Commutative Monoids in Intuitionistic Fuzzy Sets

S K Mala^{#1}, Dr. MM Shanmugapriya^{*2}

¹PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021
Assistant Professor of Mathematics, KG College of Arts and Science, Saravanampatti, Tamilnadu - 641035¹

²Asst. Professor and Head of Department (i/c) in Mathematics
Karpagam Academy of Higher Education, Coimbatore, Tamilnadu- 641021

Abstract — In this paper, various operations in Intuitionistic Fuzzy Sets are discussed. Some theorems are proved for commutative Monoids using these operations with respect to different Intuitionistic Fuzzy Sets

Keywords — Fuzzy Sets, Intuitionistic Fuzzy Sets, Commutative Monoids

I. INTRODUCTION

L.A.Zadeh [5] introduced the notion of a Fuzzy sub set μ of a Set X as a function from X to [0,1]. After the introduction of Fuzzy sets by L.A.Zadeh [5], the Fuzzy concept has been introduced in almost all branches of Mathematics. Then the concept of Intuitionistic Fuzzy Set (IFS) was introduced by K.T. Atanassov [1] as a generalization of the notation of a Fuzzy set. Here, we discuss the algebraic nature of Intuitionistic Fuzzy operations and prove some results on the commutative Monoid.

II. PRELIMINARIES

For any two IFSs A and B, the following relations and operations can be defined [2, 3, 4] as follows.

A. Definition 1.1

Let S be any non empty set, A mapping μ from S to [0,1] is called a Fuzzy sub set of S.

B. Definition 1.2

An Intuitionistic Fuzzy Set A in a non empty set X is an object having the form $A = \{ \langle x, \mu A (x), \gamma A (x) \rangle / x \in X \}$ where the functions $\mu A : X \rightarrow [0.1]$ and $\gamma A : X \rightarrow [0.1]$ denote the degrees of membership and non membership of the element $x \in X$ to A respectively and satisfy $0 \leq \mu A(x) + \gamma A(x) \leq 1$ for all $x \in X$. The family of all intuitionistic fuzzy sets in X denoted by IFS (X).

C. Definition 1.3

For every two IFSs A and B the following operations and relations can be defined as

 $A \cap B$ iff (for all $x \in E$)($\mu A(x) \leq \mu B(x)$ and $\gamma A(x) \geq \gamma B(x)$

A=B iff (for all $x \in E$)(μA (x) = μB (x))and(γA (x)= γB (x))

 $A \cap B = \{[x,min(\mu A (x), \mu B (x)),max(\gamma A (x),\gamma B (x)]/x\epsilon E\}$

 $A \cup B = \{[x, \max((\mu A (x), \mu B (x)), \min(\gamma A (x), \gamma B (x))]/x \in E\}$

A+B= {[x, (μ A (x)+ μ B (x)- μ A (x) μ B (x), γ A (x). γ B (x)]/ x ϵ E}

A.B= {[x, (μ A (x) μ B (x), γ A (x)+ γ B (x)- γ A (x). γ B (x)]/x ϵ E}

A@B= { [x, μ A (x)+ μ B (x)/2, γ A (x)+ γ B (x)/2]/ $x \in E$ }.

D. Definition 1.4

Let us define the following special IFSs $O^* = \{(x,0,1)/x \epsilon E\}$ $E^* = \{(x,1,0)/x \epsilon E\}$ $U^* = \{(x,0,0)/x \epsilon E\}$ Then $P(E^*) = \{A/A = \{(x,\mu A(x),\gamma A(x))/x \epsilon E\}$ $P(U^*) = \{B/B = \{(x,0),\gamma A(x))/x \epsilon E\}$ $P(O^*) = \{O^*\}.$

E. Definition 1.5

Let M be a fixed set, let $e^* \in M$ be a unitary element of M and let * be an operation. $< M, *, e^* >$ is said to be a commutative monoid, if

- (i) $a*b \in M$ for all $a,b \in M$.
- (ii) $(a*b)*c = a*(b*c) \text{ for all } a,b \in M$
- (iii) $a*e^*=e^** a \text{ for all } a \in M$
- (iv) a*b=b*a for all $a,b \in M$.

III.PROOF OF THEOREMS

A. Theorem: 2.1

 $(P(E^*), \cap, E^*)$ is a commutative monoid.

