Fractional integral formulae involving the Srivastava-Daoust functions

 and the multivariable Aleph-function$$
\text { F.A. } A Y A N T^{1}
$$

1 Teacher in High School, France

ABSTRACT

In this paper, we shall establish two fractional integral formulae involving the product of the Srivastava-Daoust functions and the multivariable Alephfunction. Since these functions includes a large number of special functions as its particular cases, therefore, the result establish here will be serve as key formulae. We shall given the particular cases concerning the multivariable H -function and the Aleph-function of two variables.

Keywords :multivariable Aleph-function, Aleph-function of two variables, multivariable H-function, Riemann-Liouville operator, Erdelyi-Kober operator,Srivastava-Daoust function.

2010 Mathematics Subject Classification. 33C99, 33C60, 44A20

1.Introduction and preliminaries.

The multivariable Aleph-function which was introduced by Ayant [1] is an extension of the multivariable I-function recently defined by C.K. Sharma and Ahmad [4], itself is a generalization of the multivariable H -function defined by Srivastava et al [7]. The multivariable Aleph-function is defined by means of the multiple contour integral :

We have $: \aleph\left(z_{1}, \cdots, z_{r}\right)=\aleph_{p_{i}, q_{i}, \tau_{i} ; R: p_{i}(1), q_{i}(1), \tau_{i}(1) ; R^{(1)} ; \cdots ; p_{i(r)}, q_{i}(r) ; \tau_{i}(r) ; R^{(r)}}^{\mathrm{n}^{(r)} m_{1}, n_{1}, \cdots, m_{r}, n_{r}}\left(\left.\begin{array}{c}\mathrm{z}_{1} \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{z}_{r}\end{array} \right\rvert\,\right.$

$$
\begin{array}{cl}
{\left[\left(\mathrm{a}_{j} ; \alpha_{j}^{(1)}, \cdots, \alpha_{j}^{(r)}\right)_{1, \mathfrak{n}}\right]} & ,\left[\tau_{i}\left(a_{j i} ; \alpha_{j i}^{(1)}, \cdots, \alpha_{j i}^{(r)}\right)_{\mathfrak{n}+1, p_{i}}\right]: \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots & ,\left[\tau_{i}\left(b_{j i} ; \beta_{j i}^{(1)}, \cdots, \beta_{j i}^{(r)}\right)_{m+1, q_{i}}\right]:
\end{array}
$$

$$
\left.\left.\left[\left(\mathrm{c}_{j}^{(1)}\right), \gamma_{j}^{(1)}\right)_{1, n_{1}}\right],\left[\tau_{i(1)}\left(c_{j i(1)}^{(1)}, \gamma_{j i(1)}^{(1)}\right)_{n_{1}+1, p_{i}^{(1)}}\right] ; \cdots ;\left[\left(\mathrm{c}_{j}^{(r)}\right), \gamma_{j}^{(r)}\right)_{1, n_{r}}\right],\left[\tau_{i(r)}\left(c_{j i(r)}^{(r)}, \gamma_{j i}^{(r)}(r)\right)_{n_{r}+1, p_{i}^{(r)}}\right]
$$

$$
\left.\left.\left[\left(\mathrm{d}_{j}^{(1)}\right), \delta_{j}^{(1)}\right)_{1, m_{1}}\right],\left[\tau_{i(1)}\left(d_{j i(1)}^{(1)}, \delta_{j i^{(1)}}^{(1)}\right)_{m_{1}+1, q_{i}^{(1)}}\right] ; \cdots ;\left[\left(\mathrm{d}_{j}^{(r)}\right), \delta_{j}^{(r)}\right)_{1, m_{r}}\right],\left[\tau_{i^{(r)}}\left(d_{j i^{(r)}}^{(r)}, \delta_{j i^{(r)}}^{(r)}\right)_{m_{r}+1, q_{i}^{(r)}}\right]
$$

$$
\begin{equation*}
=\frac{1}{(2 \pi \omega)^{r}} \int_{L_{1}} \cdots \int_{L_{r}} \psi\left(s_{1}, \cdots, s_{r}\right) \prod_{k=1}^{r} \theta_{k}\left(s_{k}\right) z_{k}^{s_{k}} \mathrm{~d} s_{1} \cdots \mathrm{~d} s_{r} \tag{1.1}
\end{equation*}
$$

