Congruence Lattices of Uniform Lattices

I.Athal ${ }^{*}$, .M.Karthivel
Assistant Professor, Department of Mathematics, PSNA College Of Engineering and Technology, Dindigul, Tamilnadu, India. ${ }^{ *}$ Assistant Professor, Department of Mathematics, PSNA College Of Engineering and Technology, Dindigul, Tamilnadu, India.

1.1 INTRODUCTION

In this chapter we prove that every finite distributive lattice D can be represented as the congruence lattice of finite uniform lattice L. Infact we prove that "For any finite distributive lattice D , there exists a finite uniform lattice L such that the congruence lattice of L is isomorphic to D, and L satisfies the properties (P) and (Q) where
(P) Every join-irreducible congruence of L we introduce a very simple kind of chopped lattices. we prove that the ideal lattice of this chopped lattice is uniform.
is of the form $q(0, p)$, for a suitable atom p of L.
(Q) If $q_{1}, q_{2}, \ldots \ldots \ldots \ldots, q_{n} \in \mathbb{J}$ (ConL)
are pairwise incomparable, then L contains atoms $p_{1}, p_{2}, \ldots \ldots \ldots, p_{n}$ that generate an ideal isomorphic to B_{n} and satisfy $\mathrm{q}_{\mathrm{i}}=\mathrm{q}\left(0, \mathrm{p}_{\mathrm{i}}\right)$, for all $\mathrm{i} £ \mathrm{n}$.

To prove this result, we introduce a new lattice construction which is described. Then we find the congruences on this new lattice

NOTATIO

N :
B_{n} will denote the Boolean algebra with 2^{n} elements. For a bounded lattice A with bounds 0 and

1, A^{-}will denote the lattice $A-$ $\{0,1\}$

We start with the definition of uniform
lattices.
PROOF OF THE MAIN RESULT

THEOREM : 1.2
For any finite distributive lattice D , there exists a finite uniform lattice L such that the congruence lattice of L is isomorphic to D and L satisfies the properties (P) and (Q) where
(P) : Every join-irreducible congruence of
L is of the form $q(0, p)$, for a suitable atom p of L.
$(\mathrm{Q}):$ If $\mathrm{q}_{1}, \mathrm{q}_{2}, \ldots, \mathrm{q}_{\mathrm{n}} \in \mathrm{J}(\mathrm{ConL})$ are pairwise incomparable, then L contains atoms $\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{n}}$ that generate an ideal isomorphic to B_{n} and satisfy $\mathrm{q}_{\mathrm{i}}=\mathrm{q}\left(0, \mathrm{p}_{\mathrm{i}}\right)$, for all i£n.

Proof:-

We prove the result using induction on n, where n is the number of join-irreducible elements.

Let D be a finite distributive lattice with n join-irreducible elements.

If $n=1$, then $D @ B_{1}$, so there is a lattice
$\mathrm{L}=\mathrm{B}_{1}$ that satisfies the theorem 1.2.
Let us assume that, for all finite distributive lattices with fewer than n joinirreducible elements, there exists a lattice L satisfying theorem 2.6.1 and properties (P) and (Q).

Assume that D has n join-irreducible elements.

Let q be a minimal element of $J(D)$.
Let $\mathrm{q}_{1}, \mathrm{q}_{2}, \ldots, \mathrm{q}_{\mathrm{k}}(\mathrm{k} \geq 0)$ be all upper bounds of q in $J(D)$.

Let D_{1} be a distributive lattice with
$J\left(D_{1}\right)=J(D)-\{q\}$.
By induction assumption there exists a lattice L_{1} satisfying Con $\mathrm{L}_{1} @ \mathrm{D}_{1}$ and (P) and (Q).

If $\mathrm{k}=0$, then $\mathrm{D} @ \mathrm{~B}_{1} \times \mathrm{D}_{1}$ and $\mathrm{L}=\mathrm{B}_{1} \times \mathrm{L}_{1}$, obviously satisfies all the requirements of the theorem and so the proof is over.

So, assume $\mathrm{k} \geq 1$
The congruences of L_{1} corresponding to the q_{i} 's are pairwise incomparable and therefore can be written in the form $\mathrm{q}\left(0, \mathrm{p}_{\mathrm{i}}\right)$ and the p_{i} 's generate an ideal I_{1} isomorphic to B_{k}.

The lattice $N\left(B_{2}, B_{k}\right)$ also contains an ideal $\left(B_{k}\right) *$ isomorphic to B_{k}.

Identifying I_{1} and $\left(B_{k}\right)_{*}$, We get the chopped lattice K and the lattice $\mathrm{L}=\mathrm{IdK}$.

By lemma IdK is
uniform. That is L is
uniform.
Let q be a join-irreducible congruence of L.
Then we can write q as $\mathrm{q}(\mathrm{a}, \mathrm{b})$ where a
is
covered by b.
By lemma., it follows that we can assume that either $a, b \in E L_{1}$, or $a, b \in \mathbb{E}\left(B_{2}, B_{k}\right)$

In either case, there exists an atom q in L_{1} or q in $N\left(B_{2}, B_{k}\right)$ so that $q(a, b)=q(0, q)$ in L_{1} or $q(a, b)=q(0, q)$ in $N\left(B_{2}, B_{k}\right)$.