Let $A,B \in P(E^*)$

1) Axiom 1: Closure Property

Consider $A \cap B = \{<x, \min \in \{ \mu A (x), \mu B (x) \}, \max \{ \gamma A (x), \gamma B (x) \} > /x \in E \}$ = $\{<x, \mu A (x), \gamma A (x) > /x \in E \}$ or

 $\{\langle x, \mu A(x), \gamma B(x) \rangle / x \in E\}$ or $\{\langle x, \mu B(x), \gamma A(x) \rangle / x \in E\}$ or

 $\{<\!x,\!\mu B\ (x),\!\gamma B\ (x)\!>\!/x\varepsilon E\}\in P(E^*)$ for all $A,B\in P(E^*)$

Therefore $A \cap B \in P(E^*)$

=> Axiom1 is satisfied.

In all the cases $A \cap B \in P(E^*)$

=> Closure is satisfied

For example A,B \in P(E*) where A={<x, μ A (x)=0.6 , γ B (x)=0.3>} and B={<x, μ A (x)=0.5 , γ B (x)=0.2>}

Then A \cap B = $\{<x, \min \square \{ 0.6, 0.5\}, \max \square \{0.3, 0.2\} > \} = \{<x, 0.5, 0.3 > \} \in P(E^{*})$

2) Axiom 2: Associative Property

Consider $(A \cap B) \cap C$

- = $\{<x,\min \square \{ \mu A (x),\mu B (x)\},\max \{ \gamma A (x),\gamma B (x)\}> \square /x \in E \} \cap \{<x,\mu C(x),\gamma C(x)>/x \in E \}$
- = {<x,min \square { μ A (x), μ B (x) , μ C (x)},max{ γ A (x), γ B (x), γ C (x)}> \square /x ϵ E }
- $= \{\langle x, \mu A (x), \gamma A (x) \rangle / x \epsilon E\} \cap \{\langle x, \min \square \{ \mu B (x), \mu C (x) \}, \max \square \{ \gamma B (x), \gamma C (x) \} \rangle / x \epsilon E \}$
 - $= A \cap (B \cap C)$
- $=> (A\cap B) \ \cap C = A\cap (B\cap C) \ \text{for all} \ A,B,C \ \varepsilon$ $P(E^{*})$
 - => Axiom2 is satisfied.
 - => Associative property is satisfied.

3) Axiom 3: Identity Property

E^* is the identity element with respect to ' \cap '. Consider A \cap E^* = {<x, μ A (x), γ A (x)>/x ϵ E} \cap {<x,1,0>/x ϵ E}

- = $\{ \langle x, max \{ \mu A(x), 1 \}, min \square \{ \gamma A(x), 0 \} \rangle / x \in E \}$
- $= \{ \langle x, 1.0 \rangle / x \in E \}$
- = E^* (by definition of E^*)

 $A \cap E^* = E^*$, for all $A \in P(E^*)$

- => E^* is the identity element of P(E^*) with respect to the operation ' \cap ' .
 - => Axiom3 is satisfied.
 - => Identity is satisfied.

From Axiom1, Axiom2 and Axiom3 => <P(E^*), \cap ,E^*> is monoid.

4) Axiom 4: Commutative Property

Consider $A \cap B = \{ \langle x, max \square \} \}$ (x) $\}, min \square \{ \gamma A (x), \gamma B (x) \} > /x \in E \}$

- = $\{<x,max \square \{\mu B (x),\mu A (x)\},min \square \{\gamma B (x),\gamma A (x)\}>/x \in E\}$
 - $= B \cap A$
 - \Rightarrow A \cap B = B \cap A for all A,B ϵ P(E^*)

Hence Axiom4 is satisfied.

- => Commutative is satisfied.
- $=> < P(E^*), \cap, E^*>$ is a commutative monoid.

B. Theorem 2.2

(P (E*), \cup ,O*) is a commutative monoid. Let A,B \in P(E*)

1) Axiom 1: Closure Property

Consider $A \cup B = \{ < x, max \square \{ \mu A (x), \mu B (x) \}, min \square \{ \gamma A (x), \gamma B (x) \} > /x \in E \}$

= $\{<x, \mu A (x), \gamma A (x) > /x \in E\}$ or $\{<x, \mu A (x), \gamma B (x) > /x \in E\}$ or $\{<x, \mu B (x), \gamma A (x) > /x \in E\}$ or $\{<x, \mu B (x), \gamma B (x) > /x \in E\}$

In all the cases $A \cap B \in P(E^{*})$ (by its definition)

Therefore $A \cap B \in P(E^{*})$, for all $A, B \in P(E^{*})$ Closure property is satisfied.

