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ABSTRACT – In graph theory Edge coloured graph which 
has the distinct coloured edges are well studied.An Edge 
coloured graph is t-tolerant if it contains no monochromatic 
star with t+1 edges.In this paper we consider optimal edge 
coloured complete graphs.We show that in any optimal edge 
colouring of the complete graph kn ,Also we prove that in 
every proper edge colouring of the complete  
graph kn . 
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1. INTRODUCTION 
An edge-colored graph is rainbow if its edges have 

distinct colors. Rainbow edge-colored graphs have also been 
called heterochromatic, polychromatic, or totally 
multicolored, Within an edge-colored graph G, we consider 
covering the edges by rainbow matchings or covering the 
vertices by disjoint rainbow stars. 

 
The existence of a Hamilton cycle with many colors, 

also the existence of a Hamilton cycle with few colors in any 
proper edge coloring of a complete graph. A rainbow cycle is 
a cycle whose all edges have different colors. Given an 
optimally edge colored complete graph with n vertices, we 
study the number of colors appearing on its cycles.       
 

The rainbow connection number can be motivated by 
its interesting interpretation in the area of networking. This 
new concept comes from the communication of information 
between agencies of government.  

 
Consider a network G(e.g., a cellular network). To 

route messages between any two vertices in a pipeline, assign 
a distinct channel to each link(e.g., a distinct frequency). We 
need to minimize the number of distinct channels that we use 
in the network.  

 
The minimum number of distinct channels is called 

the rainbow connection number and is denoted by rc(G). Let 

G be an edge-colored graph with n vertices. A rainbow 
subgraph is a subgraph whose edges have distinct colors. The 
rainbow edge-chromatic number of G, written ℵ� (G), is the 
minimum number of rainbow matchings needed to cover 
E(G). An edge- colored graph is t-tolerant if it contains no 
monochromatic star with t+1 edges. 

 
2. RAINBOW  EDGE COLOURING AND RAINBOW 

DOMINATION 
            If G is t-tolerant, then  ℵ (G) <  t (t +1) n ln n, and 
examples exist with ℵ� (G) ≥ t / 2 (n-1). The rainbow 
domination number, written 𝛾𝛾�  (G), is the minimum number of 
disjoint rainbow stars needed to cover V (G). For t-tolerant 
edge-colored n-vertex graphs, we generalize classical bounds 
on the domination number:  𝛾𝛾�  (G) ≤   1+𝐼𝐼𝑛𝑛  𝑘𝑘

𝑘𝑘
  n  

(where k =  𝛿𝛿(𝐺𝐺)
𝑡𝑡

+ 1 ) and  𝛾𝛾�  (G) ≤ 𝑡𝑡
𝑡𝑡+1

 n 
when G has no isolated vertices. 
 
Theorem: There exist infinitely many t-tolerant edge-colored 
graphs G such that ℵ� (G) ≥ 𝑡𝑡

2 
(│V (G)│−1 ) = 𝑡𝑡

2
∆(𝐺𝐺). 

Proof: For t, p ∈ N, start with a proper tp-edge-coloring of 
Ktp. Obtain a t-tolerant edge-colored graph G by combining t-
tuples s of color classes into single colors. 
   In G there are only p colors, so ∝� ′(G) ≤  p. 

 Hence  ℵ� (G) ≥ 1
𝑝𝑝
│E (G) 

                      ≥𝑡𝑡
2
(tp−1) 

                      = 𝑡𝑡
2
(│V (G)│−1 ) 

                     = 𝑡𝑡
2
∆(𝐺𝐺). 

 
Theorem: When n≡ 2 mod 4, there is an edge-colored graph 
G such that ℵ� (G) > ∆(G) + 1 and G is a proper n-edge-
coloring of Kn,n. 
Proof: As noted earlier, proper n-edge-colorings of  Kn,n  
correspond to Latin squares of order n. Each rainbow 
matching corresponds to a partial transversal of the Latin 
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square so ℵ�  (G) is the minimum number of partial tranversals 
covering the square.  
             Latin squares of even order need not have 
transversals. To construct such squares when n ≡2 mod 4, let 
k = n/2, and let A and B be latin squares of order k, using 
disjoint sets of k labels in the two squares. 

              Let C =�𝐴𝐴 𝐵𝐵
𝐵𝐵 𝐴𝐴�.Although C is a Latin square of order 

n, it has no transversal. A transversal must use each of the 2k 
labels.Since k is odd, some quadrant must contribute at least  
�𝐾𝐾 2� � positions. 
  Now each of the other three quadrants is limited to 
�𝐾𝐾 2� �contributions, so a partial transversal has size at most 
n−1 . 