with $\omega=\sqrt{-1}$
$\psi\left(s_{1}, \cdots, s_{r}\right)=\frac{\prod_{j=1}^{\mathfrak{n}} \Gamma\left(1-a_{j}+\sum_{k=1}^{r} \alpha_{j}^{(k)} s_{k}\right)}{\sum_{i=1}^{R}\left[\tau_{i} \prod_{j=\mathfrak{n}+1}^{p_{i}} \Gamma\left(a_{j i}-\sum_{k=1}^{r} \alpha_{j i}^{(k)} s_{k}\right) \prod_{j=1}^{q_{i}} \Gamma\left(1-b_{j i}+\sum_{k=1}^{r} \beta_{j i}^{(k)} s_{k}\right)\right]}$
and $\theta_{k}\left(s_{k}\right)=\frac{\prod_{j=1}^{m_{k}} \Gamma\left(d_{j}^{(k)}-\delta_{j}^{(k)} s_{k}\right) \prod_{j=1}^{n_{k}} \Gamma\left(1-c_{j}^{(k)}+\gamma_{j}^{(k)} s_{k}\right)}{\sum_{i^{(k)}=1}^{R^{(k)}}\left[\tau_{i^{(k)}} \prod_{j=m_{k}+1}^{q_{i}(k)} \Gamma\left(1-d_{j i^{(k)}}^{(k)}+\delta_{j i(k)}^{(k)} s_{k}\right) \prod_{j=n_{k}+1}^{p_{i(k)}} \Gamma\left(c_{j i(k)}^{(k)}-\gamma_{j i^{(k)}}^{(k)} s_{k}\right)\right]}$

For more details, see Ayant [1]. The condition for absolute convergence of multiple Mellin-Barnes type contour can be obtained by extension of the corresponding conditions for multivariable H -function given by as :
$\left|\arg z_{k}\right|<\frac{1}{2} A_{i}^{(k)} \pi, \quad$ where

$$
\begin{align*}
& A_{i}^{(k)}=\sum_{j=1}^{\mathfrak{n}} \alpha_{j}^{(k)}-\tau_{i} \sum_{j=\mathfrak{n}+1}^{p_{i}} \alpha_{j i}^{(k)}-\tau_{i} \sum_{j=1}^{q_{i}} \beta_{j i}^{(k)}+\sum_{j=1}^{n_{k}} \gamma_{j}^{(k)}-\tau_{i(k)} \sum_{j=n_{k}+1}^{p_{i}(k)} \gamma_{j i(k)}^{(k)} \\
& +\sum_{j=1}^{m_{k}} \delta_{j}^{(k)}-\tau_{i(k)} \sum_{j=m_{k}+1}^{q_{i}(k)} \delta_{j i(k)}^{(k)}>0, \text { with } k=1, \cdots, r, i=1, \cdots, R, i^{(k)}=1, \cdots, R^{(k)} \tag{1.4}
\end{align*}
$$

The complex numbers z_{i} are not zero. Throughout this document, we assume the existence and absolute convergence conditions of the multivariable Aleph-function.

We may establish the the asymptotic expansion in the following convenient form :
$\aleph\left(z_{1}, \cdots, z_{r}\right)=0\left(\left|z_{1}\right|^{\alpha_{1}}, \cdots,\left|z_{r}\right|^{\alpha_{r}}\right), \max \left(\left|z_{1}\right|, \cdots,\left|z_{r}\right|\right) \rightarrow 0$
$\aleph\left(z_{1}, \cdots, z_{r}\right)=0\left(\left|z_{1}\right|^{\beta_{1}}, \cdots,\left|z_{r}\right|^{\beta_{r}}\right), \min \left(\left|z_{1}\right|, \cdots,\left|z_{r}\right|\right) \rightarrow \infty$
where $k=1, \cdots, r: \alpha_{k}=\min \left[\operatorname{Re}\left(d_{j}^{(k)} / \delta_{j}^{(k)}\right)\right], j=1, \cdots, m_{k}$ and

$$
\beta_{k}=\max \left[\operatorname{Re}\left(\left(c_{j}^{(k)}-1\right) / \gamma_{j}^{(k)}\right)\right], j=1, \cdots, n_{k}
$$

