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Abstract: 
Objectives: Using the multi-objective method is to solve the partial flexible open-shop scheduling problem 

(PFOSP), this paper optimizes the three objectives of minimizing the makespan, the maximum workload and the 

total workload of machine,  Methods and Statistical Analysis: analyzes the relations between the three 

optimization objectives in detail, and decides to Findings: minimize the makespan and the maximum workload 

during the process route selection and to minimize the total workload of machine processing time during the 

process scheduling. According to the characteristics of multi-objective optimization, the author redesigns the 

update mode and state transition probabilistic formula for local meta-heuristic information of ant in the optimized 

ant colony algorithm. Application /Improvements: The simulation experiment proves the based effectiveness of 

the mixed optimization algorithm of ant colony algorithm and particle swarm algorithm. 
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1. Introduction 
Production scheduling is undoubtedly the core of production management in an enterprise because it 

maximizes the utilization of resources through scientific allocation. According to historical statistics, the non-

processing operations take up 95% of the time spent on the whole production process. Therefore, scientific 

scheduling of production can effectively promote the production efficiency of the enterprise (Rupp et al.,2010). 

However, since actual environmental conditions are often constrained in theoretical research, the theoretical 

models of production scheduling differ greatly from the reality and yield limited practical value. In actual 

scheduling, the scheduler has to rely on his/her own experience to make decisions, which is difficult to deal with 

emergencies, thus affecting the normal production. So, it is necessary to explore how to optimize production 

scheduling, so as to provide basis for decision-making on scientific scheduling. 

 

Partial Flexible Open-shop scheduling problem (PFOSP) adapts well to complex production scheduling. To 

be more specific:  

1.  From the competitive environment of manufacturing enterprises, flexible production helps the enterprises 

make better response to the changing market. To enhance core competitiveness, an enterprise must be capable 

of dealing with emergencies like equipment failure, urgent orders and temporary cancellation, etc. 

2. From the angle of production technology, recent years has seen the rapid development of automation 

technology (Sa´nchez-Caballero et al., 2009). In particular, the emergence of partial flexible manufacturing 

system (PFMS) has pushed through the limitation of traditional way of process-based processing, allowing 

the same product to be processed simultaneously on several processing lines. Besides, during production and 

processing, different departments of the enterprise have different demands of scheduling. For example,  

 

The production department wishes to reduce cost, improve efficiency and complete orders on time, the business 

department gives concern to the delivery time, while the senior management wants to maximize the utilization of 

resources and minimize waste (Liu et al., 2010). As a result, it is necessary to balance the rights and interests 

between different departments through production scheduling, thereby achieving the optimal manufacturing 

effect. 

 

From above, multi-objective PFOSP bears typical features of an automated manufacturing system which is 

capable of supporting performance optimization of multiple objects, actively handling emergencies, and adapting 
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to complex production environment (Weglarz and Jozefowska, 1998). Therefore, it is of great practical and 

theoretical significance to study multi-objective PFOSP. 

 

2. Partial Flexible Open Scheduling Problem 
1. The research on scheduling optimization multi criteria leans heavily towards performance indices, and away 

from cost indices. Currently, there is little research on storage and production costs, which are critically 

important for measuring the scheduling level of the enterprise (Marler and Arora, 2004). 

 

2. The research on PFOSP models lacks diversity. Most of the research is related to math and grammar-based 

models, while virtually no research is about PFOSP framework models. 

 
3. There is little systematic research on PFOSP optimization theory, especially on the convergence of the 

algorithm, and the diversity of the solution, both of which are the key and difficult points in the field of the 

optimization method (Huang et al., 2006). 

 

4. Multi-objective research on partial flexible scheduling is mostly based on an important condition, that is, all 

the products have the same processing objective. However, the research on the conflict between products with 

different processing objectives is far from mature. Even less literature talks about multi-objective 

optimization method where there is significant difference between large batches of products. 

 

5. Many researchers have studied dynamic scheduling, but most of them are limited to single-objective dynamic 

scheduling. Very few problems into real-time, multi-objective, dynamic scheduling optimization, or multi-

objective scheduling. 