  Thus at least  𝑛𝑛
2

(𝑛𝑛 − 1) � partial transversals 

are needed to cover C. Since (n−1)(n+1) < n2 

we have  ℵ�  (G) ≥ 𝑛𝑛2
(𝑛𝑛 − 1)  �  

 > (n+1) =  ∆(G) + 1. 
 
Theorem: Fix t ∈ N and c ∈  R with c > 0. Every t-tolerant 
edge-colored graph G with average color degree at least c has 
an edge-colored t-tolerant subgraph H with        𝛿𝛿� (H) > 𝑐𝑐

𝑡𝑡+1
. 

Proof : The claim holds with H = G unless   
 𝑑𝑑𝐺𝐺�(v) ≤  𝑐𝑐

t+1
 for some vertex v. Deleting v decreases the color 

degree of each neighbor by at most 1, but v may have up to t 
𝑑𝑑𝐺𝐺�(v) neighbors.Thus deleting v reduces the sum of the color 
degrees by at most (t + 1) 𝑑𝑑𝐺𝐺�(v).  
  Since 
∑ 𝑑𝑑𝐺𝐺−𝑣𝑣(𝑢𝑢)�𝑢𝑢∈𝑉𝑉(𝐺𝐺−𝑣𝑣) ≥ ∑ 𝑑𝑑𝐺𝐺�𝑢𝑢∈𝑉𝑉(𝐺𝐺) (𝑢𝑢) − (𝑡𝑡 + 1)𝑑𝑑𝐺𝐺�(v)  ≥ 
c│V(G)│−𝑐𝑐  
deleting v does not reduce the average color degree.  
  Furthermore, every subgraph of a t-tolerant 
graph is also t-tolerant. Iteratively deleting vertices with color 
degree at most c/(t + 1) must end. Since the average color 
degree never decreases, it ends with a subgraph H having no 
vertex with color degree at most c/ (t + 1). 
 

3. ON RAINBOW CYCLES IN EDGE COLORED 
COMPLETE GRAPHS 

   
Graph  colorings is one of the most important 

concepts in graph theory. In the present paper we study the 
existence of a Hamilton cycle with many colors, also the 
existence of a Hamilton cycle with few colors in any proper 
edge coloring of a complete graph. A rainbow cycle is a cycle 
whose all edges have different colors. 

 

Given an optimally edge colored complete graph 
with n vertices, we study the number of colors appearing on 
its cycles. We show that there exists a Hamilton cycle with at 
most √8𝑛𝑛 colors and a Hamilton cycle with at least n(2/3 − 
o(1)) colors. A random Hamilton cycle is also shown to have 
n(1 − 1/e + o(1)) colors on average.  

 
 There are examples of optimal edge colorings that 
have no Hamilton cycle with less than log2 n colors. 
Furthermore, in some optimal edge colorings, there is no 
Hamilton cycle with n − 1 or n colors. We conjecture that 
there is always a Hamilton cycle with at most O(log n) colors 
and a Hamilton cycle with at least n − 2 colors. 
 
           For every ∈ > 0 and n > n0 (∈), any complete graph Kn 
whose edges are colored so that no vertex is incident with 
more than (1− 1

 √2
−∈) edges of the same color, contains a 

Hamilton cycle in which adjacent edges have distinct colors. 
Moreover, for every k, 3≤   k ≤ n, any such Kn contains a 
cycle of length k in which adjacent edges have distinct colors. 
 
             Let the edges of the complete graph Kn be colored so 
that no color is used more than k = k(n) times. This coloring it 
is called a k-bounded coloring. Clearly, if k = 1, every 
Hamilton cycle is a rainbow cycle. 
 
Theorem:In any optimal edge coloring of the complete graph 
Kn, there is a Hamilton cycle with at most √8𝑛𝑛  different 
colors. 
Proof:Our proof relies on the following observation: Let 
P1,….,Pk be k vertex disjoint paths that cover V (K n).  
 
  For 1 ≤  j ≤ k, let  v j be an endpoint of   P j. 

   There are �𝑘𝑘2� edges connecting the v j ’s, 

and ℵ′ (K n) ≤  n colors are used.  
 