For convenience, we will use the following notations in this paper.
$V=m_{1}, n_{1} ; \cdots ; m_{r}, n_{r}$
$\mathrm{W}=p_{i^{(1)}}, q_{i^{(1)}}, \tau_{i^{(1)}} ; R^{(1)}, \cdots, p_{i^{(r)}}, q_{i^{(r)}}, \tau_{i(r)} ; R^{(r)}$
$A=\left\{\left(a_{j} ; \alpha_{j}^{(1)}, \cdots, \alpha_{j}^{(r)}\right)_{1, n}\right\},\left\{\tau_{i}\left(a_{j i} ; \alpha_{j i}^{(1)}, \cdots, \alpha_{j i}^{(r)}\right)_{n+1, p_{i}}\right\},\left\{\left(c_{j}^{(1)} ; \gamma_{j}^{(1)}\right)_{1, n_{1}}\right\}$
$\tau_{i^{(1)}}\left(c_{j i^{(1)}}^{(1)} ; \gamma_{j i^{(1)}}^{(1)}\right)_{n_{1}+1, p_{i(1)}}, \cdots,\left\{\left(c_{j}^{(r)} ; \gamma_{j}^{(r)}\right)_{1, n_{r}}\right\}, \tau_{i(r)}\left(c_{j i^{(r)}}^{(r)} ; \gamma_{j i(r)}^{(r)}\right)_{n_{r}+1, p_{i(r)}}$
$B=\left\{\tau_{i}\left(b_{j i} ; \beta_{j i}^{(1)}, \cdots, \beta_{j i}^{(r)}\right)_{m+1, q_{i}}\right\},\left\{\left(d_{j}^{(1)} ; \delta_{j}^{(1)}\right)_{1, m_{1}}\right\}, \tau_{i^{(1)}}\left(d_{j i^{(1)}}^{(1)} ; \delta_{j i(1)}^{(1)}\right)_{m_{1}+1, q_{i}(1)}, \cdots$,
$\left\{\left(d_{j}^{(r)} ; \delta_{j}^{(r)}\right)_{1, m_{r}}\right\}, \tau_{i(r)}\left(d_{j i(r)}^{(r)} ; \delta_{j i^{(r)}}^{(r)}\right)_{m_{r}+1, q_{i(r)}}$
The contracted form concerning the multivariable Aleph-function writes :
$\aleph\left(z_{1}, \cdots, z_{r}\right)=\aleph_{p_{i}, q_{i}, \tau_{i} ; R: W}^{0, n}\left(\begin{array}{c|c}\mathrm{z}_{1} & \mathrm{~A} \\ \cdot & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \\ \mathrm{z}_{r} & \mathrm{~B}\end{array}\right)$

The familiar fractional integral operator is defined and represented in the present paper as :
${ }_{c} I_{x}^{\mu}\{f(t)\}=\frac{1}{\Gamma(\mu)} \int_{c}^{x}(x-t)^{\mu-1} f(t) \mathrm{d} t, \operatorname{Re}(\mu)>0$
the special case of the above operator (when $c=0$) is well known in the literature as Riemann-Liouville fractional integral operator and is written as $I_{x}^{\mu}\{f(t)\}$.

Also the fractional integral operator investigated by Erdelyi-Kober is defined and represented as Ross ([2],1975).

$$
\begin{equation*}
I_{x}^{\eta, \mu}\{f(t)\}=\frac{x^{-\eta-\mu+1}}{\Gamma(\mu)} \int_{0}^{x}(x-t)^{\mu-1} t^{\eta-1} f(t) \mathrm{d} t, R e(\mu)>0, \eta>0 \tag{1.11}
\end{equation*}
$$

