On general Eulerian integral of certain products of A-functions

F.Y. AY ANT ${ }^{1}$
1 Teacher in High School, France

ABSTRACT
The object of this paper is to establish an general Eulerian integral involving the product of three multivariable A-functions defined by Gautam et al [1] and a generalized hypergeometric function which provide unification and extension of numerous results. We will study the particular case concerning the multivariable H -function.

Keywords: Eulerian integral, multivariable A-function, Lauricella function of several variables, multivariable H-function, generalized hypergeometric function.

2010 Mathematics Subject Classification :33C05, 33C60

1. Introduction

In this paper, we evaluate a new Eulerian integral of most general characters associated with the products of three multivariable A-functions defined by Gautam et al [1] and a generalized hypergeometric function with general arguments. The A-function of several variables is an extension of multivariable H -function defined by Srivastava et al [6].
The serie representation of the multivariable A-function is given by Gautam [1] as
$A\left[u_{1}, \cdots, u_{v}\right]=A_{A, C:\left(M^{\prime}, N^{\prime}\right) ; \cdots ;\left(M^{(v)}, N^{(v)}\right)}^{0, \lambda:\left(\alpha^{\prime}, \beta^{\prime}\right) ; \cdots ;\left(\alpha^{(v)}, \beta^{(v)}\right)}\left(\begin{array}{c|c}\mathrm{u}_{1} \\ \cdot & {\left[\left(\mathrm{~g}_{j}\right) ; \gamma^{\prime}, \cdots, \gamma^{(v)}\right]_{1, A}:} \\ \cdot & \cdots \\ \mathrm{u}_{v} & {\left[\left(\mathrm{f}_{j}\right) ; \xi^{\prime}, \cdots, \xi^{(v)}\right]_{1, C}:}\end{array}\right.$
$\left.\begin{array}{c}\left(\mathrm{q}^{(1)}, \eta^{(1)}\right)_{1, M^{(1)}} ; \cdots ;\left(q^{(v)}, \eta^{(v)}\right)_{1, M^{(v)}} \\ \cdots \\ \cdots \\ \left(\mathrm{p}^{(1)}, \epsilon^{(1)}\right)_{1, N^{(1)}} ; \cdots ;\left(p^{(v)}, \epsilon^{(v)}\right)_{1, N^{(v)}}\end{array}\right)=\sum_{G_{i}=1}^{\alpha^{(i)}} \sum_{g_{i}=1}^{\infty} \phi_{1} \frac{\prod_{i=1}^{v} \phi_{i} u_{i}^{\eta_{G_{i}, g_{i}}}(-)^{\sum_{i=1}^{v} g_{i}}}{\prod_{i=1}^{v} \epsilon_{G_{i}}^{(i)} g_{i}!}$
where

$$
\begin{equation*}
\phi_{1}=\frac{\prod_{j=1}^{\lambda} \Gamma\left(1-g_{j}+\sum_{i=1}^{v} \gamma_{j}^{(i)} \eta_{G_{i}, g_{i}}\right)}{\prod_{j=\lambda^{\prime}+1}^{A} \Gamma\left(g_{j}-\sum_{i=1}^{v} \gamma_{j}^{(i)} U_{i}\right) \prod_{j=1}^{C} \Gamma\left(1-f_{j}+\sum_{i=1}^{v} \xi_{j}^{(i)} \eta_{G_{i}, g_{i}}\right)} \tag{1.2}
\end{equation*}
$$

$\phi_{i}=\frac{\prod_{j=1, j \neq m_{i}}^{\alpha^{(i)}} \Gamma\left(p_{j}^{(i)}-\epsilon_{j}^{(i)} \eta_{G_{i}, g_{i}}\right) \prod_{j=1}^{\beta^{(i)}} \Gamma\left(1-q_{j}^{(i)}+\eta_{j}^{(i)} \eta_{G_{i}, g_{i}}\right)}{\prod_{j=\alpha^{(i)}+1}^{N^{(i)}} \Gamma\left(1-p_{j}^{(i)}+\epsilon_{j}^{(i)} \eta_{G_{i}, g_{i}}\right) \prod_{j=\beta^{(i)}+1}^{M^{(i)}} \Gamma\left(q_{j}^{(i)}-\eta_{j}^{(i)} \eta_{G_{i}, g_{i}}\right)}, i=1, \ldots, v$
and $\eta_{G_{i}, g_{i}}=\frac{p_{G_{i}}^{(i)}+g_{i}}{\epsilon_{G_{i}}^{(i)}}, i=1, \cdots, v$
which is valid under the following conditions : $\epsilon_{m_{i}}^{(i)}\left[p_{j}^{(i)}+p_{i}^{\prime}\right] \neq \epsilon_{j}^{(i)}\left[p_{m_{i}}+g_{i}\right]$
and
$u_{i} \neq 0, \sum_{j=1}^{A} \gamma_{j}^{(i)}-\sum_{j=1}^{C} \xi_{j}^{(i)}+\sum_{j=1}^{M^{(i)}} \eta_{j}^{(i)}-\sum_{j=1}^{N^{(i)}} \epsilon_{j}^{(i)}<0, i=1, \cdots, v$
Here $\lambda, A, C, \alpha_{i}, \beta_{i}, M_{i}, N_{i} \in \mathbb{N}^{*} ; i=1, \cdots, v ; f_{j}, g_{j}, p_{j}^{(i)}, q_{j}^{(i)}, \gamma_{j}^{(i)}, \xi_{j}^{(i)}, \eta_{j}^{(i)}, \epsilon_{j}^{(i)} \in \mathbb{C}$