  We can thus find a set S of at least k(k − 
1)/(2n) edges, all of the same color and all connecting the v j 
’s Evidently, adding S to P1, …., Pk decreases the number of 
paths by at least k(k − 1)/(2n) and increases the number of 
distinct colors that appear on the paths by at most one. In 
addition, the paths are still vertex-disjoint and cover V (K 
n).To begin, let Pi be the path of length zero formed by the ith 
vertex of Kn for 1 ≤ i ≤ n. 
 Clearly, P1 ,…,Pn cover V (Kn) and are vertex-disjoint. Let us 
set x0 = n. 
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By the above observation and induction on i ≥ 0, 
there are xi vertex-disjoint paths that use at most i colors and 
cover V (Kn), and 
 xi+1 ≤ xi − xi(xi − 1)/(2n). 
 
 Clearly, the function 1/(x(x − 1)) is decreasing in the 
range x > 1. Hence if m is a nonnegative integer and x m > 1, 
we have 

m ≤ ∑ 2𝑛𝑛�𝑥𝑥𝑖𝑖  –𝑥𝑥𝑖𝑖+1 �
𝑥𝑥𝑖𝑖  (𝑥𝑥𝑖𝑖−1)

𝑚𝑚−1
𝑖𝑖=0   

    ≤ ∫ 2𝑛𝑛
𝑥𝑥(𝑥𝑥−1)

𝑥𝑥0
𝑥𝑥𝑚𝑚

dx 

     ≤ ∫ 2𝑛𝑛
(𝑥𝑥−1)2

𝑥𝑥0
𝑥𝑥𝑚𝑚

dx= 2𝑛𝑛
𝑥𝑥𝑚𝑚   −1

− 2𝑛𝑛
𝑛𝑛−1

, 

which implies that xm≤ 1+2n/(m+2) for all nonnegative 
integers m. 
 
 Recall that there are xm vertex-disjoint paths with at 
most m colors on the edges which cover V(Kn).We can 
connect these paths to form a Hamilton cycle by adding xm 
edges; the resulting Hamilton cycle has at most m + xm colors. 
 
  For m = �√2𝑛𝑛� − 2,we have xm ≤ √2𝑛𝑛+1. 
thus atmost  ��√2𝑛𝑛� − 2� + � √2𝑛𝑛 + 1�≤ 2√2𝑛𝑛 colors appear 
on the Hamilton cycle. 
 
Theorem:Given an optimal edge coloring of the complete 
graph Kn, the expected number of different colors that appear 
on the edges of a random Hamilton cycle of Kn is 
approximately equal to (1 −𝑒𝑒−1)n, for large enough n. 
 
Proof:Let c be an arbitrary color used in the given optimal 
edge coloring of Kn and let C be the set of edges whose colors 
are c. The edges in C are a matching of size ⌊n/2⌋. Clearly Kn 
has (n − 1)!/2 Hamilton cycles. 
 
 Assume S is a subset of C with size k. We can count 
the number of Hamilton cycles that contain S by considering 
the following transformation. For each edge in S, contract its 
two endpoints into a single vertex.   
 
 If H is a Hamilton cycle of Kn that contains S, its 
transform is a Hamilton cycle of the graph Kn−k. Furthermore, 
every Hamilton cycle of Kn−k is the transform of exactly 2k 

Hamilton cycles of Kn that contain S, because the directions of 
the alignments of the edges of S in H have no impact on the 
transform of H.    
  
          Consequently, there are 2k−1(n − k − 1)! Hamilton 
cycles in Kn that contain S.Thus the probability that a random 

Hamilton cycle contains S is 2k (n − k − 1)!/(n − 1)!.The 
principle of inclusion and exclusion now implies that the 
probability of the event that a random Hamilton cycle avoids 

all edges in C is   P=∑ (−1)𝑘𝑘
�𝑛𝑛2�
𝐾𝐾=0 𝑎𝑎𝑘𝑘   

Where , ak=��
𝑛𝑛
2
�
𝑘𝑘
� 2𝑘𝑘 (𝑛𝑛−𝑘𝑘−1)!

(𝑛𝑛−1)!
 = 1

𝑘𝑘 !
∏

2��𝑛𝑛2�−𝑗𝑗�

𝑛𝑛−𝑗𝑗−1
𝑘𝑘−1
𝑗𝑗=0 . 

