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Abstract: Let G be an arbitrary 𝐶𝐶𝑛𝑛 -group, where  𝐶𝐶𝑛𝑛  -groups are groups with 𝑛𝑛 number of centralizers &𝑛𝑛 is any 
finite number. In this article, we have proved that the group of inner automorphisms of G is isomorphic to some 
other groups depending upon𝑛𝑛. Moreover if for some group 𝐺𝐺, the group of inner automorphisms  𝐼𝐼𝑛𝑛𝑛𝑛(𝐺𝐺) has order 
6 or 9 then 𝐺𝐺 will be  𝐶𝐶5-group and if for some group 𝐻𝐻 , the group of inner automorphisms 𝐼𝐼𝑛𝑛𝑛𝑛(𝐻𝐻) has order 4 
then  𝐻𝐻 will be 𝐶𝐶4-group & conversely. 

Notations:  

(i) 𝑪𝑪𝒏𝒏-groups: The groups with 𝑛𝑛 number of centralizers. 
(ii) Inn(G): The group of  inner automorphisms of any group G. 

Introduction:  

All groups mentioned in this paper are finite group. Thus, one expects group structure to become increasingly 
complex with decreasing 'abelianness.' Indeed, the basic classification scheme for groups reflects the importance of 
the notion of commutativity. Beginning abstract algebra students tend to ignore the subtleties of the commutativity 
issue xy = yx as far as they are concerned. An effective way to deal with this misconception is to address it directly 
by asking 'How many pairs of elements of a group commute?' or 'What is the probability that two group elements 
commute?' The formal answers are #Com(G) = card({(x, y) : xy = yx}) and PrCom(G) = #𝑐𝑐𝑐𝑐𝑐𝑐 (𝐺𝐺)

(𝑐𝑐(𝐺𝐺))2  respectively. These 

questions and their (formal) answers put the notion of commutativity on a numerical basis, which students enjoy, 
and provide motivation for a delightful excursion through some nice elementary group theory. Indeed, the fact that 
#Com(G) =𝑘𝑘.𝑐𝑐(𝐺𝐺), where k is the number of conjugacy classes in G, is woven from elementary results on 
subgroups, centralizers, Lagrange's theorem, and conjugacy classes [3]. The equivalent probabilistic 
statement  𝑃𝑃𝑃𝑃𝐶𝐶𝑐𝑐𝑐𝑐(𝐺𝐺) = 𝑘𝑘

𝑐𝑐(𝐺𝐺)
, leads unsurprisingly to a reassuring result, G is abelian if and only if  PrCom(G) = 1 

And pleasantly to a surprising result, G is nonabelian if and only if PrCom(G) < 5/8.Another, less precise, way to 
say this is that either all of the elements commuteor atmost 5/8 of the elements commute. Here's another question 
relating numbers and commutativity: How many distinct centralizers can a group have? Recall that the centralizer of 
x in G, denoted by C(x), is the subgroup of G consisting of all elements that commute with x; i.e., 𝐶𝐶(𝑥𝑥) = {𝑦𝑦 ∈ 𝐺𝐺 ∶
𝑥𝑥𝑦𝑦 = 𝑦𝑦𝑥𝑥 }. If we denote the number of distinct centralizers in G by #Cent(G), then #Cent(G) = 𝑐𝑐𝑐𝑐𝑃𝑃𝑐𝑐({𝐶𝐶(𝑥𝑥): 𝑥𝑥 ∈ 𝐺𝐺}) 
and our question becomes 'What can we say about #Cent(G)?' This paper is an itinerary for an excursion in 
elementary group theory motivated by this question. Our goal is to provide some answers and some more questions. 
We think these are interesting in their own right and useful to those who teach abstract algebra. We may begin by 
stating the result that G is abelian if and only if  #Cent(G) = 1. 

Theorem 1: Let G be any group then   𝐺𝐺
𝑍𝑍(𝐺𝐺)

   is isomorphic to Inn (𝐺𝐺). 
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Proof: Let us define a map 𝜙𝜙 ∶ 𝐺𝐺 ⟶ 𝐼𝐼𝑛𝑛𝑛𝑛(𝐺𝐺),  

Such that 𝜙𝜙(𝑐𝑐) =  𝜑𝜑𝑐𝑐  , where 𝜑𝜑𝑐𝑐 ∶ 𝐺𝐺 ⟶ 𝐺𝐺 is defined as 𝜑𝜑𝑐𝑐(𝑥𝑥) = 𝑐𝑐.𝑥𝑥.𝑐𝑐−1 

Since 𝜙𝜙(𝑐𝑐.𝑏𝑏) =  𝜑𝜑𝑐𝑐 .𝑏𝑏 =  𝜑𝜑𝑐𝑐𝑐𝑐𝜑𝜑𝑏𝑏=  𝜙𝜙(𝑐𝑐).𝜙𝜙(𝑏𝑏) 

Hence 𝜙𝜙 is homomorphism. 

And clearly 𝜙𝜙 is onto. 