The A-function is defined and represented in the following manner.
$A\left(z_{1}^{\prime}, \cdots, z_{s}^{\prime}\right)=A_{p^{\prime}, q^{\prime}: p_{1}^{\prime}, q_{1}^{\prime} ; \cdots ; p_{s}^{\prime}, q_{s}^{\prime}}^{m^{\prime}, n_{s}^{\prime}: m_{s}^{\prime}, n_{1}^{\prime} ; \cdots ; m_{s}^{\prime},{ }^{\prime}}\left(\begin{array}{c|c}\mathrm{z}^{\prime}{ }_{1} & \left(\mathrm{a}^{\prime} ; A_{j}^{\prime}(1), \cdots, A_{j}^{\prime(s)}\right)_{1, p^{\prime}}: \\ \cdot & \\ \cdot & \left(\mathrm{b}^{\prime}{ }_{j} ; B_{j}^{\prime(1)}, \cdots, B_{j}^{\prime(s)}\right)_{1, q^{\prime}}:\end{array}\right.$
$\left.\begin{array}{c}\left(\mathrm{c}_{j}^{,(1)}, C_{j}^{\prime(1)}\right)_{1, p_{1}^{\prime}} ; \cdots ;\left(c_{j}^{\prime(s)}, C_{j}^{\prime(s)}\right)_{1, p_{s}^{\prime}} \\ \left(\mathrm{d}_{j}^{(1)}, D_{j}^{\prime(1)}\right)_{1, q_{1}^{\prime}} ; \cdots ;\left(d_{j}^{\prime(s)}, D_{j}^{\prime(s)}\right)_{1, q_{s}^{\prime}}\end{array}\right)$

$$
\begin{equation*}
=\frac{1}{(2 \pi \omega)^{s}} \int_{L_{1}^{\prime}} \cdots \int_{L_{s}^{\prime}} \phi\left(t_{1}, \cdots, t_{s}\right) \prod_{i=1}^{s} \zeta_{i}\left(t_{i}\right) z_{i}^{\prime t_{i}} \mathrm{~d} t_{1} \cdots \mathrm{~d} t_{s} \tag{1.8}
\end{equation*}
$$

where $\phi\left(t_{1}, \cdots, t_{s}\right), \zeta_{i}\left(t_{i}\right), i=1, \cdots, s$ are given by :
$\phi\left(t_{1}, \cdots, t_{s}\right)=\frac{\prod_{j=1}^{m^{\prime}} \Gamma\left(b_{j}^{\prime}-\sum_{i=1}^{s} B_{j}^{\prime(i)} t_{i}\right) \prod_{j=1}^{n^{\prime}} \Gamma\left(1-a_{j}^{\prime}+\sum_{i=1}^{s} A_{j}^{\prime(i)} t_{j}\right)}{\prod_{j=n^{\prime}+1}^{p^{\prime}} \Gamma\left(a_{j}^{\prime}-\sum_{i=1}^{s} A_{j}^{(i)} t_{j}\right) \prod_{j=m^{\prime}+1}^{q^{\prime}} \Gamma\left(1-b_{j}^{\prime}+\sum_{i=1}^{s} B_{j}^{\prime(i)} t_{j}\right)}$
and
$\zeta_{i}\left(t_{i}\right)=\frac{\prod_{j=1}^{n_{i}^{\prime}} \Gamma\left(1-c_{j}^{\prime(i)}+C_{j}^{\prime(i)} t_{i}\right) \prod_{j=1}^{m_{i}^{\prime}} \Gamma\left(d_{j}^{\prime}(i)-D_{j}^{\prime(i)} t_{i}\right)}{\prod_{j=n_{i}^{\prime}+1}^{p_{i}^{\prime}} \Gamma\left(c_{j}^{\prime(i)}-C_{j}^{\prime(i)} t_{i}\right) \prod_{j=m_{i}^{\prime}+1}^{q_{i}^{\prime}} \Gamma\left(1-d_{j}^{\prime(i)}+D_{j}^{\prime}(i) t_{i}\right)}$

Here $m^{\prime}, n^{\prime}, p^{\prime}, m_{i}^{\prime}, n_{i}^{\prime}, p_{i}^{\prime}, c_{i}^{\prime} \in \mathbb{N}^{*} ; i=1, \cdots, s ; a_{j}^{\prime}, b_{j}^{\prime}, c_{j}^{\prime(i)}, d_{j}^{\prime}(i), A_{j}^{\prime(i)}, B_{j}^{\prime(i)}, C_{j}^{\prime(i)}, D_{j}^{\prime(i)} \in \mathbb{C}$
The multiple integral defining the A -function of r variables converges absolutely if :
$\left|\arg \left(\Omega_{i}\right) z_{k}^{\prime}\right|<\frac{1}{2} \eta_{k} \pi, \xi^{*}=0, \eta_{i}>0$
$\Omega_{i}=\prod_{j=1}^{p^{\prime}}\left\{A_{j}^{\prime(i)}\right\}^{A_{j}^{\prime(i)}} \prod_{j=1}^{q^{\prime}}\left\{B_{j}^{\prime(i)}\right\}^{-B_{j}^{\prime(i)}} \prod_{j=1}^{q_{i}^{\prime}}\left\{D_{j}^{\prime(i)}\right\}^{D_{j}^{\prime(i)}} \prod_{j=1}^{p_{i}^{\prime}}\left\{C_{j}^{\prime(i)}\right\}^{-C_{j}^{\prime(i)}} ; i=1, \cdots, s$
$\xi_{i}^{*}=\operatorname{Im}\left(\sum_{j=1}^{p^{\prime}} A_{j}^{\prime(i)}-\sum_{j=1}^{q^{\prime}}{B_{j}^{\prime(i)}}+\sum_{j=1}^{q_{i}^{\prime}} D_{j}^{\prime(i)}-\sum_{j=1}^{p_{i}^{\prime}} C_{j}^{\prime(i)}\right) ; i=1, \cdots, s$

$i=1, \cdots, s$

Consider the second multivariable A-function.