 

3. Hybrid Optimization Algorithm of Ant Colony Algorithm and 

    Particle Swarm Algorithm for Multi-Objective PFOSP 
 

3.1 Mathematical formulation of multi-objective PFOSP 

 
Mathematically speaking, the multi-objective PFOSP is expressed as follows. There are n products to be 

processed on m machines. For every Ji product, there are ni processes which are arranged in fixed order. The 
processes can take place in one of the m machines. Mij refers to the set of machines for the process i of product Ji. 
The set relation is Mij={1, 2…, M}. Oijk refers to the processing of process i corresponding to product j on 
machine Mk. The processing time of process i corresponding the product j is represented by pijk. In this case, j 
falls between 1 and n, i between 1 and nj, and k between 1 and m. The scheduling problem mainly involves two 
sub-problems, one is the allocation of machines, the other is the optimization of processes.  
To solve the former sub-problem, the processes should be assigned to each processing machine; to solve the 

latter sub-problem, overall optimization should be achieved based on the processing sequence. During 

processing, the following restrictions and assumptions should be satisfied: 

 

1. All of the processing machines are utilization when time t=0;  
2. At this time, all semi-finished products can be processed;  
3. The processing times of all processes involved on the corresponding processing machines are 

known(Ahmadi et al., 2013; Seyed and Sadeghiazad, 2016; Kesavan et al., 2016; Rafiee and Sadeghiazad, 

2016);  
4. The processing sequences of all products are known;  
5. At the same time, each process must corresponds to only one machine and the processing must not be 

interrupted; 6. All semi-finished products are on the same level of priority, and if a product is different, the 

corresponding process sequence would become invalid. 

To sum up, the scheduling problem can be expressed as: 
 

1. Complete PFOSP: when the conditions of Mij M and Oij are met, the process i of product Ji can take place on 
any machine in set M. Table 1 displays the complete multi-objective complete PFOSP of three products and 
four machines. The data in the table illustrate pijk, the processing time of the process on the corresponding 
machine, and the data on each row stands for the set of Mij. 
 

Table 1 Multi-objective PFOSP (Example 1) 

Jobs(3×4)             Machines M1 M2 M3 M4 

J1 O1,1 1 3 5 4 

O1,2 3 1 2 2 
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O1,3 4 3 1 5 

J2 O2,1 2 5 1 3 

O2,2 5 2 6 1 

O2,3 8 4 3 2 

J3 O3,1 6 5 5 3 

O3,2 8 5 1 5 

 
2. Partial FOSP: when the conditions of Mij and Oijare met, the process i of product Ji can only take place 
on some of the machines. Table 2 displays the details on partial multi-objective complete PFOSP of three 
products and four machines. The data in the table maps pijk, the processing time of the process. Means process 
Oij cannot take place on equipment Mk. The data in each row maps the set of Mij. 

 

Table 2 Multi-objective PFOSP (Example 2) 

Jobs(3×4)             Machines M1 M2 M3 M4 

J1 O1,1 - 3 2 4 

O1,2 4 - - 2 

O1,3 5 2 1 3 

J2 O2,1 - 4 3 - 

O2,2 5 - - 2 

O2,3 2 2 - 5 

J3 O3,1 3 3 5 3 

O3,2 6 - 2 1 

 

3.2 Mathematical model and optimization objectives 

Multi-objective PFOSP needs to be optimized according to the specific requirements. The objectives are as 
follows: 

 

(1) The longest processing time: 

                                                                                       ……………………………………… (1) 

(2) The maximum lead/lag of product delivery, a measure of the satisfaction of delivery time: 

                                                                                    …………………………………. (2) 

(3) The minimum lead/lag of product delivery, an indication of the satisfaction of delivery time: 

 

 =  = } …………………... (3) 

 
 (4)The storage cost of semi-finished products, where F3 and F4 correspond to the cost of production: 
 

 

 =   .(4) 

 

 

(5) The sum of the load of processing machines: 

 

 ……………………………………………………………………………… (5) 

 

(6) The maximum load of key machines: 

 

 …………………………………………………………………………………….. (6) 

 

As mentioned above, PFOSP optimization aims at improving three objectives simultaneously. Similar to other 

multi-objective optimizations, there is some contradiction between the functions of multiple optimization 

objectives. Thus, it is impossible to get the most optimal solutions for all objectives. At this point, it is necessary 

to build a set of Pareto optimal solutions, i.e. compromised solutions for multi-objective optimization functions. 

The following formulas illustrate the constraints for the optimization objectives: 

 

………………………………………………………………………………… (7) 
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 ] ……………………………...................................... (8) 

  

 …………………………………………………………………………… (9) 

 

 ……………………………………………………………..…………………………… (10) 

                                                  

= 0 …………………………………………………………………………………………. (11) 

 

 ………………………………………………………………………………………….. (12) 

 

 ……………………………………………………………………………………………... (13) 

 

 ……………………………………………………………………………………………... (14) 
 
                    
In the above formulas, Cj stands for the completion time of product Ji; dj stands for the delivery time of product 

Ji; T
*
stands for the maximum completion time of the optimal scheduling; C

v
 stands for the actual cost of the 

machine; C
s
 stands for the static cost of the machine if it is in static state; Cp stands for the total processing cost 

of the manufacturing workshop, which equals C
v
+C

s
; STij stands for the start time of processing corresponding 

to process Oijk; Pijk stands for the equipment processing time of process i of product Ji; Xijk stands for the decision 

variable, indicating whether to use machine k for process i of product Ji (if the variable equals 1, it means 
machine k is used; if the variable equals 0, it means machine k is not selected); stands for the dynamic cost of 
equipment k;  stands for the static cost of equipment k; C

wip
 stands for the storage cost of the product during 

processing;  stands for the raw material cost of product Ji; and µij stands for the ratio between processing and 
storage cost and the total value of products in the time interval. 

