Case Study of the $\operatorname{Group} G L(n, \mathbb{Z})$

Shelly khurana ${ }^{\# 1}$, Ankur Bala ${ }^{\# 2}$
\#1 Department of Mathematics, University of Delhi
\#2 Department of Applied Science, CDL Government Polytechnic College (NathusariChopta)
India

Abstract: In this Article, we have discussed some of the properties of the infinite non-abelian group $G L(n, \mathbb{Z}), n \geq 2$. Such as the number of elements of order 2, number of subgroups of order 2 in this group and embedding of the $G L(n, \mathbb{Z})$ in $G L(m, \mathbb{Z}) \forall m \geq n$, Moreover for every finite group G, there exists $k \in \mathbb{N}$ such that $G L(k, \mathbb{Z})$ has a subgroup isomorphic to the group G.

Keywords: Infinite non-abelian group, $G L(n, \mathbb{Z})$

Notations: $G L(,) \mathbf{Z}=\left\{\left[a_{i j n n \times} \quad: a_{i j} \in \mathbf{Z} \quad \& \operatorname{det}\left(\left[a_{i j n n \times}\right)= \pm 1 \quad\right\}\right.\right.$
Theorem1: $G L(n, \mathbb{Z})$ can be embedded in $G L(m, \mathbb{Z}) \forall m \geq n$.
Proof: If we prove this theorem for $m=n+1$, then we are done.
Let us define a mapping $\varphi: G L(n, \mathbb{Z}) \longrightarrow G L(n+1, \mathbb{Z})$

Such that

$$
\varphi\left(\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right]\right)=\left[\begin{array}{cccc}
a_{11} & \cdots & a_{1 n} & 0 \\
\vdots & \ddots & \vdots & \vdots \\
a_{n 1} & & a_{n n} & 0 \\
0 & \cdots & 0 & 1
\end{array}\right]
$$

Let $\mathrm{A}=\left[\begin{array}{ccc}a_{11} & \cdots & a_{1 n} \\ \vdots & \ddots & \vdots \\ a_{n 1} & \cdots & a_{n n}\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{ccc}b_{11} & \cdots & b_{1 n} \\ \vdots & \ddots & \vdots \\ b_{n 1} & \cdots & b_{n n}\end{array}\right]$
Such that determinant of A and B is ± 1, where $a_{i j}, b_{i j} \in \mathbb{Z}$.
Then A.B $=\left[\begin{array}{ccc}a_{11} & \cdots & a_{1 n} \\ \vdots & \ddots & \vdots \\ a_{n 1} & \cdots & a_{n n}\end{array}\right] \cdot\left[\begin{array}{ccc}b_{11} & \cdots & b_{1 n} \\ \vdots & \ddots & \vdots \\ b_{n 1} & \cdots & b_{n n}\end{array}\right]$

$$
=\left[\begin{array}{ccc}
c_{11} & \cdots & c_{1 n} \\
\vdots & \ddots & \vdots \\
c_{n 1} & \cdots & c_{n n}
\end{array}\right]
$$

Where $c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots a_{i n} b_{n j}$

$$
\Rightarrow \varphi(A . B)=\left[\begin{array}{cccc}
c_{11} & \ldots & c_{1 n} & 0 \tag{1}\\
\vdots & \ddots & \vdots & \vdots \\
c_{n 1} & & c_{n n} & 0 \\
0 & \cdots & 0 & 1
\end{array}\right]
$$

$$
\varphi(A) \cdot \varphi(B)=\left[\begin{array}{cccc}
a_{11} & \ldots & a_{1 n} & 0 \\
\vdots & \ddots & \vdots & \vdots \\
a_{n 1} & \ldots & a_{n n} & 0 \\
0 & \cdots & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{cccc}
b_{11} & \ldots & b_{1 n} & 0 \\
\vdots & \ddots & \vdots & \vdots \\
b_{n 1} & \ldots & b_{n n} & 0 \\
0 & \ldots & 0 & 1
\end{array}\right]
$$

$$
=\left[\begin{array}{ccc}
c_{11} & \ldots & c_{1 n} \tag{2}\\
\vdots & \ddots & 0 \\
c_{n 1} & \cdots & c_{n n} \\
0 & \cdots & 0 \\
0 & 0
\end{array}\right]
$$

