A Survey on Energy of Some Graphs

*N Pratap Babu Rao, **Santosh Gowda
*Associate professor mathematics department SG college Koppal
**Lecturer in mathematics department $S G$ college Koppal, S. G College koppal, Karnataka INDIA

Abstract

In this paper we are studied on energy of graphs, hyper graphs, co energetic graphs , Spectrum of graphs and some results related to energy of graphs, hyper graphs etc.,

I. Introduction

Our survey is on the energy of a graph, spectral moments and energy of graphs, second stage spectrum and energy of graph, distance energy of graph.
Let G be a graph and A be a adjacency matrix of G denoted by $A(G)$ [defn. 3].the Eigen values of A which are the zeros of $|\lambda I-A|$ are called the Eigen values of G and form its spectrum denoted by $\operatorname{spec}(\mathrm{G})[3]$.the energy of a graph G is the sum of the absolute values of its Eigen values, and is denoted by $\mathrm{E}(\mathrm{G})[$ def12]. The totally disconnected graph $k_{n}{ }^{c}$ has zero energy while the complete graph k_{n} has energy 2(n-1) [n-vertices] [I Gut man 7].But it was disproved in [150:H.B.walikar et al].Graphs for which the energy is greater than $2(\mathrm{n}-1)$ are called hyper energetic graphs. If $\mathrm{E}(\mathrm{G}) \leq$ $2(\mathrm{n}-1)$, then G is called non-hyper energetic graphs. In theoretical chemistry, the π-electron energy of a conjugated carbon molecule, computed using the Huckel molecular orbital (HMO) model[7] coincides with the energy as defined ,hence result in graph energy assume special significance.
In the next part we going to discuss the nature of the energy of the graph $k_{n}-\mathrm{H}$, where H is the Hamiltonian cycle of G and then it is shown that there exists an infinite number of values of n for which k-regular graphs exists whose energies are arbitrarily small compare to the known sharp bound $k+\sqrt{k(n-1)(n+1)}$ for the energy of k-regular graphs on n-vertices and the existence of eqienergetic graphs not having the same spectrum is established.

II. Circulant Graphs

Lemma 1: [R Balakrishnan 2] If C is a circulant matrix of order n with first row $a_{1}, a_{2}, \ldots \ldots \ldots a_{n}$ then determinant of c given by $\operatorname{det} \mathrm{C}=\pi\left(a_{1}+a_{2} w^{j}+a_{3} w^{2 j} \ldots \ldots \ldots . a_{n} w^{(n-1) j}\right)$ where w is a primitive $n^{\text {th }}$ root of unity.

Note: circulant graphs have been used in the study of graphs of decomposition problems [1,9]

III. Energy Bounds

Let G be a graph with n -vertices and m -edges,
$\mathrm{E}(\mathrm{G}) \leq \frac{2 m}{n}+\sqrt{\frac{n-1}{2 m-\frac{(2 m)^{2}}{n}}} \quad=B_{1}$.
While if G is K-regular
$\mathrm{E}(\mathrm{G}) \leq K+\sqrt{K(n-1)(n-K)} \quad=B_{2} \ldots \ldots \ldots$.
Since $\mathrm{K}=\frac{2 m}{n}$ for a K-regular graph. The bound B_{2} is an immediate consequences of the bound B_{1}.if $\mathrm{k}=3$ the upper bound $B_{2}=3+\sqrt{2(n-1)(n-3)}$ but $B_{2} \leq 2(\mathrm{n}-1)$ is equivalent to $(n-1)^{2} \geq 0$ which is true. Hence all cubic graphs are non-hyper energetic.

Theorem: [R.Balakrishnan 10] For each $\epsilon \geq 0$ there exists infinitlymany n for each of which there exists a k-regular graph G of order ' n ' with $\mathrm{k}<n-1$ and $\frac{E(G)}{B_{2}}<\epsilon$

This theorem proves that there are $\emptyset(n)$-regular graphs of order n for infinitly many n whose energies are much smaller compare to the bounds B_{2}

IV. Energetic Graphs

Definition: Two graphs of the same order are called equienergetic (resp: co-spectral) if they have the same energy naturally two co-spectral graphs are equienergetic.