Now consider 𝑘𝑘𝑘𝑘𝑃𝑃𝜙𝜙, 

𝑘𝑘𝑘𝑘𝑃𝑃𝜙𝜙 = { 𝑐𝑐 ∈ 𝐺𝐺 ∶  𝜙𝜙(𝑐𝑐) = 𝜑𝜑𝑘𝑘} 

⇒  𝑘𝑘𝑘𝑘𝑃𝑃𝜙𝜙 = { 𝑐𝑐 ∈ 𝐺𝐺 ∶ 𝑐𝑐 ∈ 𝑍𝑍(𝐺𝐺)} = 𝑍𝑍(𝐺𝐺) 

Then by fundamental theorem of homomorphism  

𝐺𝐺
𝑍𝑍(𝐺𝐺)

 is isomorphic to 𝐼𝐼𝑛𝑛𝑛𝑛(𝐺𝐺). 

Hence the theorem. 

Theorem 2: Let G be an arbitrary 𝐶𝐶𝑛𝑛 -group and Inn (G) is isomorphic to ℤ2 × ℤ2 if and only if 𝑛𝑛 = 4. 

Proof: We will start the proof by proving the result for any arbitrary group G which states  that 𝐺𝐺
𝑍𝑍
 is isomorphic to 

ℤ2 × ℤ2 if and only if 𝑛𝑛 = 4  where 𝑍𝑍 is center of group G. 

If  𝐺𝐺
𝑍𝑍
   is isomorphic to ℤ2 × ℤ2,  

Then there are non-central elements, p, r, and s of G such that= 𝑍𝑍 ∪ 𝑍𝑍𝑍𝑍 ∪ 𝑍𝑍𝑍𝑍 ∪ 𝑍𝑍𝑃𝑃. 

It follows that the three proper subgroups of 𝐺𝐺 containing 𝑍𝑍 are 𝑃𝑃 = 𝑍𝑍 ∪ 𝑍𝑍𝑍𝑍, 𝑅𝑅 = 𝑍𝑍 ∪ 𝑍𝑍𝑃𝑃, and 𝑆𝑆 = 𝑍𝑍 ∪ 𝑍𝑍𝑍𝑍.  

Let 𝑥𝑥 be one of 𝑍𝑍, 𝑃𝑃 𝑐𝑐𝑃𝑃 𝑍𝑍 and let 𝑋𝑋 be the corresponding subgroup.  

Notice that for 𝑧𝑧𝑥𝑥 ∈ 𝑍𝑍𝑥𝑥, 𝐺𝐺 ⊃ 𝐶𝐶(𝑧𝑧𝑥𝑥)  ⊃ 𝑋𝑋. So,[𝐺𝐺 ∶ 𝑋𝑋] = [𝐺𝐺 ∶ 𝐶𝐶(𝑧𝑧𝑥𝑥)]. [𝐶𝐶(𝑧𝑧𝑥𝑥):𝑋𝑋] = 2 

and [𝐺𝐺 ∶ 𝐶𝐶(𝑧𝑧𝑥𝑥)] ≠ 1 thus 𝐶𝐶(𝑧𝑧𝑥𝑥) = 𝑋𝑋.  

Therefore the proper centralizers of G are precisely P, R, and S; 

i.e. number of centralizer  = 4.  

For the converse, it is sufficient to show that [𝐺𝐺 ∶ 𝑍𝑍] = 4 

Because then either 𝐺𝐺
𝑍𝑍
   is isomorphic to ℤ2 × ℤ2or  𝐺𝐺

𝑍𝑍
   is isomorphic to ℤ4 

Since, G is non-abelian, 𝐺𝐺
𝑍𝑍
 cannot be cyclic which means the latter case is impossible.  

So, suppose number of centralizer = 4 and let 𝑃𝑃 = 𝐶𝐶(𝑍𝑍),𝑅𝑅 = 𝐶𝐶(𝑃𝑃) 𝑐𝑐𝑛𝑛𝑐𝑐 𝑆𝑆 = 𝐶𝐶(𝑍𝑍)be the three proper centralizers of 
G. 
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Since G cannot be written as the union of two proper subgroups and since an element must belong to its centralizer, 

We may choose p, r, and s in 𝐺𝐺 − (𝑅𝑅 ∪ 𝑆𝑆),𝐺𝐺 − (𝑃𝑃 ∪ 𝑆𝑆)𝑐𝑐𝑛𝑛𝑐𝑐 𝐺𝐺 − (𝑃𝑃 ∪ 𝑅𝑅) respectively. 

Moreover, at least one of the proper centralizers, say P, has index two in G.  