$$
\begin{align*}
& \left(\mathrm{c}_{j}^{\prime(1)}, C_{j}^{\prime \prime(1)}\right)_{1, p_{1}^{\prime \prime}} ; \cdots ;\left(c_{j}^{\prime \prime(u)}, C_{j}^{\prime \prime(u)}\right)_{1, p_{u}^{\prime \prime}} \tag{1.15}\\
& \left(\mathrm{d}_{j}^{\prime(1)}, D_{j}^{\prime \prime(1)}\right)_{1, q_{1}^{\prime \prime}} ; \cdots ;\left(d_{j}^{\prime \prime(u)}, D_{j}^{\prime \prime(u)}\right)_{1, q_{u}^{\prime \prime}} \tag{1.16}\\
& \quad=\frac{1}{(2 \pi \omega)^{u}} \int_{L_{1}^{\prime \prime}} \cdots \int_{L_{u}^{\prime \prime}} \phi^{\prime}\left(x_{1}, \cdots, x_{u}\right) \prod_{i=1}^{u} \theta_{i}^{\prime}\left(x_{i}\right) z_{i}^{\prime \prime x_{i}} \mathrm{~d} x_{1} \cdots \mathrm{~d} x_{r}
\end{align*}
$$

where $\phi^{\prime}\left(x_{1}, \cdots, x_{u}\right), \theta_{i}^{\prime}\left(x_{i}\right), i=1, \cdots, u$ are given by :
$\phi^{\prime}\left(x_{1}, \cdots, x_{u}\right)=\frac{\prod_{j=1}^{m^{\prime \prime}} \Gamma\left(b_{j}^{\prime \prime}-\sum_{i=1}^{u} B_{j}^{\prime \prime(i)} x_{i}\right) \prod_{j=1}^{n^{\prime \prime}} \Gamma\left(1-a_{j}^{\prime \prime}+\sum_{i=1}^{u} A_{j}^{\prime \prime(i)} x_{j}\right)}{\prod_{j=n^{\prime \prime}+1}^{p^{\prime \prime}} \Gamma\left(a_{j}^{\prime \prime}-\sum_{i=1}^{u} A_{j}^{\prime \prime(i)} x_{j}\right) \prod_{j=m^{\prime \prime}+1}^{q^{\prime \prime}} \Gamma\left(1-b_{j}^{\prime \prime}+\sum_{i=1}^{u} B_{j}^{\prime \prime(i)} x_{j}\right)}$
and
$\theta_{i}^{\prime}\left(x_{i}\right)=\frac{\prod_{j=1}^{n_{i}^{\prime \prime}} \Gamma\left(1-c_{j}^{\prime \prime(i)}+C_{j}^{\prime \prime(i)} x_{i}\right) \prod_{j=1}^{m_{i}^{\prime \prime}} \Gamma\left(d_{j}^{\prime \prime(}(i)-D_{j}^{\prime \prime(i)} x_{i}\right)}{\prod_{j=n_{i}^{\prime \prime}+1}^{p_{i}^{\prime \prime}} \Gamma\left(c_{j}^{\prime \prime(i)}-C_{j}^{\prime \prime(i)} x_{i}\right) \prod_{j=m_{i}^{\prime \prime}+1}^{q_{i}^{\prime \prime}} \Gamma\left(1-d_{j}^{\prime \prime(i)}+D_{j}^{\prime \prime(i)} x_{i}\right)}$

Here $m^{\prime \prime}, n^{\prime \prime}, p^{\prime \prime}, m_{i}^{\prime \prime}, n_{i}^{\prime \prime}, p_{i}^{\prime \prime}, c_{i}^{\prime \prime} \in \mathbb{N}^{*} ; i=1, \cdots, u ; a_{j}^{\prime \prime}, b_{j}^{\prime \prime}, c_{j}^{\prime \prime(i)}, d_{j}^{\prime \prime(i)}, A_{j}^{\prime \prime(i)}, B_{j}^{\prime \prime(i)}, C_{j}^{\prime \prime(i)}, D_{j}^{\prime \prime(i)} \in \mathbb{C}$
The multiple integral defining the A-function of r variables converges absolutely if :
$\left|\arg \left(\Omega_{i}^{\prime}\right) z_{k}^{\prime \prime}\right|<\frac{1}{2} \eta_{k}^{\prime} \pi, \xi^{\prime *}=0, \eta_{i}^{\prime}>0$
$\Omega_{i}^{\prime}=\prod_{j=1}^{p^{\prime \prime}}\left\{A_{j}^{\prime \prime(i)}\right\}^{A_{j}^{\prime \prime(i)}} \prod_{j=1}^{q^{\prime \prime}}\left\{B_{j}^{\prime \prime(i)}\right\}^{-B_{j}^{\prime \prime(}(i)} \prod_{j=1}^{q_{i}^{\prime \prime}}\left\{D_{j}^{\prime \prime(i)}\right\}^{\left.D_{j}^{\prime \prime(} i\right)} \prod_{j=1}^{p_{i}^{\prime \prime}}\left\{C_{j}^{\prime \prime(i)}\right\}^{-C_{j}^{\prime \prime(i)}} ; i=1, \cdots, u$
$\xi_{i}^{\prime *}=\operatorname{Im}\left(\sum_{j=1}^{p^{\prime \prime}} A_{j}^{\prime \prime(i)}-\sum_{j=1}^{q^{\prime \prime}} B_{j}^{\prime \prime(i)}+\sum_{j=1}^{q_{i}^{\prime \prime}} D_{j}^{\prime \prime(i)}-\sum_{j=1}^{p_{i}^{\prime \prime}} C_{j}^{\prime \prime(i)}\right) ; i=1, \cdots, u$
$\eta_{i}^{\prime}=\operatorname{Re}\left(\sum_{j=1}^{n^{\prime \prime}} A_{j}^{\prime \prime(i)}-\sum_{j=n^{\prime \prime}+1}^{p^{\prime \prime}} A_{j}^{\prime \prime(i)}+\sum_{j=1}^{m^{\prime \prime}} B_{j}^{\prime \prime(i)}-\sum_{j=m^{\prime \prime}+1}^{q^{\prime \prime}} B_{j}^{\prime \prime(i)}+\sum_{j=1}^{m_{i}^{\prime \prime}} D_{j}^{\prime \prime(i)}-\sum_{j=m_{i}^{\prime \prime}+1}^{q_{i}^{\prime \prime}} D_{j}^{\prime \prime(i)}+\sum_{j=1}^{n_{i}^{\prime \prime}} C_{j}^{\prime \prime(i)}-\sum_{j=n_{i}^{\prime \prime}+1}^{p_{i}^{\prime \prime}} C_{j}^{\prime \prime(i)}\right)$
$i=1, \cdots, u$

