H. A transversal of H of size τ (H) is 
called a τ (H) set. 

 
For a graph G = (V, E), we denote by HG the open 

neighbourhood hypergraph, abbreviated as ONH, of G; that is, 
HG = (V,C) is the hypergraph with vertex set V and with edge 
set C consisting of the open neighborhoods of vertices of V in 
G. 
 
Theorem : Let G be a diameter-2 graph of order n. Then the 
following hold. 
(a)  γt (G) ≤ 1 + δ(G). 
(b)  If n ≤ 11, then γt (G) ≤ 1 +√𝑛𝑛 with equality if and only if 
G = G9. 
(c)  If G has girth 5, then γt (G) = 1 +√𝑛𝑛 −1. 
We next establish an upper bound on the total domination 
number of a general graph with large minimum degree. 
 
Proof: Let G = (V, E) be a diameter-2 graph of order n. If v is 
an arbitrary vertex in G, then the diameter-2 constraint implies 
that N[v] is a TD-set in G. In particular, choosing v to be a 
vertex of minimum degree proves part (a) of the above 
Theorem.It is shown that Moore graphs are r-regular and that 

diameter-2 Moore graphs have an order 𝑛𝑛 = 𝑟𝑟2 + 1and exist 
for r = 2, 3, 7, and possibly 57, but for no other degrees.  

 
The Moore graphs for the first three values of r are 

unique, namely, 
(i) the 5-cycle (2-regular graph on n = 5 vertices), 
(ii) the Petersen graph (3-regular graph on n = 10 vertices), 
and 
(iii) the Hoffman–Singleton graph (7-regular on n = 50 
vertices). 

 
Since G is a diameter-2 graph of girth 5, the graph G 

is a diameter-2 Moore graph and 𝑛𝑛 = 𝑟𝑟2 + 1. Hence 𝑟𝑟 =
 √𝑛𝑛 − 1. 
 

Let D be a γt (G)-set. Then 𝑉𝑉 = ⋃ 𝑁𝑁(𝑣𝑣)𝑣𝑣∈𝐷𝐷 , implying 
that V≤ ∑ 𝑑𝑑𝐺𝐺(𝑣𝑣) ≤ ∆(𝐺𝐺)𝑣𝑣∈𝐷𝐷  ≤ (G) · D; or equivalently, 
γt(G) =D≥ V/(G) = n/√𝑛𝑛 − 1. Therefore by Part (a),  
we have that n/√𝑛𝑛 − 1 ≤ γt (G) ≤ 1 + √𝑛𝑛 − 1, or, 
equivalently,    √𝑛𝑛 − 1 + 1/√𝑛𝑛 − 1 ≤ γt (G) ≤ 1 +√𝑛𝑛 − 1. 
Since both γt (G) and n − 1 are integers, γt (G) = 1 + √𝑛𝑛 −
1.Hence the proof. 
 

5. TOTAL DOMINATION IN PLANAR GRAPHS OF 
DIAMETER TWO 

A total dominating set, denoted TDS, of a graph G = 
(V, E) with no isolated vertex is a set S of vertices of G such 
that every vertex is adjacent to a vertex in S. Every graph 
without isolated vertices has a TDS, since S D V is such a set. 
The total domination number of G, denoted by γt (G),is the 
minimum cardinality of a TDS. A TDS of G of cardinality 
γt(G) is called a γt(G)-set. The decision problem to determine 
the domination number and total domination number of a 
graph remains NP-hardeven when restricted to cubic graphs or 
planar graphs of maximum degree 3. Hence it is of interest to 
determine upper bounds on the domination number and total 
domination number of a graph. A tree of radius 2 and diameter 
4 can have arbitrarily large (total) domination number. So the 
interesting question is what happens when the diameter is 2 or 
3.This restriction is reasonable to impose because planar 
graphs with small diameter are often important in 
applications. MacGillivray and Seyffarth proved that planar 
graphs with diameter two or three have bounded domination 
numbers.  
 
Theorem: If G is a planar graph with diam.(G)= 2, then γt(G)  
≤  3. 
Proof : Our aim in this paper is to study the problem of 
characterizing planar graphs with diameter two and total 
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domination number three. Such a characterization seems 
difficult to obtain since there are infinitely many such graphs.  

we therefore restrict our attention to planar graphs 
with certain structural properties. We say that a graph G 
satisfies the domination-cycle property if there is some γ(G)-
set not contained in any induced 5-cycle of G. We characterize 
the planar graphs with diameter two and total domination 
number three that satisfy the domination-cycle property. 