Definition: the tensor product of two graphs G_{1} and G_{2} is the graph $G_{1} \otimes G_{2}$ with vertex set $\mathrm{V}\left(G_{1}\right) X \mathrm{~V}\left(G_{2}\right)$ and in which the vertices $\left(u_{1}, u_{2}\right)$ and $\left(v_{1}, v_{2}\right)$ are adjacent if and only if $u_{1} v_{1} \in$ $E\left(G_{1}\right)$ and $u_{2} v_{2} \in E\left(G_{2}\right)$

Lemma: [R.Balakrishnan 2] If A is a matrix of order r with spectrum $\left\{\lambda_{1}, \lambda_{2} \ldots \ldots \lambda_{r}\right\}$ and B is a matrix of order with spectrum $\left\{\mu_{1}, \mu_{2}, \ldots \ldots \ldots . \mu_{s}\right\}$ then the spectrum $\mathrm{A}\left(G_{1} \otimes G_{2}\right)$ is $\left(\lambda_{i}, \mu_{j}\right)$ where $1 \leq i \leq r$ and $1 \leq j \leq s$

Theorem: [R.Blakrishnan 2] There exists (nonisomorphic) equienergetic graphs that are not cospectral

V. Graph Energy

Let G be a simple graph with n vertices and m edges and let $\mathrm{A}=\left(a_{i j}\right)$ be the adjacency matrix for G. The Eigen values $\lambda_{1}, \lambda_{2}, \ldots \ldots \ldots \lambda_{n}$ of A , assumed that they are in non-increasing order. Since A is symmetric matrix with trace zero, these Eigen values are real, with sum is zero. Thus $\lambda_{1} \geq \lambda_{2}$ \qquad .$\geq \lambda_{n}$
$\lambda_{1}+\lambda_{2}+\cdots \ldots \ldots+\lambda_{n}=0$
Since the energy of a graph is not affected by isolated vertices, we assume, throughout that graphs have no isolated vertices implying that $\mathrm{m} \geq \frac{n}{2}$. If a graph is not connected its energy is the sum of the energies of its connected components. Thus there is no loss in generality for assuming that graphs are connected [Although we don't this blanket assumption]

The concept of graph energy aroses in chemistry where certain numerical quantities such as the heat formation of a hydrocarbon, are related to total π electron energy that can be calculated as the energy of an appropriate molecular graph [see [12] where possible, we cite here this survey paper by Gut man in place of specific references]

VI. Hyper Energetic Graphs

The complete graph k_{n} has eigen values $\mathrm{n}-1$ and -1 at one time it was thought that the complete graph k_{n} had the largest energy among all n vertex graphs G_{1} that is $\mathrm{E}(\mathrm{G}) \leq 2(n-1)$ with equality if and only if $\mathrm{G}=k_{n}$

Godsil in the early 1980's constructed an example of graph on n vertices whose energy exceeds $2(\mathrm{n}$ 1).Now graph G whose energy satisfies $E(G)>$ $2(n-1)$ are called hyper energetic. The simple construction of a family of hyper energetic graphs is due to Walikar Ramane and Hampiholi.

The line graph $\mathrm{L}\left(k_{n}\right)$ of k_{n} is hyper energetic for $\mathrm{n} \geq 5$

Since the line graph of k_{n} has $\frac{n(n-1)}{2}$ vertices it doesn't furnish a hyper energetic graph for all n . Gut man and Zhang constructed hyper energetic graph of all orders $\mathrm{n} \geq 9$ by removing edges forming a star from k_{n}. An example of a hyper energetic graph is also know for $\mathrm{n}=8$.

Using Gaussian sums Shaplinski [4] gave constructions of circulant graphs with high energy.

VII. Spectral moments and Energy of graphs

Let G be a simple graph with n-vertices and m edges. The eigen values of G are denoted by $\lambda_{1}, \lambda_{2}, \ldots \ldots \lambda_{n}$ and are assumed to be labeled in a non-decreasing manner i.e $\lambda_{1} \geq \lambda_{2} \ldots \ldots \ldots \ldots \lambda_{n}$

The basic properties of graph, the Eigen values can be found in the book D.Covetkoviet al[6].