2. Integral representation of generalized Lauricella function of several variables

The following generalized hypergeometric function in terms of multiple contour integrals is also required [3 ,page 39 eq .30]
$\frac{\prod_{j=1}^{P} \Gamma\left(A_{j}\right)}{\prod_{j=1}^{Q} \Gamma\left(B_{j}\right)}{ }_{P} F_{Q}\left[\left(A_{P}\right) ;\left(B_{Q}\right) ;-\left(x_{1}+\cdots+x_{r}\right)\right]$
$=\frac{1}{(2 \pi \omega)^{r}} \int_{L_{1}} \cdots \int_{L_{r}} \frac{\prod_{j=1}^{P} \Gamma\left(A_{j}+s_{1}+\cdots+s_{r}\right)}{\prod_{j=1}^{Q} \Gamma\left(B_{j}+s_{1}+\cdots+s_{r}\right)} \Gamma\left(-s_{1}\right) \cdots \Gamma\left(-s_{r}\right) x_{1}^{s_{1}} \cdots x_{r}^{s_{r}} \mathrm{~d} s_{1} \cdots \mathrm{~d} s_{r}$
where the contours are of Barnes type with indentations, if necessary, to ensure that the poles of $\Gamma\left(A_{j}+s_{1}+\cdots+s_{r}\right)$ are separated from those of $\Gamma\left(-s_{j}\right), j=1, \cdots, r$. The above result (1.23) can be easily established by an appeal to the calculus of residues by calculating the residues at the poles of $\Gamma\left(-s_{j}\right), j=1, \cdots, r$

The Lauricella function $F_{D}^{(k)}$ is defined as
$F_{D}^{(k)}\left[a, b_{1}, \cdots, b_{k} ; c ; x_{1}, \cdots, x_{k}\right]=\frac{\Gamma(c)}{\Gamma(a) \prod_{j=1}^{k} \Gamma\left(b_{j}\right)(2 \pi \omega)^{k}} \int_{L_{1}} \cdots \int_{L_{k}} \frac{\Gamma\left(a+\sum_{j=1}^{k} \zeta_{j}\right) \Gamma\left(b_{1}+\zeta_{1}\right), \cdots, \Gamma\left(b_{k}+\zeta_{k}\right)}{\Gamma\left(c+\sum_{j=1}^{k} \zeta_{j}\right)}$
$\prod_{j=1}^{k} \Gamma\left(-\zeta_{j}\right)\left(-x_{j}\right)^{\zeta_{i}} \mathrm{~d} \zeta_{1} \cdots \mathrm{~d} \zeta_{k}$
where $\max \left[\left|\arg \left(-x_{1}\right)\right|, \cdots,\left|\arg \left(-x_{k}\right)\right|\right]<\pi, c \neq 0,-1,-2, \cdots$.
We first establish the formula
$\int_{a}^{b}(t-a)^{\alpha-1}(b-t)^{\beta-1} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{\sigma_{j}} \mathrm{~d} t=(b-a)^{\alpha+\beta-1} B(\alpha, \beta) \prod_{j=1}^{k}\left(a f_{j}+g_{j}\right)^{\sigma_{j}}$
$\times F_{D}^{(k)}\left[\alpha,-\sigma_{1}, \cdots,-\sigma_{k} ; \alpha+\beta ;-\frac{(b-a) f_{1}}{a f_{1}+g_{1}}, \cdots,-\frac{(b-a) f_{k}}{a f_{k}+g_{k}}\right]$
where $a, b \in \mathbb{R}(a<b), \alpha, \beta, f_{i}, g_{i}, \sigma_{i} \in \mathbb{C},(i=1, \cdots, k) ; \min (\operatorname{Re}(\alpha), \operatorname{Re}(\beta))>0$ and
$\max _{1 \leqslant j \leqslant k}\left\{\left|\frac{(b-a) f_{i}}{a f_{i}+g_{i}}\right|\right\}<1$
$F_{D}^{(k)}$ is a Lauricella's function of k-variables, see Srivastava et al ([5], page 60)

The formula (2.2) can be establish by expanding $\prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{\sigma_{j}}$ by means of the formula :
$(1-z)^{-\alpha}=\sum_{r=0}^{\infty} \frac{(\alpha)_{r}}{r!} z^{r}(|z|<1)$
integrating term by term with the help of the integral given by Saigo and Saxena [2, page 93, eq.(3.2)] and applying the definition of the Lauricella function $F_{D}^{(k)}$ [4, page 454].