=> Axiom1 is satisfied.

ISSN: 2231-5373

2) Axiom2: Associative Property

Let A,B,C \in P(E^*)

Consider $(A \cup B) \cup C$

- $= \{ \langle x, max \square \{ \mu A (x), \mu B (x) \}, min \square \{ \gamma A (x), \gamma B (x) \} \rangle / x \in E \} \cup \{ \langle x, \mu C (x), \gamma C (x) \rangle / x \in E \}$
- = $\{<x, max \square \{ \mu A (x), \mu B (x) , \mu C (x) \}, min \{ \gamma A (x), \gamma B (x), \gamma C (x) \} > \square/x \in E \}$
- $= \{ < x, \mu A (x), \gamma A (x) > \} \cup \{ < x, \max \square \{ \mu B (x), \mu C (x) \}, \min \square \{ \gamma B (x), \gamma C (x) \} > /x \in E \}$
 - $= A \cup (B \cup C)$
 - $=> (A \cup B) \cup C = A \cup (B \cup C)$
 - => Associative property is satisfied.
 - => Axiom 2 is satisfied.

3) Axiom 3: Identity Property

 $0^{\wedge *}$ is the identity element of $P(E^{\wedge *})$ with respect to ' \cup ' .

- $= \{ \langle x, \mu A(x), \gamma A(x) \rangle / x \in E \}.$
- = A
- => Identity property is satisfied.
- => Axiom 3 is satisfied.

From Axiom1, Axiom2 and Axiom3 => <P(E^*), \cup ,0^*> is a monoid.

4) Axiom 4: Commutative Property

Consider $A \cup B = \{ \langle x, max | \{ \mu A (x), \mu B (x) \}, min | \{ \gamma A (x), \gamma B (x) \} \rangle / x \in E \}$

- = $\{<x, \max \square \{\mu B (x), \mu A (x)\}, \min \square \{\gamma B (x), \gamma A (x)\} > /x \in E\}$
 - $= \mathbf{B} \cup \mathbf{A}$

Therefore $A \cup B = B \cup A$

- => Commutative property is satisfied.
- =>Axiom 4 is satisfied.

Hence $\langle P(E^*), \cup, 0^* \rangle$ is a commutative monoid.

C. Theorem 2.3

 $(P(U^*), \cap, U^*)$ is a commutative monoid. Let $A, B \in P(U^{\wedge *})$

1) Axiom 1: Closure Property

A+B = {<x,μA (x)+μB (x)- μA (x).μB (x),γA (x).γB (x)>/x ϵ E}

 $= \{ \langle x, 0, \gamma(A+B) (x) \rangle / x \in E \}$ $A+B \in P(U^*)$

Therefore Axiom1 is satisfied.

2) Axiom 2: Associative Property

(A+B)+C = A+(B+C)

LHS = (A+B)+C

= {<x, μ A (x)+ μ B (x)- μ A (x). μ B (x), γ A (x). γ B (x)>/x ϵ E}+{<x, γ C (x), γ C (x)>/x ϵ E}

= $\{ < x, 0, \gamma(A+B+C) (x) > /x \in E \}$

= $\{\langle x, 0, \gamma A (x) \rangle / x \in E\} + \{\langle x, 0, \gamma (B+C) \rangle$

 $(x)>/x \in E$

= A+ (B+C) = RHS

Associative property is true.

Axiom 2 is satisfied.

3) Axiom 3: Identity Property

 $A+0^* = \{ \langle x, \mu A (x) + \mu(0^*) (x) - \mu A (x) + \mu(0^*) (x), \gamma A (x), \gamma(0^*) (x) \rangle / x \in E \}$ $= \{ \langle x, 0+0-0, \gamma A (x), 1 \rangle / x \in E \}$

 $= \{ \langle x, 0, \gamma A (x) \rangle / x \in E \}$ = A

Axiom3 is satisfied.

4) Axiom 4: Commutative Property

A+B = B+A

A+B = {<x,μA (x)+μB (x)- μA (x).μB (x),γA (x).γB (x)>/x ϵ E}

= {<x, μ B (x)+ μ A (x)- μ B (x). μ A (x), γ B (x). γ A (x)>/x ϵ E}

= B + A

Axiom 4 is satisfied.