The energy of a graph G is denoted by $\mathrm{E}=\mathrm{e}(\mathrm{G})=$ $\sum_{i=1}^{n}\left|\lambda_{i}\right|$

The graph energy concept has a chemical motivation. Namely for graph which in the huckel molecular orbital theory represent the carbon atom skeleton of some conjugated hydrocarbons E is related to the total π-electron energy. The total π electron energy is a linear function of e .

For a non-negative integer k , the $k^{\text {th }}$ spectral moment of the graph G is defined as
$M_{k}=M_{k}(\mathrm{G})=\sum_{i=1}^{n}\left|\lambda_{i}\right|^{k}$

Note that M_{k} is equal to the number of closed walks of length K in G in [30]

Because both the energy and spectral moments are symmetric functions of graph Eigen values. If there exists relation between them.

Theorem1: [In Pefa et al [7]] Let G be a bipartite graph with at least one edge and let $\mathrm{r}, \mathrm{s}, \mathrm{t}$ even partition integers such that $4 \mathrm{r}=\mathrm{s}+\mathrm{t}+2$. Then $\mathrm{E}(\mathrm{G}) \geq$ $M_{r}(G)^{2}\left[M_{s}(G) \quad M_{t}(G)\right]^{-1 / 2}$

Theorem 1 : [Bo Zhouetal] Let G be graph with at least one edge and let r, s, be non negative real number such that $4 \mathrm{r}=\mathrm{s}+\mathrm{t}+2$ then $\mathrm{E}(\mathrm{G}) \geq M_{r}{ }^{*}(G)^{2}$ $\left[M_{s}{ }^{*}(G) \quad M_{T}{ }^{*}(G)\right]^{-1 / 2}$ where $M_{k}{ }^{*}=\epsilon$

Evidently theorem1 is a special case of theorem1a for G. Being bipartite graph and for s and t being even + ve integers.

Lemma: Let $a_{1}, a_{2}, \ldots \ldots \ldots . a_{n}$ be +ve real numbers $\mathrm{n}>1$ and $\mathrm{r}, \mathrm{s}, \mathrm{t}$ be non negative real numbers such that $4 \mathrm{r}=\mathrm{s}+\mathrm{t}+2$ then $\left[\sum_{i=1}^{n} a_{i}{ }^{r}\right]^{4} \leq\left[\sum_{i=1}^{n} a_{i}\right]^{2}[$ $\sum_{i=1}^{n}\left(a_{i}\right)^{s} \sum_{i=1}^{n}\left(a_{i}\right)^{t}$

If $(\mathrm{s}, \mathrm{t}) \neq(1,1)$ then the above inequality holds if and only if $a_{1}=a_{2}=\ldots \ldots \ldots .=a_{n}$ If $\mathrm{s}=\mathrm{t}=1$ (consequently $\mathrm{r}=1$) then result holds trivially.

On Second Stage Spectrum And Energy of a Graph

Let G be a graph with vertex set $\mathrm{V}(\mathrm{G})=\left\{v_{1}, v_{2}, \ldots \ldots \ldots . v_{n}\right\}$. The distance between the vertices v_{i} and v_{j}, where $v_{i}, v_{j,} \in \mathrm{~V}(\mathrm{G})$ be equal to the length [equal number of edges] of a shortest path starting at v_{i} and ending at v_{j}, (vice versa) [1].

In inorganic chemistry [11] there is a concept called second electron affinity. It is the energy supplied to an $x^{-1}(\mathrm{G})$ ion to form $x^{-2}(\mathrm{G})$ ion i.e., to form a second stage ion form the original ion.

This concept is motivated us to define the second stage matrix $A_{2}(\mathrm{G})$ of a graph G , which is the symmetric ' nx n ' matrix whose entry is unity if the vertices $v_{i} \& v_{j}$, are at a distance two and zero otherwise. As $A_{2}(G)$ is symmetric $(0,1)$ matrix with zero diagonal, it may be viewed as the adjacency matrix of some graph G^{*} that in [1] was named derived graph of G .