3. Eulerian integral

Let
$X=m_{1}^{\prime}, n_{1}^{\prime} ; \cdots ; m_{s}^{\prime}, n_{s}^{\prime} ; m_{1}^{\prime \prime}, n_{1}^{\prime \prime} ; \cdots ; m_{u}^{\prime \prime}, n_{u}^{\prime \prime} ; 1,0 ; \cdots ; 1,0 ; 1,0 ; \cdots ; 1,0$
$Y=p_{1}^{\prime}, q_{1}^{\prime} ; \cdots ; p_{s}^{\prime}, q_{s}^{\prime} ; p_{1}^{\prime \prime}, q_{1}^{\prime \prime} ; \cdots ; p_{u}^{\prime \prime}, q_{u}^{\prime \prime} ; 0,1 ; \cdots ; 0,1 ; 0,1 ; \cdots ; 0,1$
$A=\left(a_{j}^{\prime} ; A_{j}^{\prime(1)}, \cdots, A_{j}^{\prime(s)}, 0, \cdots, 0,0, \cdots, 0,0, \cdots, 0\right)_{1, p^{\prime}}$
$B=\left(b_{j}^{\prime} ; B_{j}^{\prime(1)}, \cdots, B_{j}^{\prime(s)}, 0 \cdots, 0,0 \cdots, 0,0, \cdots, 0\right)_{1, q^{\prime}}$
$A^{\prime}=\left(a_{j}^{\prime \prime} ; 0, \cdots, 0, A_{j}^{\prime \prime(1)}, \cdots, A_{j}^{\prime \prime(u)}, 0, \cdots, 0,0, \cdots, 0\right)_{1, p^{\prime \prime}}$
$B^{\prime}=\left(b_{j}^{\prime \prime} ; 0, \cdots, 0, B_{j}^{\prime \prime(1)}, \cdots, B_{j}^{\prime \prime(u)}, 0, \cdots, 0,0, \cdots, 0\right)_{1, q^{\prime \prime}}$
$\mathrm{C}=\left(\mathrm{c}_{j}^{\prime(1)}, C_{j}^{\prime(1)}\right)_{1, p_{1}^{\prime}} ; \cdots ;\left(c_{j}^{\prime(s)}, C_{j}^{\prime(s)}\right)_{1, p_{s}^{\prime}} ;\left(c_{j}^{\prime \prime(1)}, C_{j}^{\prime \prime(1)}\right)_{1, p_{1}^{\prime \prime}} ; \cdots ;\left(c_{j}^{\prime \prime(u)}, C_{j}^{\prime \prime(u)}\right)_{1, p_{u}^{\prime \prime}}$
$(1,0) ; \cdots ;(1,0) ;(1,0) ; \cdots ;(1,0)$
$D=\left(\mathrm{d}_{j}^{\prime(1)}, D_{j}^{\prime(1)}\right)_{1, q_{1}^{\prime}} ; \cdots ;\left(d_{j}^{\prime(s)}, D_{j}^{\prime(s)}\right)_{1, q_{s}^{\prime}} ;\left(\mathrm{d}^{\prime \prime}{ }_{j}^{(1)}, D_{j}^{\prime \prime(1)}\right)_{1, q_{1}^{\prime \prime}} ; \cdots ;\left(d_{j}^{\prime \prime(u)}, D_{j}^{\prime \prime(u)}\right)_{1, q_{u}^{\prime \prime}} ;$
$(0,1) ; \cdots ;(0,1) ;(0,1) ; \cdots ;(0,1)$
$K_{1}=\left(1-\alpha-\sum_{i=1}^{v} \eta_{G_{i}, g_{i}}\left(\mu_{i}+\mu_{i}^{\prime}\right) ; \mu_{1}, \cdots, \mu_{s}, \mu_{1}^{\prime}, \cdots, \mu_{u}^{\prime}, 1, \cdots, 1, v_{1}, \cdots, v_{l}\right)$
$K_{2}=\left(1-\beta-\sum_{i=1}^{v} \eta_{G_{i}, g_{i}}\left(\rho_{i}+\rho_{i}^{\prime}\right) ; \rho_{1}, \cdots, \rho_{s}, \rho_{1}^{\prime}, \cdots, \rho_{u}^{\prime}, 0, \cdots, 0, \tau_{1}, \cdots, \tau_{l}\right)$
$K_{P}=\left[1-A_{j} ; 0, \cdots, 0,0, \cdots, 0,0, \cdots, 0,1, \cdots, 1\right]_{1, P}$
$K_{j}=\left[1+\sigma_{j}-\sum_{i=1}^{v} \eta_{G_{i}, g_{i}}\left(\lambda_{i}^{(j)}+\lambda_{i}^{\prime(j)}\right) ; \lambda_{j}^{(1)}, \cdots, \lambda_{j}^{(s)}, \lambda_{j}^{\prime(1)} \cdots, \lambda_{j}^{\prime(u)}, 0 \cdots, 1, \cdots, 0, \zeta_{j}^{\prime}, \cdots, \zeta_{j}^{(l)}\right]_{1, k(3}$
$L_{1}=\left(1-\alpha-\beta-\sum_{i=1}^{v} \eta_{G_{i}, g_{i}}\left(\mu_{i}+\mu_{i}^{\prime}+\rho_{i}+\rho_{i}^{\prime}\right) ; \mu_{1}+\rho_{1}, \cdots, \mu_{s}+\rho_{s}, \mu_{1}^{\prime}+\rho_{1}^{\prime}, \cdots, \mu_{u}^{\prime}+\rho_{u}^{\prime}\right.$,
$\left.1, \cdots, 1, v_{1}+\tau_{1}, \cdots, v_{l}+\tau_{l}\right)$
$L_{Q}=\left[1-B_{j} ; 0, \cdots, 0,0, \cdots, 0,0, \cdots, 0,1 \cdots, 1\right]_{1, Q}$
$L_{j}=\left[1+\sigma_{j}-\sum_{i=1}^{v} \eta_{G_{i}, g_{i}}\left(\lambda_{i}^{(j)}+\lambda_{i}^{\prime(j)}\right) ; \lambda_{j}^{(1)}, \cdots, \lambda_{j}^{(s)}, \lambda_{j}^{\prime(1)} \cdots, \lambda_{j}^{\prime(u)}, 0 \cdots, 0, \zeta_{j}^{\prime}, \cdots, \zeta_{j}^{(l)}\right]_{1, k}$
$A_{1}=A, A^{\prime} ; B_{1}=B, B^{\prime}$