which is obviously a generalization of the Riemann-Liouville fractional integral operator.
The Srivastava-Daoust function is defined by (see [6]):
$F_{\bar{C}: D^{\prime} ; \cdots ; D^{(r)}}^{\bar{A}: B^{\prime} ; \cdots ; B^{(r)}}\left(\begin{array}{c|c}\mathrm{z}_{1} & {\left[(\mathrm{a}) ; \theta^{\prime}, \cdots, \theta^{(r)}\right]:\left[\left(b^{\prime}\right) ; \phi^{\prime}\right] ; \cdots ;\left[\left(b^{(r)}\right) ; \phi^{(r)}\right]} \\ \cdot & {\left[(\mathrm{c}) ; \psi^{\prime}, \cdots, \psi^{(r)}\right]:\left[\left(d^{\prime}\right) ; \delta^{\prime}\right] ; \cdots ;\left[\left(d^{(r)}\right) ; \delta^{(r)}\right]} \\ \cdot \\ \mathrm{z}_{r} & {[\mathrm{c}, \cdots}\end{array}\right)=\sum_{m_{1}, \cdots, m_{r}=0}^{\infty} \mathbb{A} \frac{z_{1}^{m_{1}} \cdots z_{r}^{m_{r}}}{m_{1}!\cdots m_{r}!}$
where

$$
\begin{equation*}
\mathbb{A}=\frac{\prod_{j=1}^{\bar{A}}\left(a_{j}\right)_{m_{1} \theta_{j}^{\prime}+\cdots+m_{r} \theta_{j}^{(r)}} \prod_{j=1}^{B^{\prime}}\left(b_{j}^{\prime}\right)_{m_{1} \phi_{j}^{\prime}} \cdots \prod_{j=1}^{B^{(r)}}\left(b_{j}^{(r)}\right)_{m_{r} \phi_{j}^{(r)}}}{\prod_{j=1}^{\bar{C}}\left(c_{j}\right)_{m_{1} \psi_{j}^{\prime}+\cdots+m_{r} \psi_{j}^{(r)}} \prod_{j=1}^{D^{\prime}}\left(d_{j}^{\prime}\right)_{m_{1} \delta_{j}^{\prime}} \cdots \prod_{j=1}^{D^{(r)}}\left(d_{j}^{(r)}\right)_{m_{r} \delta_{j}^{(r)}}} \tag{1.13}
\end{equation*}
$$

The series given by (1.12) converges absolutely if
$1+\sum_{j=1}^{C} \psi_{j}^{(i)}+\sum_{j=1}^{D^{(i)}} \delta_{j}^{(i)}-\sum_{j=1}^{A} \theta_{j}^{(i)}-\sum_{j=1}^{B^{(i)}} \phi_{j}^{(i)}>0 ; i=1, \cdots, r$
For more details, see Srivastava and Daoust ([6], 1969).
The binomial expansion is given by

$$
\begin{equation*}
(x+\zeta)^{\lambda}=\zeta^{\lambda} \sum_{m=0}\binom{\lambda}{m}\left(\frac{x}{\zeta}\right)^{m},\left|\frac{x}{\zeta}\right|<1 \tag{1.15}
\end{equation*}
$$

We have the following formulae
${ }_{c} I_{x}^{\mu}\left\{x^{\lambda}\right\}=\sum_{s=0}^{\infty}(-)^{s} \frac{\Gamma(\lambda+1)(x-c)^{s+\mu} x^{\lambda-s}}{\Gamma(\mu) \Gamma(\lambda-s+1)(s+\mu) s!}, \operatorname{Re}(\lambda)>-1$
$I_{x}^{c, \mu}\left\{x^{\lambda}\right\}=\frac{\Gamma(c+\lambda)}{\Gamma(c \lambda+\mu)} x^{\lambda}, \operatorname{Re}(\lambda)>-c$