 
 It is not hard to see that ak ≤ 1/k! for k ≥ 3. For any 
real number x, we have  1 + x ≤ ex; hence for k ≤   n1/3 we 
have 

ak =  1
𝑘𝑘 !
∏ (1 +

(𝑛𝑛−𝑗𝑗−1)−2��𝑛𝑛2�−𝑗𝑗�

2��𝑛𝑛2�−𝑗𝑗 �
𝑘𝑘−1
𝑗𝑗=0 )-1  

                           ≥   1
𝑘𝑘!
∏ �1 + 𝑗𝑗

2��𝑛𝑛2�−𝑘𝑘�
�𝑘𝑘−1

𝑗𝑗=0

−1

 

    ≥ 1
𝑘𝑘!
∏ exp⁡(𝑘𝑘−1
𝑗𝑗=0 −   𝑗𝑗

2��𝑛𝑛2�−𝑘𝑘�
) 

    = 1
𝑘𝑘 !
𝑒𝑒𝑒𝑒𝑒𝑒 �− 𝑘𝑘(𝑘𝑘−1)

4��𝑛𝑛2�−𝑘𝑘�
�  

                          ≥    1
𝑘𝑘 !

exp⁡( 𝑛𝑛
2

3�

4�𝑛𝑛2�−𝑛𝑛
1

3�
) 

                          = 1
𝑘𝑘!
�1 + 𝑜𝑜(1)�, 

 
where o(1) is a function in terms of n and k that becomes 
arbitrarily small as n gets large. 
 
Splitting the right hand side of Equation  into two sums as in 

p =∑ (−1)𝑘𝑘
�𝑛𝑛

1
3� �

𝑘𝑘=0 𝑎𝑎𝑘𝑘  +∑ (−1)𝑘𝑘
�𝑛𝑛2�

𝑘𝑘=�𝑛𝑛
1

3� �
𝑎𝑎𝑘𝑘  , 

we note that the Taylor expansion of ex for x = −1 yields 

  ∑ (−1)𝑘𝑘
�𝑛𝑛

1
3� �

𝑘𝑘=0 𝑎𝑎𝑘𝑘  =∑
(−1)𝐾𝐾

𝑘𝑘 !

�𝑛𝑛
1

3� �
𝑘𝑘=0 �1 + 𝑜𝑜(1)� 

                                                

= ∑ (−1)𝐾𝐾

𝑘𝑘!

�𝑛𝑛
1

3� �
𝑘𝑘=0 + ∑ (−1)𝑘𝑘𝑜𝑜(1)

𝑘𝑘 !

�𝑛𝑛
1

3� �
𝑘𝑘=0  

                                                =(𝑒𝑒−1+o(1))+o(1)= 𝑒𝑒−1+o(1) 
On the other hand, we have 

                       �∑ (−1)𝑘𝑘𝑎𝑎𝑘𝑘
�𝑛𝑛2�

𝑘𝑘=�𝑛𝑛
1

3� �+1
�≤  ∑ 1

𝑘𝑘 !

�𝑛𝑛2�

𝑘𝑘=�𝑛𝑛
1

3� �+1
 =o(1), 

since the series  ∑ 1
𝑘𝑘!

∞
𝑘𝑘=0   is convergent. 

 
  Thus we get p = e−1 + o(1). We known n − 1 
≤ ℵ′(Kn) ≤ n, and the color c appears on a random Hamilton 
cycle with probability 1−p.  
 
  Thus we expect that ℵ′ (Kn)(1−p) = 
n(1−e−1)(1+o(1)) different colors appear on a random 
Hamilton cycle on average. 
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Theorem:In any optimal edge coloring of Kn, there is a 
Hamilton cycle with at least n(2/3 − o(1)) colors. 
 
Proof:Suppose n is even. Without loss of generality assume 
{1, 2, ···  , n − 1} is the set of colors used. 
 
 Let A be an n × n square matrix where A ij = c (vivj) 
if 1≤ i , j≤  n and i ≠ j, and Aii = n if 1 ≤ i ≤ n. Clearly, A is a 
Latin square.  
 

By a result , we can select  n −O(log2 n) entries of A 
that have different values, and are located on distinct rows and 
columns. Of these entries, only one can be on the diagonal.  

 
 Furthermore, if Aij is selected then Aji can not be 
selected since values appearing on the selected entries should 
be distinct.  
 
 This means that we can select n−O(log2 n)−1 edges 
of Kn such that the selected edges have different colors, and 
the degree of each vertex is at most two in the graph induced 
by these edges.  
 
 That is, the selected edges consist of vertex-disjoint 
paths and cycles. Every cycle has at least 3 edges.  
 