For otherwise, 𝑐𝑐(𝐺𝐺) < 𝑐𝑐(𝑃𝑃) + 𝑐𝑐(𝑅𝑅) + 𝑐𝑐(𝑆𝑆)− 2.𝑐𝑐(𝑍𝑍) < 𝑐𝑐(𝐺𝐺)
3

+ 𝑐𝑐(𝐺𝐺)
3

+ 𝑐𝑐(𝐺𝐺)
3
− 2 < 𝑐𝑐(𝐺𝐺) 

Further, 𝑃𝑃 ∩ 𝑅𝑅 = 𝑃𝑃 ∩ 𝑅𝑅 ∩ 𝑆𝑆 = 𝑍𝑍 

Because if 𝑥𝑥 ∈ (𝑃𝑃 ∩ 𝑅𝑅)− 𝑍𝑍, 

Then 

i) 𝐶𝐶(𝑥𝑥) ≠ 𝐺𝐺 𝑏𝑏𝑘𝑘𝑐𝑐𝑐𝑐𝑏𝑏𝑍𝑍𝑘𝑘 𝑥𝑥 ∉  𝑍𝑍 
ii) 𝐶𝐶(𝑥𝑥) ≠ 𝑃𝑃 & 𝐶𝐶(𝑥𝑥) ≠ 𝑅𝑅 𝑏𝑏𝑘𝑘𝑐𝑐𝑐𝑐𝑏𝑏𝑍𝑍𝑘𝑘 𝑍𝑍, 𝑃𝑃 ∈ 𝐶𝐶(𝑥𝑥) 
iii) 𝐶𝐶(𝑥𝑥) ≠ 𝑆𝑆 𝑏𝑏𝑘𝑘𝑐𝑐𝑐𝑐𝑏𝑏𝑍𝑍𝑘𝑘 𝑥𝑥 ∉ 𝑆𝑆, 

Which means that number of centralizer must be at least 5. 

Now we can compute 𝑐𝑐(𝑍𝑍) using the fact that for subgroups X and Y of G, 

𝑐𝑐(𝑋𝑋 ∩ 𝑌𝑌) =
𝑐𝑐(𝑋𝑋). 𝑐𝑐(𝑌𝑌)
𝑐𝑐𝑐𝑐𝑃𝑃𝑐𝑐(𝑋𝑋𝑌𝑌) ≥

𝑐𝑐(𝑋𝑋). 𝑐𝑐(𝑌𝑌)
𝑐𝑐(𝐺𝐺)  

Indeed, 𝑐𝑐(𝑍𝑍) = 𝑐𝑐(𝑃𝑃 ∩ 𝑅𝑅) ≥ 𝑐𝑐(𝑃𝑃).𝑐𝑐(𝑅𝑅)
𝑐𝑐(𝐺𝐺) = 𝑐𝑐(𝑅𝑅)

2
 since 𝑐𝑐(𝑃𝑃) = 𝑐𝑐(𝐺𝐺)

2
 

But 𝑍𝑍 ≠ 𝑅𝑅, 𝑍𝑍𝑐𝑐 𝑐𝑐(𝑍𝑍) = 𝑐𝑐(𝑅𝑅)
2

 

Similarly,  𝑐𝑐(𝑍𝑍) = 𝑐𝑐(𝑆𝑆)
2

 

Thus, 

𝑐𝑐(𝐺𝐺) = 𝑐𝑐(𝑃𝑃) + 𝑐𝑐(𝑅𝑅) + (𝑆𝑆) − 2.𝑐𝑐(𝑍𝑍) =   𝑐𝑐(𝐺𝐺)
2

 + 2. 𝑐𝑐(𝑍𝑍) + 2.𝑐𝑐(𝑍𝑍)− 2.𝑐𝑐(𝑍𝑍) y, 

Which implies that 𝑐𝑐(𝐺𝐺)
2

=  2. 𝑐𝑐(𝐻𝐻) 

i.e.[𝐺𝐺 ∶ 𝑍𝑍] = 4, as desired. 

Hence  𝐺𝐺
𝑍𝑍
 is isomorphic to ℤ2 × ℤ2. 

Now, it is proved that  𝐺𝐺
𝑍𝑍
 is isomorphic to ℤ2 × ℤ2 if and only if 𝑛𝑛 = 4. 

And since by theorem 1, one can easily conclude that Inn (G) is isomorphic to ℤ2 × ℤ2 if and only if 𝑛𝑛 = 4. 

Theorem 3:Let G be an arbitrary 𝐶𝐶𝑛𝑛 -group and Inn (G) is isomorphic to 𝑆𝑆3 or ℤ3 × ℤ3 if and only if 𝑛𝑛 = 5. 

Proof:Let us proceed by the same approach which was used in proving the theorem 2.Once the result, which states 
that“𝐺𝐺

𝑍𝑍
is isomorphic to 𝑆𝑆3 𝑐𝑐𝑃𝑃 ℤ3 × ℤ3 if and only if 𝑛𝑛 = 5 where G is any arbitrary 𝐶𝐶𝑛𝑛–group”  is proved then 

proving this theorem will be a direct application of theorem 1. 
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And this result is proved by Belcastro and Sherman in [6] 

Conclusion: For an arbitrary 𝐶𝐶4-group G, In this article, we have proved that the group of inner automorphisms of G 
is isomorphic toℤ2 × ℤ2and conversely. Similarly G be an arbitrary 𝐶𝐶5-group and Inn (G) is isomorphic to 𝑆𝑆3 or 
ℤ3 × ℤ3 if and only if 𝑛𝑛 = 5. 
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