2. Results

We also use the following short notations.
$\alpha^{\prime}=\sum_{i=1}^{r} m_{i} v_{i}+\sum_{i=1}^{r} m_{i}^{\prime} v_{i}^{\prime}-l ; \beta^{\prime}=\sum_{i=1}^{r} m_{i} w_{i}+\sum_{i=1}^{r} m_{i}^{\prime} w_{i}^{\prime}-t ; \gamma=\sum_{i=1}^{r} m_{i} u_{i}+\sum_{i=1}^{r} m_{i}^{\prime} u_{i}^{\prime}+l+t$
$L^{\prime \prime}=x^{\sigma+\rho} \beta^{\mu} \mathbb{A}^{\prime} a^{\sum_{i=1}^{r} m_{i}} b^{\sum_{i=1}^{r} m_{i}^{\prime}} \prod_{i=1}^{r} \frac{Z_{i}^{m_{i}} Z_{i}^{\prime m_{i}^{\prime}}}{m_{i}!m_{i}^{\prime}!l!t!}$
$\rho^{\prime}=-\rho-\sum_{i=1}^{r} m_{i} u_{i}-\sum_{i=1}^{r} m_{i}^{\prime} u_{i}^{\prime}-l-t ; \sigma^{\prime}=-\sigma-\sum_{i=1}^{r} m_{i} v_{i}+\sum_{i=1}^{r} m_{i}^{\prime} v_{i}^{\prime} ; \mu^{\prime}=-\mu-\sum_{i=1}^{r} m_{i} w_{i}+\sum_{i=1}^{r} m_{i}^{\prime} w_{i}^{\prime}$
$Z_{i}^{\prime \prime}=Z_{i} x^{U_{i}} \alpha^{V_{i}} \beta^{W_{i}}, i=1, \cdots, r$
$\mathbb{A}=\frac{\prod_{j=1}^{\bar{A}}\left(a_{j}\right)_{m_{1} \theta_{j}^{(1)}+\cdots+m_{r} \theta_{j}^{(r)}} \prod_{j=1}^{B^{(1)}}\left(b_{j}^{(1)}\right)_{m_{1} \phi_{j}^{(1)}} \cdots \prod_{j=1}^{B^{(r)}}\left(b_{j}^{(r)}\right)_{m_{r} \phi_{j}^{(r)}}}{\prod_{j=1}^{\bar{C}}\left(c_{j}\right)_{m_{1} \psi_{j}^{(1)}+\cdots+m_{r} \psi_{j}^{(r)}} \prod_{j=1}^{D^{(1)}}\left(d_{j}^{(1)}\right)_{m_{1} \delta_{j}^{(1)}} \cdots \prod_{j=1}^{D^{(r)}}\left(d_{j}^{(r)}\right)_{m_{r} \delta_{j}^{(r)}}}$
$\mathbb{A}^{\prime}=\frac{\prod_{j=1}^{\bar{A}^{\prime}}\left(a_{j}^{\prime}\right)_{m_{1}^{\prime} \theta_{j}^{\prime(1]}+\cdots+m_{r}^{\prime} \theta_{j}^{\prime(r)}} \prod_{j=1}^{B^{\prime(1)}}\left(b_{j}^{\prime(1)}\right)_{m_{1}^{\prime} \phi_{j}^{\prime(1)}} \cdots \prod_{j=1}^{B^{\prime(r)}}\left(b_{j}^{\prime(r)}\right)_{m_{r}^{\prime} \phi_{j}^{\prime(r)}}}{\prod_{j=1}^{\bar{C}^{\prime}}\left(c_{j}^{\prime}\right)_{m_{1}^{\prime} \psi_{j}^{\prime}+\cdots+m_{r}^{\prime} \psi_{j}^{(r)}} \prod_{j=1}^{D^{\prime(1)}}\left(d_{j}^{\prime(1)}\right)_{m_{1}^{\prime} \delta_{j}^{\prime(1)}} \cdots \prod_{j=1}^{D^{\prime(r)}}\left(d_{j}^{\prime(r)}\right)_{m_{r}^{\prime} \delta_{j}^{\prime(r)}}}$
$F=F_{\bar{C}: D^{(1)} ; \cdots ; D^{(r)}}^{\bar{A}: B^{(1)} ; \cdots ; B^{(r)}} ; F^{\prime}=F_{\bar{C}^{\prime}: D^{\prime(1)} ; \cdots ; D^{\prime(r)}}^{\bar{A}^{\prime}: B^{\prime(1)} ; \cdots ; B^{(r)}}$