D. Theorem 2.4

 $(P(U^*),U,O^{*})$ is commutative monoid.

1) Axiom 1: Closure Property

Let $A, B \in P(U^*) = \{ B/B = \{ < x, 0, \gamma B(x) > / x \in E \} \}$ $A \cup B = \{ < x, \max \square \{ \mu A(x), \mu B(x) \}, \min \square \{ \gamma A(x), \gamma B(x) \} > / x \in E \}$

Here $\mu A(x) = \mu B(x) = 0$

= $\{\langle x, max \square \{0,0\}, max \square \{\gamma A(x), \gamma B(x)\} \rangle / x \in E\}$

= $\{ \langle x, 0, \gamma A(x) \rangle / x \in E \}$, if $\gamma A(x) \langle \gamma B(x) \rangle$

= $\{ \langle x, 0, \gamma B(x) \rangle / x \in E \}$, if $\gamma B(x) \langle \gamma A(x) \rangle$

In both cases $A \cup B \in P(U^*)$

∴ Axiom1 is satisfied.

2) Axiom 2: Associative Property

 $(A \cup B) \cup C = \{\langle x, \max \Box \{0,0\}, \min \Box \{\gamma A (x), \gamma B\}\}\}$

(x)}>} $\cup \{ \langle x, 0, \gamma C(x) \rangle / x \in E \}$

 $=\{< x,0, \; \llbracket min \, \Box \, \{\gamma\, \rrbracket \; \; A \; (x),\! \gamma B \; (x),\! \gamma C \; (x)\} >\! / \; x \varepsilon E \; \}$

= $\{\langle x,0,\gamma A(x) \rangle / x \in E \} \cup \{\langle x,\min \square \{\gamma B(x),\gamma C(x)\} / x \in E \}$

 $= A \cup (B \cup C)$

=>Associative property is satisfied.

: Axiom2 is satisfied.

3) Axiom 3: Identity Property

 $A \cup O^* = \{<x, \max \square \{0,0\}, \min \square \{\gamma A \} \} > /x \in E\}$

 $= \{\langle x, 0, \gamma A(x) \rangle / x \in E\} = A$

 $\Rightarrow A \cup O^* = A$

 $=>0^*$ is the identity for $(P(U^*),U)$

: Axiom3 is satisfied.

4) Axiom 4: Commutative Property

 $A \cup B = \{ \langle x, max \square \{0,0\}, min \square \{\gamma A (x), \gamma B (x)\} \rangle / x \in E \}$

 $= \{ \langle x, 0, \min \square \{ \gamma B(x), \gamma A(x) \} \rangle / x \in E \}$

 $= B \cup A$

 \Rightarrow A \cup B= B \cup A

: Commutative property is satisfied.

: Axiom 4 is satisfied.

E. Theorem 2.5

 $(P(U^*),,U^*)$ is a commutative monoid.

1) Axiom 1: Closure Property

 $A,B \in P(U^*)$

 $A \cdot B = \{ \langle x, \mu A (x), \mu B (x), \gamma A (x) + \gamma B (x) - \gamma A (x) \}$ $\gamma B (x) \rangle / x \in E \}$

 $= \{\langle x, 0, \gamma A (x) + \gamma B (x) - \gamma A (x) \gamma B (x) \rangle / x \in E \}$

 $A \cdot B \in P(U^*)$ (by its definition)

: Axiom1 is satisfied.

Therefore closure is satisfied.

2) Axiom 2: Associative Property

 $A,B,C \in P(U^*)$

 $\begin{array}{lll} (A \cdot B) \cdot C &= \{<x,0,\gamma_A \ (x)+\gamma_B \ (x)-\ \gamma_A \ (x) & \gamma_B \\ (x)>/x \in E \ \} \cdot \{<x,0,\gamma_C \ (x)>/x \in E \ \} \end{array}$

 $= \{\langle x, 0, \gamma_A (x) + \gamma_B (x) - \gamma_A (x) \quad \gamma_B (x) + \gamma_C (x) - \gamma_A (x) \quad \gamma_C (x) + \gamma_C (x) - \gamma_B (x) \quad \gamma_C (x) + \gamma_C (x) + \gamma_C (x) - \gamma_C (x) + \gamma_C$