We have the following result
$\int_{a}^{b}(t-a)^{\alpha-1}(b-t)^{\beta-1} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{\sigma_{j}} A\left(\begin{array}{c}\mathrm{z} "{ }_{1}(t-a)^{\mu_{1}+\mu_{1}^{\prime}}(b-t)^{\rho_{1}+\rho_{1}^{\prime}} \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{z}^{\prime \prime}{ }_{v=1}\left({ }_{v}(t-a)^{\mu_{v}+\mu_{v}^{\prime}}(b-t)^{\rho_{v}+\rho_{v}^{\prime}}{ }^{-\lambda_{j}^{(1)}-\lambda_{j}^{\prime(1)}}\right. \\ \\ \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{(v)}-\lambda_{j}^{\prime(v)}}\end{array}\right)$
$A\left(\begin{array}{c}\mathrm{z}_{1}(t-a)^{\mu_{1}}(b-t)^{\rho_{1}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{(1)}} \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{z}_{s}(t-a)^{\mu_{s}}(b-t)^{\rho_{s}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{(s)}}\end{array}\right)$
$A\left(\begin{array}{c}\mathrm{z}^{\prime}{ }_{1}(t-a)^{\mu_{1}^{\prime}}(b-t)^{\rho_{1}^{\prime}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime(1)}} \\ \cdot \\ \cdot \\ \mathrm{z}^{\prime}{ }_{u}(t-a)^{\mu_{u}^{\prime}}(b-t)^{\rho_{u}^{\prime}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime(u)}}\end{array}\right)$
${ }_{P} F_{Q}\left[\left(A_{P}\right) ;\left(B_{Q}\right) ;-\sum_{i=1}^{l} z_{i}^{\prime \prime}(t-a)^{v_{i}}(b-t)^{\tau_{i}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\zeta_{j}^{(i)}}\right] \mathrm{d} t=(b-a)^{\alpha+\beta-1}$
$=P_{1} \frac{\prod_{j=1}^{Q} \Gamma\left(B_{j}\right)}{\prod_{j=1}^{P} \Gamma\left(A_{j}\right)} \sum_{g_{1}, \cdots, g_{v}=0}^{\infty} \sum_{M_{1}=0}^{\alpha^{(1)}} \cdots \sum_{M_{v}=0}^{\alpha^{(v)}} \sum_{R_{1}, \cdots, R_{u}=0}^{h_{1} R_{1}+\cdots h_{u} R_{u} \leqslant L} \prod_{i=1}^{v} z_{i}^{\prime \prime \prime \prime} \eta_{h_{i}, k_{i}} \prod_{k=1}^{u} z^{\prime \prime R_{k}} B_{u} B_{u, v}$

$A_{p^{\prime}+p^{\prime \prime}+l+k+2, q^{\prime}+q^{\prime \prime}+l+k+1 ;}^{m^{\prime}+n^{\prime \prime}}$	$\left(\begin{array}{c} \frac{z_{1}(b-a)^{\mu_{1}+\rho_{1}}}{\prod_{j=1}^{k}\left(a f_{j}+g_{j}\right)^{\lambda_{j}^{(1)}}} \tag{3.17}\\ \cdot \cdot \\ \cdot \cdot \\ \frac{z_{s}(b-a)^{\mu_{s}+\rho_{s}}}{\prod_{j=1}^{k}\left(a f_{j}+g_{j}\right)^{\lambda_{j}^{(s)}}} \\ \frac{z_{1}^{\prime}(b-a)^{\mu_{1}^{\prime}+\rho_{1}^{\prime}}}{\prod_{j=1}^{k}\left(a f_{j}+g_{j}\right)^{\lambda_{j}^{\prime(1)}}} \\ \cdot \cdot \cdot \\ \cdot \cdot \\ \frac{z_{u}^{\prime}(b-a)^{\mu_{u}^{\prime}+\rho_{u}^{\prime}}}{\prod_{j=1}^{k}\left(a f_{j}+g_{j}\right)^{\lambda_{j}^{\prime(u)}}} \\ \frac{(b-a) f_{1}}{a f_{1}+g_{1}} \\ \cdot \cdot \cdot \\ \cdot \cdot \cdot \\ \frac{(b-a) f_{k}}{a f_{k}+g_{k}} \\ \frac{z_{1}^{\prime \prime}(b-a)^{\tau}+v_{1}}{\prod_{j=1}^{k}\left(a f_{j}+g_{j}\right)^{\zeta_{j}^{(1)}}} \\ \cdot \cdot \cdot \\ \cdot \cdot \cdot \\ \prod_{j=1}^{k}\left(a f_{j}+g_{j}\right)^{\zeta_{j}^{(l)}} \end{array}\right.$	$\begin{aligned} & \mathrm{A}_{1}, K_{1}, K_{2}, K_{P}, K_{j}: C \\ & \cdot \cdot \\ & \mathrm{~B}_{1}, L_{1}, L_{j}, L_{Q},: D \end{aligned}$

We obtain the A -function of $s+u+k+l$ variables.
Where $\quad P_{1}=(b-a)^{\alpha+\beta-1}\left\{\prod_{j=1}^{h}\left(a f_{j}+g_{j}\right)^{\sigma_{j}}\right\}$
$B_{u, v}=(b-a)^{\sum_{i=1}^{v}\left(\mu_{i}+\mu_{i}^{\prime}+\rho_{i}+\rho_{i}^{\prime}\right) \eta_{G_{i}, g_{i}}}\left\{\prod_{j=1}^{h}\left(a f_{j}+g_{j}\right)^{-\sum_{i=1}^{v}\left(\lambda_{i}+\lambda_{i}^{\prime}\right) \eta_{g_{i}, h_{i}}}\right\} G_{v}$
where $G_{v}=\phi_{1} \frac{\prod_{i=1}^{v} \phi_{i} u_{i}^{\eta_{G_{i}}, g_{i}}(-)^{\sum_{i=1}^{v} g_{i}}}{\prod_{i=1}^{v} \epsilon_{G_{i}}^{(i)} g_{i}!}$
ϕ_{1}, ϕ_{i} for $i=1, \cdots, v$ are defined respectively by (1.2) and (1.3)
$B_{u}=\frac{(-L)_{h_{1} R_{1}+\cdots+h_{u} R_{u}} B\left(E ; R_{1}, \cdots, R_{u}\right)}{R_{1}!\cdots R_{u}!}$