Example: Let K_{n}, P_{n}, S_{n} and C_{n} be respectively. The n-vertex complete graph path, star and cycle and $K_{a, b}$ be complete bipartite graph on a+b vertices. Let \bar{G} denotes the complement of the graph G. Then $\quad\left(K_{n}\right)^{+} \equiv \bar{K}_{n} \quad\left(P_{n}\right)^{+}$ $\equiv P_{\frac{n}{2}} \cup P_{\frac{n}{2}}$

$$
\left(S_{n}\right)^{+} \equiv K_{n-1} \cup K_{1}\left(K_{a, b}\right)^{+} \equiv K_{a} \cup K_{b} \text { and }
$$

$$
\left(S_{n}\right)^{+} \equiv\left\{\begin{array}{lr}
\bar{K}_{3} & \text { if } n=3 \\
K_{1} \cup K_{2} & \text { if } n=4 \\
C_{\frac{n}{2}} \cup C_{\frac{n}{2}} & \text { if } n \text { is even \&\& and } n \geq 6 \\
C_{n} & \text { if } n \text { is odd and } n \geq 5
\end{array}\right.
$$

Since $G_{1} \cup G_{2} \equiv\left(G_{1}\right)^{+} \cup\left(G_{2}\right)^{+}$the derived graph of a disconnected graph is necessarily disconnected. However in numerous cases (e.g for all bipartite graphs) the derived graph of a connected graph is also disconnected. In [1] also upper bounds for the largest Eigen values of G^{+} were established.

Lemma 1.1 [P.J.Davis 8]

Let $\mathrm{A}=\left[\begin{array}{cc}A_{0} & A_{1} \\ A_{1} & A_{0}\end{array}\right]$ be a 2 X 2 block symmetric matrix. Then the eigen values of A are those of $A_{0}+A_{1}$ together with those of $A_{0}-A_{1}$

Lemma1.2 [D.Cvetkovial 5] Let $\mathrm{L}(\mathrm{G})$ denote the line graph of the graph G if G is r-regular and connected, $r \geq 3$ with $\operatorname{spec}(G)=\left(r_{1} \lambda_{1}, \lambda_{2}, \ldots \ldots \ldots \lambda_{n}\right)$ then $\quad \operatorname{spec} . L(G) \quad=$ $\left[\begin{array}{cccc}2 r-2 & \lambda_{2}+r-2 \ldots \ldots & \lambda_{n}+r-2 & -2 \\ 1 & 1 & 1 & \frac{n(r-2)}{2}\end{array}\right]$

Lemma1.4: [D.Cvetkovic et al 5] Let G be connected r-reguar graph with spectrum $\left(r_{1} \lambda_{1}, \lambda_{2}, \ldots \ldots \lambda_{n}\right)$ then $\operatorname{spec} .(\bar{G})=\left\{\mathrm{n}-\mathrm{r}-1,-\left(\lambda_{2}+1\right), \ldots \ldots-\left(\lambda_{n}+1\right)\right\}$

Lemma 1.5: [D.Cvetkovic et al 5] For every $\mathrm{p} \geq 3$ there exists a pair of 4-regular non-cospectral graphs on n -vertices.

Graphs of Diameter Two

The diameter of a graph is the maximum distance between its vertices. If the diameter of the graph G is two, then any pair of non-adjacent
vertices is at distance two and is thus connected in G^{+}, consequently $G^{+} \cong \bar{G}$

Theorem1: [S.K Ayyaswamy etal [1]] Let G be an r-regular graph of diameter 2 and let its spectrum be $\left(r_{1} \lambda_{2}, \lambda_{3}, \ldots \ldots \lambda_{n}\right)$. Then $\operatorname{spec}\left(G^{+}\right)$ $=\left\{\mathrm{n}-\mathrm{r}-1,-\left(\lambda_{2}+1\right), \ldots \ldots-\left(\lambda_{n}+1\right)\right\}$