 $\gamma_{A}(x) \gamma_{B}(x) \gamma_{C}(x) > /x \epsilon E$ (1) $A \cdot (B \cdot C) = \{<x,0,\gamma A(x) > /x \epsilon E\} \cdot \{<x,0,\gamma B(x) > /x \epsilon E\}$

 $\begin{array}{l} (x)+\gamma_{C}(x)-\gamma_{B}(x)\cdot\gamma_{C}(x)>/x\epsilon E \ \} \\ = \{< x,0, \gamma_{A}(x)+\gamma_{B}(x)+\gamma_{C}(x)-\gamma_{A}(x)+\gamma_{B} \end{array}$

 $\{x \in X\}$ $\{x \in$

(1) = (2)

 $(A \cdot B) \cdot C = A \cdot (B \cdot C)$

: Axiom2 is satisfied.

: Associative property is satisfied.

3) Axiom 3: Identity Property

 $(A \cdot U^*) = \{ \langle x, 0, \gamma_A (x) \rangle / x \in E \} \cdot \{ \langle x, 0, 0 \rangle / x \in E \}$ = \{\langle x, 0, \gamma_A (x) \cdot 0 \rangle / x \in E} \}

 $= \{\langle x, 0, \gamma_A(x) \rangle / x \in E \} = A$

 \Rightarrow A · U* = A , for all A \in P(U*)

: Axiom3 is satisfied.

 $=> U^*$ is the identity for $(P(U^*),..,U^*)$

4) Axiom 4: Commutative Property

 $A \cdot B = B \cdot A$

Let $A,B \in P(U^*)$

Consider A · B = { $\langle x,0,\gamma_A(x)+\gamma_B(x)-\gamma_A(x) \cdot \gamma_B(x) \rangle / x \in E$ }

= $\{<x,0,\gamma_B(x)+\gamma_A(x)-\gamma_B(x)\cdot\gamma_A(x)>/x\epsilon E\}$

 $= \mathbf{B} \cdot \mathbf{A}$

 \Rightarrow A · B = B · A , for all A,B \in P(U*)

∴ Axiom4 is satisfied.

=>Commutative property is satisfied.

 $=>(P(U^*),..,U^*)$ is a commutative monoid.

F. Theorem 2.6

(P (E*),.,E*) is a commutative monoid.

1) Axiom 1: Closure Property

Let $A, B \in P(E^*)$

 $A \cdot B = \{ \langle x, \mu_A (x) \mu_B (x), \gamma_A (x) + \gamma_B (x) - \gamma_A (x) \gamma_B (x) \rangle / x \in E \}$

 \Rightarrow A · B \in P(E*)

: Axiom1 is satisfied.

=> Closure property is satisfied

2) Axiom 2: Associative Property

 $(A \cdot B) \cdot C$

={<x, μ_A (x) μ_B (x), γ_A (x) + γ_B (x)- γ_A (x) γ_B (x)>/x \in E } $\{$ <x, μ_C (x) γ_C (x)>/x \in E }

 $= \left\{ < x, \mu_A \left(x \right) \right. \mu_B \left(x \right) \right. \mu_C \left(x \right), \gamma_A \left(x \right) \right. \\ \left. \left. \left. \gamma_A \right. \left(x \right) \right. \right. \gamma_B \left(x \right) - \gamma_A \left(x \right) \right. \\ \left. \left. \left. \gamma_C \right. \left(x \right) \right. \right. \\ \left. \left. \left. \gamma_B \left(x \right) \right. \gamma_C \left(x \right) \right. \right. \\ \left. \left. \left. \left. \left(x \right) \right. \right. \right. \left. \left. \left(x \right) \right. \right. \\ \left. \left. \left. \left(x \right) \right. \right. \left. \left(x \right) \right. \right. \\ \left. \left. \left(x \right) \right. \right. \left. \left(x \right) \right. \\ \left. \left. \left(x \right) \right. \right. \left. \left(x \right) \right. \\ \left. \left(x \right) \right. \left. \left(x \right) \right. \\ \left. \left(x \right) \right. \left. \left(x \right) \right. \\ \left. \left(x \right) \right. \left. \left(x \right) \right. \\ \left. \left(x \right) \right. \left. \left(x \right) \right. \\ \left. \left(x \right) \right. \\$