Provided that

(A) $m^{\prime}, n^{\prime}, p^{\prime}, m_{i}^{\prime}, n_{i}^{\prime}, p_{i}^{\prime}, c_{i}^{\prime} \in \mathbb{N}^{*} ; i=1, \cdots, s ; a_{j}^{\prime}, b_{j}^{\prime},,_{j}^{\prime(i)}, d_{j}^{\prime(i)}, A_{j}^{\prime(i)}, B_{j}^{\prime(i)}, C_{j}^{\prime(i)}, D_{j}^{\prime(i)} \in \mathbb{C}$ $m^{\prime \prime}, n^{\prime \prime}, p^{\prime \prime}, m_{i}^{\prime \prime}, n_{i}^{\prime \prime}, p_{i}^{\prime \prime}, c_{i}^{\prime \prime} \in \mathbb{N}^{*} ; i=1, \cdots, u ; a_{j}^{\prime \prime}, b_{j}^{\prime \prime}, c_{j}^{\prime \prime(i)}, d_{j}^{\prime \prime(i)}, A_{j}^{\prime \prime(i)}, B_{j}^{\prime \prime(i)}, C_{j}^{\prime \prime(i)}, D_{j}^{\prime \prime(i)} \in \mathbb{C}$
(B) $a, b \in \mathbb{R}(a<b) ; \mu_{i}, \rho_{i}, \mu_{j}^{\prime}, \rho_{j}^{\prime} \lambda_{v}^{(i)} ; \lambda_{v}^{\prime(j)} \in \mathbb{R}^{+}, f_{i}, g_{j}, \tau_{v}, \sigma_{j} \in \mathbb{C}(i=1, \cdots, r ; j=1, \cdots ; s ; v=1, \cdots, k)$
(C) $\max _{1 \leqslant j \leqslant k}\left\{\left|\frac{(b-a) f_{i}}{a f_{i}+g_{i}}\right|\right\}<1$
(D) $\quad R e\left[\alpha+\sum_{i=1}^{s} \mu_{i} \min _{1 \leqslant j \leqslant m_{i}^{\prime}} \frac{d_{j}^{\prime(i)}}{D_{j}^{\prime(i)}}+\sum_{i=1}^{u} \mu_{i}^{\prime} \min _{1 \leqslant j \leqslant m_{i}^{\prime \prime}} \frac{d_{j}^{\prime \prime(i)}}{D_{j}^{\prime \prime(i)}}\right]>0$
$\operatorname{Re}\left[\beta+\sum_{i=1}^{s} \rho_{i} \min _{1 \leqslant j \leqslant m_{i}^{\prime}} \frac{d_{j}^{\prime(i)}}{D_{j}^{\prime(i)}}+\sum_{i=1}^{u} \rho_{i}^{\prime} \min _{1 \leqslant j \leqslant m_{i}^{\prime \prime}} \frac{d_{j}^{\prime \prime(i)}}{D_{j}^{\prime \prime(i)}}\right]>0$

$\xi_{i}^{\prime *}=\operatorname{Im}\left(\sum_{j=1}^{p^{\prime \prime}} A_{j}^{\prime \prime(i)}-\sum_{j=1}^{q^{\prime \prime}} B_{j}^{\prime \prime(i)}+\sum_{j=1}^{q_{i}^{\prime \prime}} D_{j}^{\prime \prime(i)}-\sum_{j=1}^{p_{i}^{\prime \prime}} C_{j}^{\prime \prime(i)}\right)=0 ; i=1, \cdots, u$
(F) $\left|\arg \left(\Omega_{i}\right) z_{k}\right|<\frac{1}{2} \eta_{k} \pi, \xi^{*}=0, \eta_{i}>0$

$-\mu_{i}^{\prime}-\rho_{i}^{\prime}-\sum_{l=1}^{k} \lambda_{j}^{\prime(i)}>0 ; i=1, \cdots, s$
$\left|\arg \left(\Omega_{i}^{\prime}\right) z_{k}^{\prime}\right|<\frac{1}{2} \eta_{k}^{\prime} \pi, \xi^{\prime *}=0, \eta_{i}^{\prime}>0$
$\operatorname{Re}\left(\sum_{j=1}^{n^{\prime \prime}} A_{j}^{\prime \prime(i)}-\sum_{j=n^{\prime \prime}+1}^{p^{\prime \prime}} A_{j}^{\prime \prime(i)}+\sum_{j=1}^{m^{\prime \prime}} B_{j}^{\prime \prime(i)}-\sum_{j=m^{\prime \prime}+1}^{q^{\prime \prime}} B_{j}^{\prime \prime(i)}+\sum_{j=1}^{m_{i}^{\prime \prime}} D_{j}^{\prime \prime(i)}-\sum_{j=m_{i}^{\prime \prime}+1}^{q_{i}^{\prime \prime}} D_{j}^{\prime \prime(i)}+\sum_{j=1}^{n_{i}^{\prime \prime}} C_{j}^{\prime \prime(i)}-\sum_{j=n_{i}^{\prime \prime}+1}^{p_{i}^{\prime \prime}} C_{j}^{\prime \prime(i)}\right)$
$-\mu_{i}^{\prime}-\rho_{i}^{\prime}-\sum_{l=1}^{k} \lambda_{j}^{\prime(i)}>0 ; i=1, \cdots, u$
(G) $\left|\arg \left(z_{i} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{(i)}}\right)\right|<\frac{1}{2} \eta_{i} \pi \quad(a \leqslant t \leqslant b ; i=1, \cdots, s)$
$\left|\arg \left(z_{i}^{\prime} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime(i)}}\right)\right|<\frac{1}{2} \eta_{i}^{\prime} \pi \quad(a \leqslant t \leqslant b ; i=1, \cdots, u)$
(H) $P \leqslant Q+1$. The equality holds, when, in addition,
either $P>Q$ and $\left|z_{i}^{\prime \prime}\left(\prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\zeta_{j}^{(i)}}\right)\right|^{\frac{1}{Q-P}}<1 \quad(a \leqslant t \leqslant b)$
or $P \leqslant Q$ and $\max _{1 \leqslant i \leqslant k}\left[\left|\left(z_{i}^{\prime \prime} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\zeta_{j}^{(i)}}\right)\right|\right]<1 \quad(a \leqslant t \leqslant b)$
(I) The multiple series occuring on the right-hand side of (3.17) is absolutely and uniformly convergent.