 Thus we can delete one edge of every cycle to get 
(2/3)(n − O(log2 n) − 1) edges forming vertex-disjoint 
paths.We can connect these paths to get a Hamilton cycle with 
at least  (2/3)(n − O(log2 n) − 1) = (2/3 − o(1))n colors. 
 
 When n is odd, Kn is colored using n colors. 
Moreover, for any of these n colors, exactly one vertex is not 
an endpoint of an edge of that color. Thus, we can extend the 
optimal edge coloring of Kn to an optimal edge coloring of 
Kn+1.Since n+1 is even, Kn+1 has a Hamilton cycle with at least 
(2/3 − o(1))(n + 1) colors. We can now trivially construct a 
Hamilton cycle for Kn that has (2/3 − o(1))n colors. 
 

4. AN EDGE COLOURING PROBLEM FOR GRAPH 
PRODUCTS 

 The edges of the Cartesian product of graphs G×H 
are to be colored with the condition that all rectangles ,i.e, 
k2×k2 subgraphs,must be colored with four distinct 
colours.The minimum number of colors in such colorings is 
determined for all pairs of graphs except when G is 5-
chromatic. 
 

 A rectangle in the  Cartesian product G×H of two 
graphs is a four-cycle in the form k2×k2 .The term Good 
coloring is used for edge coloring of G×H such that all 
rectangles are colored with four distinct colours.We determine 
rb (G,H) , the minimum number of colours needed for a Good 
coloring of  G×H ( rb stands for rainbow).The minimum 
number colours needed for  a Good colouring of km × kn.this 
number is denoted by  
rb ( m,n)and rb (n,n). 
 
Theorem :rb (G,H)≤ rb(ℵ(𝐺𝐺),ℵ(𝐻𝐻)). 
Proof:Assume that V(G) is partitioned into k independent sets 
A, and V(H) is partitioned into l independent sets Bi  where k 
=ℵ (G) and 1 =  ℵ ( H ) Contract each set Ai × Bj in G× H 
into a single vertex vij  and view this  As M = Kk x Kl by 
adding all horizontal and vertical edges.  
 There is a good coloring of M with rb (k, 1) colors. 
Transfer this coloring to G x H  by coloring each edge 
between Ai × Bj and Ai × Bt with the color of vijvit in M, 
similarly by coloring each edge between Ai × Bj and Ai × Bt 
with the color of vijvit.This is a good coloring of G × H. 
 
Theorem :rb (G,H)≥max (ℵ(𝐺𝐺),ℵ(𝐻𝐻)). 
Proof:Assume that rb(G, H ) = t and let ∝ be a good coloring 
of G × H with t colors.Fix an arbitrary edge e of G, and for 
each vertex v in H color v with  ∝ (e × v). Since ∝ is a good 
coloring of G× H, we obtain a proper coloring of the graph H 
with at most t colors. Therefore ℵ(𝐻𝐻)  ≤ t. A similar argument 
ℵ(𝐺𝐺) ≤t. 
 
Theorem:For each n ≥6 there exist weak decompositions of 
Kn which are complementary. 
Proof:Set m = ⌊n/2⌋ and define A = {0,1,. . . , m - 3, m - 2, 
m}.For odd n, define B as B = {2,3,. . . , m - 1, m, m + 2},and 
for even n, define B as B = {1,2,. . . ,m - 2,m - 1,m+ 1}. In 
both cases A∩B= ∅ holds. Therefore defining Go and Ho as 
complete graphs with vertex sets A and B, respectively, the 
condition of complementary decompositions is satisfied. 
Furthermore, if n≥  6 the edges of the complete graphs Go + i 
and Ho + i both cover the edges of kn on [n] because the 
differences of elements in both A and B give all elements of 
[n] . 
   Therefore recursively defining the edge set 
E, for i = 1,2,. . . , n - 1 of the graph G, as 𝐸𝐸𝑖𝑖+1=�⋃𝑝𝑝𝑝𝑝:𝑝𝑝,𝑞𝑞 ∈
𝑉𝑉(𝐺𝐺𝑜𝑜) + 𝑖𝑖, 𝑝𝑝𝑝𝑝∉Ej, 0 ≤ j ≤ i} 
(with Eo = E(Go)),th e graphs G, form a weak 
decomposition.The graphs Hi can be defined similarly,writing 
H instead of G. 
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5. CONCLUSION 
              This paper describes about “A Review On Rainbow 
edge colouring and rainbow domination” edge coloured graph 
is tolerant if it contains no monochromatic star. Also every 
proper edge colouring of the complete graph kn . 
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