 $\begin{array}{l} A \cdot (B \cdot C) \\ = \{< x, \mu_A(x) \gamma_A(x) > / x \epsilon E \} \cdot \{< x, \mu_B(x) \mu_C(x), \gamma_B(x) \\ + \gamma_C(x) - \gamma_B(x) \gamma_C(x) > / x \epsilon E \} \end{array}$

- $= \{ \langle x, \mu_{A} (x) \mu_{B} (x) \mu_{C} (x), \gamma_{A} (x) + \gamma_{B} (x) + \mu_{C} (x) \gamma_{B} (x) \qquad \gamma_{C} (x) \gamma_{A} (x) \qquad \gamma_{B} (x) \gamma_{A} (x) \qquad \gamma_{C} (x) + \gamma_{A} (x) \qquad \gamma_{B} (x) \gamma_{C} (x) \gamma_{C} (x) = (2)$ = > (1) = (2)
 - : Axiom2 is satisfied.
 - =>Associative property is satisfied.
 - 3) Axiom 3: Identity Property

 $A \cdot B = \{ \langle x, \mu A (x) \mu B (x), \gamma A (x) + \gamma B (x) - \gamma A (x) \}$ $\gamma B (x) \rangle / x \in E \}$

= { $\langle x, \mu B (x) \mu A (x), \gamma B (x) + \gamma A (x) - \gamma B (x) \gamma A (x) \rangle / x \in E$ }

- $= B \cdot A$
- $=> A \cdot B = B \cdot A$
- : Axiom3 is satisfied.
- $=> P(E^*)$ is commutative
- $=> (P(E^*),..,E^*)$ is a commutative monoid.
- 4) Axiom 4: Commutative Property

G. Theorem 2.7

(P (E*),+, O*) is a commutative monoid Let A,B \in P(E*)

1) Axiom 1: Closure Property

 $A+B = \{ \langle x, \mu A (x) + \mu B (x) - \mu A (x) \mu B (x), \gamma A (x) \}$ $\gamma B (x) \rangle / x \in E \}$

 $A+B \in P(E^*)$

- : Axiom1 is satisfied.
- => Closure property is satisfied.
 - 2) Axiom 2: Associative Property
- (A+B)+C

 $= \{ \langle x, \mu_A (x) + \mu_B (x) - \mu_A (x) \mu_B \}$

(x) $,\gamma_A(x) \quad \gamma_B(x) > /x \in E$ } + { $< x, \mu(x), \gamma_C(x) > x \in E$ } = { $< x, \mu(x), \mu(x) + \mu_D(x) +$

 $= \{ \langle x, \mu_A (x) + \mu_B (x) + \mu_C (x) - \mu_A (x) \mu_B (x) - \mu_A (x) \\ \mu_C (x) - \mu_B (x) \mu_C (x) + \mu_A (x)$

 $\begin{array}{ccc} \mu_{B}\left(x\right)\mu_{C}\left(x\right),\gamma_{A}\left(x\right) & \gamma_{B}\left(x\right) & \gamma_{C}\left(x\right) > /x\epsilon E & \} & (1) \\ & A+(B+C) & \end{array}$

={<x, μ_A (x), γ_A (x)>/x \in E }+{ μ (x) + μ C (x)- μ B (x) μ C (x), γ B (x) γ C (x)>/x \in E }

 $= \{ <\!\! x,\! \mu_A (x) +\!\! \mu_B (x) \!\! +\!\! \mu_C (x) \!\! -\!\! \mu_B (x) \ \mu_C (x) \!\! -\!\! \mu_A (x) \\ \mu_B (x) \!\! -\!\! \mu_A (x) \ \mu_C (x) +\!\! \mu_A$

- =>(1)=(2)
- => (A+B)+C = A+(B+C)
- : Axiom2 is satisfied.
- =>Associative property is satisfied.
- 3) Axiom 3: Identity Property

 $A+O^* = \{ \langle x, \mu_A (x), \gamma_A (x) \rangle / x \in E \} + \{ \langle x, 0, 1 \rangle / x \in E \}$

- = {<x, μ_A (x)+0- μ_A (x).0, γ_A (x).1>/x ϵ E }
- = $\{<x,\mu_A(x),\gamma_A(x)>/x\in E\}$
- =A
- \Rightarrow A+O* =A, for all A \in P(E*)
- ∴ Axiom3 is satisfied.
- => Existence of Identity is proved.
 - 4) Axiom 4: Commutative Property