Now from (1) and (2) one can easily say that φ is homomorphism.
Now consider $\operatorname{ker} \varphi$,

$$
\operatorname{Ker} \varphi=\left\{A \in G L(n, \mathbb{Z}): \varphi(A)=I_{(n+1) \times(n+1)}\right\} \quad \text { where I is identity matrix }
$$

Clearly $\operatorname{Ker} \varphi=\left\{I_{n \times n}\right\}$
Hence φ is injective homomorphism.
So, by fundamental theorem of isomorphism one can easily conclude that $G L(n, \mathbb{Z})$ can be embedded in $G L(m, \mathbb{Z})$ for all $\mathrm{m} \geq n$.

Theorem 2: $G L(n, \mathbb{Z})$ is non-abelian infinite group $n \geq 2$.
Proof: Consider $G L(2, \mathbb{Z})=\left\{A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]: a, b, c, d \in \mathbb{Z}\right.$ and $\left.\operatorname{det}(A)= \pm 1\right\}$
Consider $A_{c}=\left[\begin{array}{ll}1 & 0 \\ c & 1\end{array}\right]$ such that $c \in \mathbb{Z}$
And let $\mathrm{H}=\left\{A_{c}: c \in \mathbb{Z}\right\}$
Clearly H is subset of $G L(2, \mathbb{Z})$.
And H has infinite elements.
Hence $G L(2, \mathbb{Z})$ is infinite group.
Now consider two matrices $\left[\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right]$ and $\left[\begin{array}{ll}2 & 3 \\ 1 & 1\end{array}\right] \in G L(2, \mathbb{Z})$

$$
\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right] \cdot\left[\begin{array}{ll}
2 & 3 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
4 & 5 \\
3 & 4
\end{array}\right]
$$

And

$$
\left[\begin{array}{ll}
2 & 3 \\
1 & 1
\end{array}\right] \cdot\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
5 & 7 \\
1 & 3
\end{array}\right]
$$

Hence, $G L(2, \mathbb{Z})$ is non-abelian.
And by a direct application theorem 1 , one can conclude that $G L(n, \mathbb{Z})$ is infinite and non-abelian $\forall \geq 2$
Theorem 3: Number of elements of order 2 in $G L(n, \mathbb{Z})$ is infinite and hence number of subgroups of order 2 is infinite.

Proof: Consider $G L(2, \mathbb{Z})=\left\{A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]: a, b, c, d \in \mathbb{Z}\right.$ and $\left.\operatorname{det}(A)= \pm 1\right\}$
Let $\mathrm{A} \in G L(2, \mathbb{Z})$, and order of A is 2 .

Then $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ for some $a, b, c, d \in \mathbb{Z}$ and $A^{2}=I$

$$
\begin{gathered}
\Rightarrow\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \cdot\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
\Rightarrow \quad\left[\begin{array}{ll}
a^{2}+b c & a b+b d \\
c a+c d & b c+d^{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
\Rightarrow a^{2}+b c=1, a b+b d=0, c a+c d=0, b c+d^{2}=1
\end{gathered}
$$

Since $a^{2}+b c=1$, then:
Case (i): $a^{2}=1, b c=0$

$$
\Rightarrow a= \pm 1 \text { and either } b \text { or } c=0
$$

Subcase (i): If we take $a=1$ and $b=0$
Then $\left[\begin{array}{cc}1 & 0 \\ c+c d & d^{2}\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

$$
\begin{gathered}
\Rightarrow c+c d=0 \\
\Rightarrow c(1+d)=0 \\
\Rightarrow \text { either } c=0 \text { or } d=-1 \\
\Rightarrow \text { if } c \neq 0 \text { then } d=-1
\end{gathered}
$$