 

3.3 Multi-objective PFOSP algorithm  

 
In the ant colony optimization algorithm, the main parameters include: Q

a
 (the scale of ant colony), ρ 

(volatilization rate of pheromone), τmax(maximum concentration of pheromone) and τmin (minimum concentration 
of pheromone). In the particle swarm optimization algorithm, the core parameters include: Qp (the scale of 
particle population), NC (the maximum iterations under the algorithm), and NQ (continuous invariant algebra to 
achieve the optimal solution)(Sedenka and Raida, 2010). The multi-objective PFOSP algorithm is described as 
follows: 
 
Step 1: Initialize the ant colony algorithm, generate an ant by a random function and denote it with letter a. Use 

counter r to count the number of ants by the algorithm of r=r+1. The set of products passed by ant a is 

denoted by tabu
a
 ( tabu

a
 =φ). 

 
Step 2: Select the machine corresponding to product process. Specifically speaking, when a enters product i by 

random, count the number of processes passed by a and start the initialization process (j=0). The transition 
probability of the machine in the first process is Pmj,mj+1

a
(j). Thus, the processing machine of the first 

process can be determined by roulette wheel selection method (Laukkanen et al., 2012). At this moment, a 
starts to enter the first process, the counter reads j=j+1. The machines of the other processes can be 
deduced by analogy as a passes through all processes of the product. In other words, repeat this step over 
and over till tabu

a
={1,2,...,N} is all passed through. Now, since the process route of the product is clear, 

proceed with the next step. 

 
Step 3: Particle swarm optimization algorithm. Initialize the particle swarm and use Q

p
 to denote the scale of the 

particle swarm optimization. The initialization process mainly aims at initializing the particle components 
of the process information chosen by ant a. The components include process, machine, product number 
and processing time, etc. The random initialization priority and particle velocity vector fall in the interval 

of 0 to 1. Next, decode the particle vector and calculate the particle fitness by the formula ; if the f 

value of the particle is within the historical optimal value fgbest, replace pbest with this particle, which 
stands for the historical optimal individual. If the f value of the particle is better than the global optimal 
individual fitness fgbest, update the gbest of the individual. 

 
Step 4: After the iterative calculation with NQ=10, if the fgbest corresponding to the gbest is unchanged, the 

particle swarm optimization algorithm is deemed as successful. Next, proceed as follows (Xun et al., 

2008). First, adjust the scheduling solutions for S
a
and T

a
 according to the gbest and the corresponding 

fitness. If Ta<T
q

best, the two can be made equal, and the optimal solution Sagenerated by this iteration 
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under the ant colony optimization algorithm should be updated. If r<Q
a
, go back to Step 1. If r=Q

a
, go 

back to the beginning of this step, and set T
q
best as the minimum processing time by local iteration 

algorithm under ant colony optimization. Otherwise, skip to the next step. 

 

Step 5: Calculate the velocity and position vectors of the particles. When wϵ (0,1), C1=C2=2,go back to the third 
step again. 

 

Step 6: Update the pheromone concentration under ant colony algorithm. Assuming that Tbest>T
q
best, the two 

parameters can be set equal and the original Sbest solution should be replaced with S
q
. The total processing 

time under Sbest is denoted by Tbest. Next, update the pheromone on the related product structure (Kuroda et 

al., 2015). Finally, start the iteration, let q = q + 1, if q is greater than NC, then the iterative algorithm is 

over, otherwise go back to the first step, and r becomes 0. q records the number of iterations in the ant 

colony algorithm, which falls between 1 and NC.  

 

4. Simulation Experimental Analysis 

 
4.1 Result Analysis 1 

 

In the following, verify the effectiveness of mixed optimization algorithm of ant colony algorithm and particle 

swarm algorithm. First, introduce the PFOSP test examples (example 1: 3 machines, 3 products; example 2: 3 

machines, 4 products.) 