A+B = {<x, μ_A (x) + μ_B (x)- μ_A (x) μ_B (x) , γ_A (x) γ_B (x)>/x \in E}

 $= \{\langle x, \mu_B (x) + \mu_A (x) - \mu_B (x) \mu_A (x), \gamma_B (x) \quad \gamma A \}$ $(x) > x \in E \}$

- = B+A, for all A,B \in P(E*)
- : Axiom4 is satisfied.
- => Commutative property is satisfied.
- $=>(P(E^*),+,O^*)$ is a commutative monoid

H. Theorem 2.8

(P (U*), \cap , U*) is a commutative monoid Let A,B \in P(E*)

1) Axiom 1: Closure Property

 $A \cap B = \{ \langle x, \min \square \{ \mu_A (x), \mu_B (x) \}, \max \square \{ \gamma_A (x), \gamma_B (x) \} \rangle / x \in E \}$

 $= \{ \langle x, \min \square \{0,0\}, \max \square \{\gamma_A(x), \gamma_B(x)\} \rangle / x \in E \}$

 $=\{<\!x,\!min\,\square\,\{0,\!0\},\!max\,\square\,\{\gamma_A\ (x)\ ,\!\gamma_B\ (x)\}\!>\!/x\epsilon E\}\ \epsilon$ $P(U^*)$

- ∴ Axiom1 is satisfied.
- =>Closure property is satisfied

2) Axiom 2: Associative Property

 $(A \cap B) \cap C$

= $\{<x,min \square \{0,0\},max \square \{\gamma_A(x),\gamma_B(x)\}>/x\epsilon E\} \cap \{<x,0,\gamma_C(x)>/x\epsilon E\}$

 $= \{ \langle x, 0, \max \square \{ \gamma_A(x), \gamma_B(x) \} \rangle / x \in E \}$

 $= \{<\mathbf{x},0,\ \gamma_A\ (\mathbf{x})>/\mathbf{x}\epsilon E\} \cap \{<\mathbf{x},0,\max \square \{\gamma_A\ (\mathbf{x})\ ,\gamma_B\ (\mathbf{x})\}>/\mathbf{x}\epsilon E\}$

- $= A \cap (B \cap C)$
- ∴ Axiom2 is satisfied.
- =>Commutative property is satisfied

3) Axiom 3: Identity Property

 $A \cap U^* = \{ \langle x, 0, \gamma_A(x) \rangle / x \in E \} \cap \{ \langle x, 0, 0 \rangle / x \in E \}$

 $= \{ \langle x, \min \square \{0,0\}, \max \square \{\gamma_A(x), 0\} \rangle / x \in E \}$

 $= \{ \langle x, 0, \gamma_A(x) \rangle / x \in E \}$

= A

 \Rightarrow A \cap U* = A

=>U* is identity

∴ Axiom3 is satisfied.

=>Existence of identity is proved

4) Axiom 4: Commutative Property

 $A \cap B = \{ \langle x, \min \square \{0, 0\}, \max \square \{ \gamma_A (x) , \gamma_A (x) \} \rangle / x \in E \}$

 $= \{ \langle x, 0, \max \square \{ \gamma_A(x), \gamma_A(x) \} \rangle / x \in E \}$

- $= \mathbf{B} \cap \mathbf{A}$
- $=> A \cap B = B \cap A$
- : Axiom4 is satisfied.
- => Commutative property is satisfied
- $=>(P(U^*), \cap, U^*)$ is a commutative monoid

IV. CONCLUSIONS

We have defined different operations of Intuitionistic Fussy Sets. Using these, we have proved various possible operations with a particular set as a Commutative Monoid. We hope that these results can also be extended to further algebraic systems.

REFERENCES

- [1] Atanassov, K. T, Intuitionistic Fussy Sets, Fussy Sets and Systems, (1986)., 1973
- [2] Atanassov, K. T, Intuitionistic Fussy Sets, VII ITKR's Session, Sofia (June 1983)

- [3] Atanassov, K. T, Intuitionistic Fussy Sets, Fussy Sets and Systems, (1986)., 1973
- [4] Atanassov, K. T, New Operations Defined Over the Intuitionistic Fuzzy Sets. Fuzzy Sets and Systems (1994)
- [5] Zadeh. L. A, Fuzzy Sets., Information Control. Vol. 8 (1965)