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1.1 INTRODUCTION
In this chapter we prove that every

finite distributive lattice D can be represented as the
congruence lattice of finite uniform lattice L.
Infact we prove that “For any finite distributive
lattice D, there exists a finite uniform lattice L such
that the congruence lattice of L is isomorphic to D,
and L satisfies the properties (P) and (Q) where

(P) Everyjoin-irreducible congruence of L

we introduce a very smple kind of chopped lattices.

we prove that the ideal lattice of this chopped

lattice is uniform.

isof theformq (O,p), for asuitableatom p of L.

Q) IfQn O yeeeveeeennen. ,qnEJ
(Conl)

are pairwise incomparable, then L contains atoms
P1y P2seeeeeeenns , pn that generate an ideal isomorphic

to B, and satisfy g=q (0,p;), for al i £ n.

To prove this result, we introduce a
new lattice construction which is described . Then

we find the congruences on thisnew lattice

NOTATIO
N:

B, will denote the Boolean algebra with 2"

dements. For a bounded lattice A with bounds 0
and

1, A" will denote the lattice A —
{0,1}

We start with the definition of uniform

| attices.

PROOF OF THE MAIN RESULT

THEOREM : 1.2

For any finite distributive lattice D,
there exists a finite uniform lattice L such that the
congruence lattice of L is isomorphic to D and L

satisfies the properties (P) and (Q) where
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(P) : Every join-irreducible congruence
of

L isof theform q(0,p), for asuitableatom p of L.

(Q) : If q1,92,....,0n € JConL) are pairwise
incomparable, then L contains atoms py,pa,.....Pn
that generate an ideal isomorphic to B, and satisfy
g=9 (0,py), for all i£n.

Proof :-

We prove the result using induction on n,
wheren isthe number of join-irreducible dements.

Let D be a finite distributive lattice with n
join-irreducible el ements.

If n=1, then D @ By, so thereis a
lattice

L=B; that satisfiesthetheorem 1.2.

Let us assume that, for al finite
distributive lattices with fewer than n join-
irreducible elements, there exists a lattice L
satisfying theorem 2.6.1 and properties (P) and (Q).

Assume that D has n join-irreducible
elements.

Let g be aminimal e ement of J(D).

Let g1,0z,...,0k(k=>0) be al upper bounds of
gin JD).

Let D; be a didributive lattice
with

JID1)=XD)-{q}
By induction assumption there exists a

lattice L; satisfying Con L;@D; and (P) and (Q).
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Ifk=0,thenD @B;xD;and L =By x Ly,
obvioudy satisfies al the requirements of the
theorem and so the proof is over.

So, assumek > 1

The congruences of L; corresponding to
the g’ s are pairwise incomparable and therefore can
be written in the form q(0,p;) and the p;'s generate
anideal |, isomorphicto By.

The lattice N(B,,By) aso contains an ideal
(By)+ isomorphicto By.

Identifying 1; and (By):, We get the
chopped lattice K and the lattice L=IdK.

By lemma IdK is

uniform. That isL is

uniform.

Let q be ajoin-irreducible congruenceof L.

Then we can write g as g(ab) where a

is
covered by b.

By lemma,, it follows that we can assume
that either a, b €L, or a, b EN(B,,By)

In either case, there existsan atomqginL, or
g in N(B,, By) so that
q (ab)=q(0,0)inL;or q(ab)=q(0,0) in N(Bz, By).

Obviousy, g is an aom of Land

a(ab)=q(0,g) in L verifying (P)for L.
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Let qi, O,....,0 be pairwise in-comparable

join-irreducible congruencesof L.

To verify condition (Q), we have to
find atoms pa,py,...,pr Of L satisfying g =
g(O,p) for dl i £t and such that pa,pz,....pt
generate an ideal of L isomorphic to B:.

Let p denote an atom in N(Bz,Bx) -
1

Infact, there are two atoms but they

generate the same congruence q(0,p).

If q(O,p) is not one of
d1.92,...... G

then clearly we can find

P1,P2, ..., Pt in L as required and
P1,P2,

..... Pt also servesin L.

If q(0,p) is one of q1.p,...... Gt say
d(O,p) = q;, then let pi,p2,.....,.pr1 be the
set of aoms establishing (Q) for
01,02,..,0r-1 1N Ly and thereforein L.

Then p1,pz......pe1,p represent
the

congruences 1,0z, . .. ... .t and they
generate an ideal isomorphic to B; by

lemma.

Therefore L satisfies (Q).
It is clear from this discussion that
J(ConK) has exactly one more element than

JConL1), namely, q(0,p).

This join-irreducible congruence
relates to the join-irreducible congruences
of ConL, exactly as q relates to the join-
irreducible elements of D.

Therefore D @ ConL.

Hence the theorem.
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EXAMPLE:

The uniform construction for

the four-element chain is

has 8 blocks.
This lattice has four C.={{0,1,2,3} {4,5,6,7} {8,9,10,11} {12,13
congruences. C, has 32 blocks. 14,15} (16,17,18,19} { 20,21,22,23}
Co isanull congruence {24,25,26,27} {28,29,30,31} }.
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C, has 2 blocks.
C>={{0,1,2,3,4,5,6,7,8,9,10,1
1!

12,13,14,15} {16,17,18,19,20,21,22,23,2
4!

25,26,27,28,29,30,31}
}. Cs has 1 block.

Cs is all
congruence.

The congruence lattice of thislatticeis

Cs

G

e

Every finite distributive lattice D can be represented

as the congruence lattice of afinite uniform lattice L.
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