Proof

First expressing the multivariable A-function in serie with the help of (1.6) and we interchange the order of summations and t-integral (which is permissible under the conditions stated). Expressing the A-function of s-variables and uvariables defined by Gautam et al [1] by the Mellin-Barnes contour integral with the help of the equation (1.8) and (1.16) respectively, the generalized hypergeometric function ${ }_{P} F_{Q}($.$) in Mellin-Barnes contour integral with the help of$ (2.1). Now collect the power of $\left(f_{j} t+g_{j}\right)$ with $j=1, \cdots, k$ and use the equations (2.1) and (2.2) and we obtain $k-$ Mellin-Barnes contour integral and interchange the order of integrations which is justifiable due to absolute convergence of the integral involved in the process. Interpreting $(r+s+k+l)$-Mellin-barnes contour integral in multivariable A-function defined by Gautam et al [1], we obtain the desired result.

4. Multivariable H -function

If $A_{j}^{\prime(i)}, B_{j}^{\prime(i)}, C_{j}^{\prime(i)}, D_{j}^{\prime(i)} \in \mathbb{R}, m^{\prime}=0$ and $A_{j}^{\prime \prime(i)}, B_{j}^{\prime \prime(i)}, C_{j}^{\prime \prime(i)}, D_{j}^{\prime \prime(i)} \in \mathbb{R}$ and $m^{\prime \prime}=0$, the multivariable A-functions reduces to multivariable H -functions defined by Srivastava et al [6]. We obtain the following formula.
$\int_{a}^{b}(t-a)^{\alpha-1}(b-t)^{\beta-1} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{\sigma_{j}} A\left(\begin{array}{c}\mathrm{z}^{\prime \prime}{ }_{1}(t-a)^{\mu_{1}+\mu_{1}^{\prime}}(b-t)^{\rho_{1}+\rho_{1}^{\prime}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{(1)}-\lambda_{j}^{\prime(1)}} \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{z}^{\prime \prime}{ }_{v}(t-a)^{\mu_{v}+\mu_{v}^{\prime}}(b-t)^{\rho_{v}+\rho_{v}^{\prime}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{(v)}-\lambda_{j}^{\prime(v)}}\end{array}\right)$
$H\left(\begin{array}{c}\mathrm{z}_{1}(t-a)^{\mu_{1}}(b-t)^{\rho_{1}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{(1)}} \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{z}_{s}(t-a)^{\mu_{s}}(b-t)^{\rho_{s}} \\ \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{(s)}}\end{array}\right)$
$H\left(\begin{array}{c}\mathrm{z}^{\prime}{ }_{1}(t-a)^{\mu_{1}^{\prime}}(b-t)^{\rho_{1}^{\prime}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime(1)}} \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{z}^{\prime}{ }_{u}(t-a)^{\mu_{u}^{\prime}}(b-t)^{\rho_{u}^{\prime}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime(u)}}\end{array}\right)$
${ }_{P} F_{Q}\left[\left(A_{P}\right) ;\left(B_{Q}\right) ;-\sum_{i=1}^{l} z_{i}^{\prime \prime}(t-a)^{v_{i}}(b-t)^{\tau_{i}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\zeta_{j}^{(i)}}\right] \mathrm{d} t=(b-a)^{\alpha+\beta-1}$
$=P_{1} \frac{\prod_{j=1}^{Q} \Gamma\left(B_{j}\right)}{\prod_{j=1}^{P} \Gamma\left(A_{j}\right)} \sum_{g_{1}, \cdots, g_{v}=0}^{\infty} \sum_{M_{1}=0}^{\alpha^{(1)}} \cdots \sum_{M_{v}=0}^{\alpha^{(v)}} \sum_{R_{1}, \cdots, R_{u}=0}^{h_{1} R_{1}+\cdots h_{u} R_{u} \leqslant L} \prod_{i=1}^{v} z_{i}^{\prime \prime \prime \prime} \eta_{h_{i}, k_{i}} \prod_{k=1}^{u} z^{\prime \prime R_{k}} B_{u} B_{u, v}$

under the same conditions and notations that (3.17) with $A_{j}^{\prime(i)}, B_{j}^{\prime(i)}, C_{j}^{\prime(i)}, D_{j}^{\prime(i)} \in \mathbb{R} \quad, m^{\prime}=0$ and $A_{j}^{\prime \prime(i)}, B_{j}^{\prime \prime(i)}, C_{j}^{\prime \prime(i)}, D_{j}^{\prime \prime(i)} \in \mathbb{R}$ and $m^{\prime \prime}=0$

Remark

By the following similar procedure, the results of this document can be extented to product of any finite number of multivariable A-functions defined by Gautam et al [1].

5. Conclusion

In this paper we have evaluated a generalized Eulerian integral involving the product of two multivariable A-functions, defined by Gautam et al [1], a expansion of multivariable A-function and a generalized hypergeometric function with general arguments. The formula established in this paper is very general nature. Thus, the results established in this research work would serve as a key formula from which, upon specializing the parameters, as many as desired results involving the special functions of one and several variables can be obtained.

REFERENCES

[1] Gautam B.P., Asgar A.S. and Goyal A.N. On the multivariable A-function. Vijnana Parishas Anusandhan Patrika Vol 29(4) 1986, page 67-81.
[2] Saigo M. and Saxena R.K. Unified fractional integral formulas for the multivariable H-function I. J.Fractional Calculus 15 (1999), page 91-107.
[3] Sharma C.K.and Ahmad S.S.: On the multivariable I-function. Acta ciencia Indica Math , 1994 vol 20,no2, p 113116.
[4] Srivastava H.M. and Karlsson P.W. Multiple Gaussian Hypergeometric series. Ellis.Horwood. Limited. New-York, Chichester. Brisbane. Toronto , 1985.
[5] Srivastava H.M. and Manocha H.L : A treatise of generating functions. Ellis. Horwood.Series. Mathematics and Applications 1984, page 60
[6] H.M. Srivastava And R.Panda. Some expansion theorems and generating relations for the H-function of several complex variables. Comment. Math. Univ. St. Paul. 24(1975), p.119-137.

Personal adress : 411 Avenue Joseph Raynaud Le parc Fleuri , Bat B
83140 , Six-Fours les plages
Tel : 06-83-12-49-68
Department : VAR
Country : FRANCE