Let $c \neq 0$
Then our case is $a=1, b=0, c \neq 0, d=-1$
$\Rightarrow \quad\left[\begin{array}{cc}1 & 0 \\ c & -1\end{array}\right]$ has order 2 if $c \neq 0$ and $c \in \mathbb{Z}$
Clearly c has infinite choices.
\Rightarrow Number of elements of order 2 in $G L(2, \mathbb{Z})$ is infinite.
And since number of elements of order 2 = Number of subgroups of order 2 in any group.
\Rightarrow Number of subgroups of order 2 in $G L(2, \mathbb{Z})$ is infinite.
Also by a direct application of theorem 1, one can easily conclude that this theorem is valid for every value of n.
Theorem 4:Every finite group can be embedded in S_{n} for somen $\in \mathbb{N}$
Proof: Let G be any group and $A(G)$ be the group of all permutations of set G.
For any $a \in G$, define a map $f_{a}: G \rightarrow G$ such that $f_{a}(x)=a x$
Then as $x=y \Rightarrow a x=a y$

$$
\Rightarrow f_{a}(x)=f_{a}(y)
$$

Hence, f_{a} is well defined
Clearly f_{a} is one-one.
Also for any $y \in G$, Since $f_{a}\left(a^{-1} y\right)=y$.
$\Rightarrow f_{a}$ is onto.
And hence f_{a} is permutation.
Let K be set of all such permutations
Clearly K is subgroup of $A(G)$.
Now define a mapping $\varphi: G \rightarrow K$ such that $\varphi(a)=f_{a}$
Clearly φ is well-defined and one-one map.
And consider the following equation

$$
\varphi(a \cdot b)=f_{a b}=f_{a} o f_{b}=\varphi(a) \cdot \varphi(b)
$$

Which shows that φ is homomorphism
Obviously, φ is onto homomorphism
$\Rightarrow \varphi$ is isomorphism.
And hence the theorem.
Theorem 5: S_{n} is isomorphic to some subgroup of $G L(,) \mathbf{Z}$ for all $n \in \mathbb{N}$.
Proof: Let S_{n} be the permutation group on n symbols.

Define $\varphi:, S G K L n \longrightarrow(\mathbf{Z})$ such that: $\varphi() \sigma \sigma=[\in]_{n n} \quad S_{n}$
Where $[\sigma]_{n 及} \quad$ is permutation matrix obtained by σ i.e. if $\sigma=\left(\begin{array}{lll}12 & \cdots & n \\ \beta \beta \beta & \cdots & n\end{array}\right.$ then
$[\sigma]_{n n}=\left(\begin{array}{l}R_{1} \\ R_{2} \\ \vdots \\ R_{n}\end{array}\right.$
Where $R_{i} \quad$ is $R_{\beta_{i}}^{\text {th }} \quad$ row of identity matrix.
Clearly φ_{φ} is a homomorphism.
Now consider the kernel of this homomorphism.
ker:()) $\boldsymbol{\text { ¢ }}$

$$
\left.I_{n k}\right\} \Rightarrow \dot{\ddagger} \quad \beta_{i} \quad \forall i
$$

$\Rightarrow \operatorname{ker} \varphi \quad$ is trivial.

Hence the homomorphism is injective.
$\Rightarrow S_{n}$ is isomorphic to some subgroup of $G L(,) \mathbf{Z}$ for all $\boldsymbol{Z}_{n \in} \mathbb{N}$.
Theorem 6: For every finite group G, there exists $k \in \mathbb{N}$ such that $G L(k, \mathbb{Z})$ has a subgroup isomorphic to the group G.
Proof: It is an obvious observation of theorem 4 and theorem 5.

CONCLUSION

$G L(n, \mathbb{Z})$ is non-abelian infinite group having infinite number of elements of order 2 as well as subgroups of order 2. Also $G L(n, \mathbb{Z})$ can be embedded in $G L(m, \mathbb{Z}) \forall m \geq n$, Moreover for every finite group G, there exists $k \in \mathbb{N}$ such that $G L(k, \mathbb{Z})$ has a subgroupisomorphic to the group G.

References

[1] Contemporary Abstract Algebra, J.A. Gallian, Cengage Learning, 2016 .ISBN: 1305887859, 9781305887855
[2] Abstract Algebra (3rd Edition), David S. Dummit , Richard M. Foote, ISBN: 978-0-471-43334-7
[3] On Embedding of Every Finite Group into a Group of Automorphism IJMTT, Vol.37, Number 2, ISSN: 2231-5373
[4] A Course in Abstract Algebra, Vijay K. Khanna, S.K. Bhambri, Second Edition, Vikas Publishing House Pvt Limited, 1999, 070698675X, 9780706986754