Theorem2: [S.K Ayyaswamy etal [1]] Let G be an r-regular graph of diameter 2 and let its spectrum be $\left(r_{1} \lambda_{2}, \lambda_{3}, \ldots \ldots \ldots \lambda_{n}\right)$. Then $\operatorname{spec}\left\{\left(G X K_{2}\right)^{+}\right\}$
$=$
$\left[\begin{array}{cccc}3 n-2(r+2) & -\left(\lambda_{1}+1\right) & \ldots \ldots \ldots-n & 0 \\ 1 & 1 & 1 & n-1\end{array}\right]$
Where $\mathrm{i}=1,2, \ldots$. . n

Theorem3: [S.K Ayyaswamy etal[1]] Let G be (n,m)- graph of diameter 2, then $\sqrt{2 m^{+}+n(n-1) \Delta^{\frac{2}{n}} \leq E\left(G^{+}\right) \leq \sqrt{2 n m^{+}}}$
$2 \sqrt{m^{+}} \leq E\left(G^{+}\right) \leq 2 m^{+}$
$\mathrm{E}\left(G^{+}\right) \leq \frac{2 m^{+}}{n}+\sqrt{(n-1)\left[2 m^{+}-\left(\frac{2 m^{+}}{n}\right)^{2}\right]}$ where $\Delta=\left\{\operatorname{det} A_{n}(G)\right\}$

Theorem3: [S.K Ayyaswamy etal [1]] For $\mathrm{i}=1,2, \ldots \ldots$. Let G_{i} be an r_{i}-regular graph with n_{i} vertices and spectrum ($r_{i 1} \lambda_{i 2}, \lambda_{i 3}, \ldots \ldots \ldots \lambda_{i n}$). Then $\operatorname{spec}\left(\left(G_{1} \Delta G_{2}\right)^{+}\right)$consists of eigen values $-\lambda_{i, j}-1$ for $\mathrm{i}=1,2$.. and $\mathrm{j}=2,3, \ldots n_{i}$ and two more eigen values $n_{1}-r_{1}-1, n_{2}-r_{2}-1$

References

1. S.K Ayyaswamy, S.Balachandran, K.Kannan, Bounds on the second stage spectral radius of graphs, Int. J. Mash Sci. 1(2009)223-226.
2. R. Balakrishnan, The energy of a graph, Lin .Algebra Appl.387(20040287-295.
3. S.BARNARD, I.M. CHILD, Higher Algebra, The Macmillan and co. 1952.
4. R.B Bapat, S.pati, Energy of graph is never an odd integer, Bull. Kerala Math Assoc. 192004)129-132.
5. D. Cvetkovic' M. Doob, H. Sachs, 1995, spectra of graph theory and Application, Academic press, New York 1980 III edition, barth, Heidelberg.
6. D. Cvetkovic' M. Doob, H. Sachs, Spectra of graphsTheory and Application, academic press. N.Y.1980:2 $2^{\text {nd }}$ revised ed;Barth, Heidelberg 1995.
7. J.A. Delapetha, L. Mandsona, J.Rada Comparing moments and π-electron energy of beizoniod Molecules Disc. Math's 302 (2005)77-84.
8. P.J.Davis, circulant matrices, wiley New York 1979.
9. I Gut man, The energy of graph, Ber. Math. Statist. Sekt Forsch-ungszentram graz. 103(1978)1-22.
10. I Gut man, N. Trianajsti c', Graph theory and Molecular orbital's III, Total π-electron energy of a Hernaut hydrocarbons Chem.Phys. Let. 17(1972)535-538.
11. W. Malik, G.D.Tuli, R.D.Madan, selected topics in inorganic chemistry New3 Delhi 1996.
12. J.Rada and A Tineo polygonal chains with minimal energy Linear algebra Appl. 372(2003) 333-344.
13. H.B. Walikar, I Gut man, P.R. HAM PIHOLI, H.S. Ramane, Non-hyper energetic graphs, Graph theory Notes N.Y 519(2001)14-16