Obviously, q is an atom of Land $q(a, b)=q(0, q)$ in L verifying (P) for L.

Let $\mathrm{q}_{1}, \mathrm{q}_{2}, \ldots, \mathrm{q}_{\mathrm{t}}$ be pairwise in-comparable join-irreducible congruences of L.

To verify condition (Q), we have to find atoms $\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{t}}$ of L satisfying $\mathrm{q}_{\mathrm{i}}=$ $\mathrm{q}\left(0, \mathrm{p}_{\mathrm{i}}\right)$ for all $\mathrm{i} £ \mathrm{t}$ and such that $\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{t}}$ generate an ideal of L isomorphic to B_{t}.

Let p denote an atom in $N\left(B_{2}, B_{k}\right)$ I_{1}

Infact, there are two atoms but they generate the same congruence $q(0, p)$.

If $q(0, p)$ is not one of $\mathrm{q}_{1}, \mathrm{q}_{2}, \ldots \ldots, \mathrm{q}_{\mathrm{t}}$
then clearly we can find
$\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{t}}$ in L_{1} as required and $\mathrm{p}_{1}, \mathrm{P}_{2}$,
....., p_{t} also serves in L .
If $\mathrm{q}(0, \mathrm{p})$ is one of $\mathrm{q}_{1}, \mathrm{q}_{2}, \ldots \ldots, \mathrm{q}_{\mathrm{t}}$ say $\mathrm{q}(0, \mathrm{p})=\mathrm{q}_{\mathrm{t}}$, then let $\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots \ldots, \mathrm{p}_{\mathrm{t}-1}$ be the set of atoms establishing (Q) for $\mathrm{q}_{1}, \mathrm{q}_{2}, . ., \mathrm{q}_{\mathrm{t}-1}$ in L_{1} and therefore in L .

Then $\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots . ., \mathrm{p}_{\mathrm{t}-1}, \mathrm{p}$ represent the
congruences $\mathrm{q}_{1}, \mathrm{q}_{2}, \ldots \ldots, \mathrm{q}_{\mathrm{t}}$ and they generate an ideal isomorphic to B_{t} by lemma.

Therefore L satisfies (Q).
It is clear from this discussion that $J(C o n K)$ has exactly one more element than $J\left(\right.$ ConL $\left._{1}\right)$, namely, $q(0, p)$.

This join-irreducible congruence relates to the join-irreducible congruences of ConL, exactly as q relates to the joinirreducible elements of D.

Therefore D @ ConL.
Hence the theorem.

EXAMPLE :

The uniform construction for the four-element chain is

has 8 blocks.
This lattice has four congruences. C_{0} has 32 blocks.
$C_{1}=\{\{0,1,2,3\},\{4,5,6,7\},\{8,9,10,11\},\{12,13$
C_{0} is a null congruence
$14,15\},(16,17,18,19\},\{20,21,22,23\}$,
$\{24,25,26,27\},\{28,29,30,31\}\}$.
C_{2} has 2 blocks.
$C_{2}=\{\{0,1,2,3,4,5,6,7,8,9,10,1$
1,
$12,13,14,15\},\{16,17,18,19,20,21,22,23,2$
4,
25,26,27,28,29,30,31\}
\}. C_{3} has 1 block.
C_{3} is all congruence.

The congruence lattice of this lattice is

Every finite distributive lattice D can be represented as the congruence lattice of a finite uniform lattice L.

REFERENCES

1) G.Gratzer, H.Lakser, and E.T.Schmidt, Congruence lattices of small planar lattices. Proc. Amer. Math. Soc. 123(1995), 2619-2623.
2) G.Gratzer, General Lattice Theory, Second edition, Birkhauser Verlag, Basel, 2010.
3) G.Gratzer and E.T.Schmidt, Congruencepreserving extensions of finitelattices in to sectionally complemented lattice, Proc. Amer.Math.Soc.127(1999), 1903-1915.
4) G.Gratzer and F.Wehrung, Proper congruencepreserving extensions of lattices, Acta Math. Hungar. 85(1999),175-185.
5) G.Gratzer and E.T.Schmidt, Regular congruencepreserving extensions. Algebra Universalis 46(2008), 119-130.
6) G.Gratzer, E.T.Schmidt, and K.Thomsen, Congruence lattices of uniform lattices. Houston. J.Math. 29 (2011).
7) G.Gratzer and E.T.Schmidt, Finite lattices with isoform congruences. Tatra.Mt.Math.Publ 27(2009), 111-124.
8) G.Gratzer and E.T.Schmidt, Finite lattices and congruences. Algebra Universalis.
9)

R.Freese-UACALC
Sec:http://WWW. Math. edu/~ralph/UACALC/.
hawaii.