 
Notation : For notation and graph theory terminology we in 
general follow. Specifically, let G = ( V, E)be a graph with 
vertex  set V of order n and edge set E. For a set S ⊆V, the 
subgraph induced by S is denoted by G[S].  
 

The S-external private neighborhood epn(υ, S) of a 
vertex v∈S is defined by pn(υ, S)= {u ∈  V | N(u) ∩ S={υ}}, 
and each element of epn(υ, S)is called an S-external private 
neighbor of υ. The open neighborhood of vertex υ  ∈  V is 
denoted by N(υ)={u ∈  V | uv ∈ E} while its closed 
neighborhood is given by N[υ]= N[υ] U{υ}. For a set S  ⊆ V, 
N(S)=∪υ ∈ SN(υ) and N[S] U S.  If X, Y ⊆ V, then the set X is 
said to dominate the set Y if  
Y⊆  N[X], while X is said to totally dominate the set Y if Y⊆ 
N[X]. If Y ={υ} and X dominates Y, we simply write that X 
dominates υ. We note that if X dominates V, then N[X] =V 
and X is a dominating set of G, and if X totally dominates V, 
then N(X)= V and X is a total dominating set of G.  
 

For disjoint subsets U and W of V, we let [U,W] 
denote the set of all edges of G joining a vertex of U and a 
vertex of W. We denote the degree of a vertex υ in G by dG(υ) 
or simply by d(υ) if the graph G is clear from the context. For 
two vertices u and v in a connected graph G, the distance dG(u, 
υ) between u and υ is the length of a shortest u-υ path in G.  

For a set S⊆V and a vertex v∈V, the distance dG(υ, 
S) between υ and S is the minimum distance between v and a 
vertex of S. If a vertex u is adjacent to a vertex υ, we write u

v, while if u and v are nonadjacent, we write u ≁ υ. If υ is 
adjacent to no vertex in a set A ⊆ V(G) then we write υ ≁ A 
and if υ is adjacent to every vertex in A then we write υ ∼ A. 
A plane graph is a planar graph together with an embedding in 
the plane. From the Jordan Closed Curve Theorem, we know 
that a cycle C in a plane graph separates the plane into two 
regions, the interior of C and the exterior of C. If a vertex lies 
in the interior of C, we simply say that v lies inside C. We 
denote the set of vertices in the interior and exterior of C by 
int(C)  and ext.(C), respectively. A plane graph divides the 
plane into regions which we call faces. The unbounded region 
is called the exterior face and the other regions are called 

interior faces. If f is a face of a plane graph G, then we can 
write ƒ=[u1, u2,…., uk] where u1, u2,…, uk are the vertices on 
the boundary walk of ƒ in clockwise order. 
 

6. CONCLUSION 
This paper describes about “A Review On Domination in 
Planar Graphs With Small Diameter”. Domination numbers of 
planar graphs proved that planar graphs with diameter two or 
three have bounded domination numbers. This implies that the 
domination number of such a graph can be determined in 
polynomial time.   
 

REFERENCES 
 
[1] G. MacGillivray and K. Seyffarth, Domination numbers of planar graphs. 
J. Graph Theory 22 (1996), 213–229. 
 
[2] W. McCuaig and B. Shepherd, Domination in graphs with minimum 
degree two.J. Graph Theory 13 (1989), 749–762. 
 
[3]  S.L.Mitchell and S.T.Hedetniemi, Edge domination in trees. 
Congr. Numer. 19, 489-509, 1977.  
 
[4]   M.H.Muddebihal, T.Srinivas and Abdul Majeed, (2012), Domination in 
block subdivision graphs of graphs, (submitted).  
 
[5]  O. Ore, (1962), Theory of graphs, Amer. Math. Soc., Colloq. 
Publ., 38 Providence. 
 
[6]  Pratima  panigrahi  and  S.B.Rao, Graph  theory   research  
directions,  Narosa  publishing  house (2011).  
 
[7]  E.Sampathkumar and H.B.Walikar, The Connected domination 
number of a graph, J.Math.Phys. Sci., 13, 607-613,1979.  
 
[8] G.Suresh  singh, Graph  theory  published   by  K.Ghosh,  PHI  
learning private  limited, New  Delhi -110001 (2010).    
 
 
 
 
 
 
 
               
 

http://www.ijmttjournal.org/

	1 V.Sangeetha     2 V.Revathi
	1Research Scholar, Sakthi College of Arts and Science For Women, Oddanchatram.
	2Assistant  Professor, Department of  Mathematics, Sakthi College of Arts and Science For Women, Oddanchatram.