 

Table 3 Description of test example 1 

Product Process Process Process 

Machine 

number 

Processing 

Time 

Machine 

number 

Processing 

Time 

Machine 

number 

Processing 

Time 

 

Products 

1 

1 7 1 6 1 3 

2 6 2 2 3 2 

- - 3 5 - - 

- - 4 1 - - 

 

Products 

2 

2 3 2 7 - - 

3 5 4 5 - - 

4 4 - - - - 

1 5 2 5 3 9 

 

Products 

3 

1 2 2 7 1 2 

2 6 3 2 2 6 

- - - - 3 4 

- - - - 4 5 

  
The table 3 illustrates the processing times corresponding to the processes. The results are obtained by the 

mathematical programming method (seen in Figure 1). Figure 2 displays the results of the mixed optimization 

algorithm. The total processing times are consistent with the results obtained by the mathematical programming 

method, both of which are 16d. However, the corresponding process routers are different. The former, the mixed 

optimization algorithm, has a higher machine utilization rate (Nicolaou et al., 2012). See Table 4 to compare the 

results between the mixed optimization algorithm and the mathematical programming method. This table shows 

the former has a shorter total processing time, 2d shorter, and a significantly higher machine utilization rate. 

 

Table 4 Comparison between the results of different algorithms 

Algorithm Processing 

time 

Total Processing 

time 

Utilization rate of  Machines 

M1 M2 M3 M4 M5 

Mathematical 

programming method 

15 45 75% 100% 75% 100% 85% 

The proposed Algorithm 15 45 75% 100% 100% 95% 84% 
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                                                    Figure 1 Mathematical programming method                                       

                                       

 

                                                 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                    Figure 2 Ant colony Algorithm 

                   

4.2 Results Analysis 2 

This section compares the proposed mixed optimization algorithm and the AL+CEA algorithm. The latter is put 

forward by Kacem et al., 3 PFOSP test problems of different scales are used. The examples corresponding to 

these problems respectively contain 8, 10 and 15 products, and 8, 10 and 10 machines. Conduct 30 iterative 

computations for these examples and compare the results of proposed method with those of other methods. In 

example 1, the results of each iteration are better than the later one. In example 2, the proposed algorithm has a 

better solution than other algorithms, indicating that the solution is an optimal solution (Nicolaou and Kannas, 

2011). To solve the multi-objective PFOSP, Kacem et al. also introduce the evolutionary and fuzzy algorithm, 

which is the combination of FL + EA and Pareto. Next, use examples that respectively contain 4, 7, 10 and 15 

products and 5, 7, 10 and 10 machines, and compare the results of different algorithms. Table 5 compares the 

results of the mixed optimization algorithm and the FL+EA algorithm. Although none of the maximum iterations, 

reasonable run-time solution quality and the average computation time is displayed in this table, it still 

demonstrates how the mixed optimization algorithm improves the solution quality. 
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Table 5 Comparison between the results of mixed optimization algorithm and FL+EA algorithm 

Scale of 
Example 

Optimization 
Algorithms 

FL+EA Proposed Algorithm 

Number of 

Objectives 

1 2 3 4 5 1 2 3 

 
4×5 

Minimizing 
Makespan 

15 14 17 17 - 25 17 - 

Maximum 

workload 

25 32 26 65 - 14 51 - 

Total workload 

Machine 

60 8 35 26 - 36 23 - 

 

 
10×7 

Minimizing 

Makespan 

24 51 12 15 16 25 17 17 

Maximum 

workload 

32 23 52 4 5 26 56 56 

Total workload 
Machine 

14 23 55 38 41 42 25 26 

 

 
10×10 

Minimizing 

Makespan 

56 25 42 36 - - 8 35 

Maximum 
workload 

7 45 36 25 - - 25 12 

Total workload 

Machine 

45 21 21 25 - - 12 23 

 

 

  15×10 

Minimizing 

Makespan 

42 15 - - - - - - 

Maximum 
workload 

25 22 - - - - - - 

Total workload 

Machine 

24 30 - - - - - - 

 
 

5. Conclusion 
Using a mixed optimization algorithm of ant colony algorithm and particle swarm algorithm is applied to solve 

the multi-objective PFOSP; this paper optimizes the three interrelated objectives of minimizing makespan, 

maximum workload; Total workload of machines. The total machine load and key machine load are minimized 

through the finding the optimal process route. In the meantime, this paper redesigns the update formula of ant 

colony transition probability in light of the multi-objective optimization attributes. The total processing time is 

optimized during process scheduling. Particle swarm optimization algorithm is applied at this stage, and the 

related problems are adjusted by the decoding and particle coding. Finally, the author obtains the Gantt chart of 

the proposed optimization algorithm, and compares the results of the algorithm with those in other materials. 

The experiment proves that the proposed mixed optimization algorithm has a significant effect on solving 

multi-objective PFOSP, and can also effectively enhance machine utilization rate. 
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