Theorem 1

$d_{x}^{v} \int x^{\rho}(x+\alpha)^{\sigma}(x+\beta)^{\mu} F\left(\begin{array}{c}\mathrm{Z}_{1} a x^{\mu_{1}}(x+\alpha)^{v_{1}}(x+\beta)^{w_{1}} \\ \cdots \\ \cdots \\ \mathrm{Z}_{r} a x^{\mu_{r}}(x+\alpha)^{v_{r}}(x+\beta)^{w_{r}}\end{array}\right) F^{\prime}\left(\begin{array}{c}\mathrm{Z}_{1}^{\prime} b x^{\mu_{1}^{\prime}}(x+\alpha)^{v_{1}^{\prime}}(x+\beta)^{w_{1}^{\prime}} \\ \cdots \\ \cdots \\ \mathrm{Z}_{r}^{\prime} b x^{\mu_{r}^{\prime}}(x+\alpha)^{v_{r}^{\prime}}(x+\beta)^{w_{r}^{\prime}}\end{array}\right)$
$\left.火\left(\begin{array}{c}\mathrm{Z}_{1} x^{U_{1}}(x+\alpha)^{V_{1}}(x+\beta)^{W_{1}} \\ \cdots \\ \cdot \dot{d}^{\prime} \\ \mathrm{Z}_{r} x^{\mu_{r}}(x+\alpha)^{V_{r}}(x+\beta)^{W_{r}}\end{array}\right)\right\}=\sum_{m_{1}, \cdots, m_{r}, m_{1}^{\prime}, \cdots, m_{r}^{\prime}, s, l, t=0}^{\infty}(-)^{s} \frac{\Gamma(\lambda+1)(x-c)^{s+v} \alpha^{\alpha^{\prime}} \beta^{\beta^{\prime}} L^{\prime \prime} x^{\gamma-s}}{\Gamma(v)(s+v) s!}$
$\aleph_{p_{i}+3, q_{i}+3, \tau_{i} ; R: W}^{0, n+3: V}\left(\begin{array}{c|c}\mathrm{Z}_{1} x^{U_{1}} \alpha^{V_{1}} \beta^{W_{1}} & \left(\rho^{\prime} ; U_{1}, \cdots, U_{r}\right),\left(\sigma^{\prime} ; V_{1}, \cdots, V_{r}\right),\left(\mu^{\prime} ; W_{1}, \cdots, W_{r}\right), A \\ \cdots & \vdots \\ \mathrm{Z}_{r} U^{U_{r}} \dot{\sigma}^{V_{r}} \beta^{W_{r}} & \left(\rho^{\prime}+l+t ; U_{1}, \cdots, U_{r}\right),\left(\sigma^{\prime}+l ; V_{1}, \cdots, V_{r}\right),\left(\mu^{\prime}+t ; W_{1}, \cdots, W_{r}\right), B\end{array}\right)$

Provided that

$\operatorname{Re}(v)>0 ; \min \left\{u_{i}, v_{i}, w_{i}, u_{i}^{\prime}, v_{i}^{\prime} ; w_{i}^{\prime}, U_{i}, V_{i}, W_{i}\right\}>0, i=1, \cdots, r$
$\operatorname{Re}\left[\rho+\sum_{i=1}^{r} U_{i} \min _{1 \leqslant j \leqslant \mathfrak{m}_{i}} \frac{b_{j}^{(i)}}{\beta_{j}^{(i)}}\right]>-1 ;\left|\frac{x}{\alpha}\right|<\pi,\left|\frac{x}{\beta}\right|<\pi ;\left|\arg Z_{k}\right|<\frac{1}{2} A_{i}^{(k)} \pi$, where $A_{i}^{(k)}$ is defined by (1.4)

$$
1+\sum_{j=1}^{C} \psi_{j}^{(i)}+\sum_{j=1}^{D^{(i)}} \delta_{j}^{(i)}-\sum_{j=1}^{A} \theta_{j}^{(i)}-\sum_{j=1}^{B^{(i)}} \phi_{j}^{(i)}>0,1+\sum_{j=1}^{C^{\prime}} \psi_{j}^{\prime(i)}+\sum_{j=1}^{D^{\prime(i)}} \delta_{j}^{\prime(i)}-\sum_{j=1}^{A^{\prime}} \theta_{j}^{\prime(i)}-\sum_{j=1}^{B^{\prime(i)}} \phi_{j}^{\prime(i)}>0, i=1, \cdots, r
$$

Theorem 2
$I_{x}^{c, v}\left\{x^{\rho}(x+\alpha)^{\sigma}(x+\beta)^{\mu} F\left(\begin{array}{c}\mathrm{Z}_{1} a x^{\mu_{1}}(x+\alpha)^{v_{1}}(x+\beta)^{w_{1}} \\ \cdots \\ \cdots \\ \mathrm{Z}_{r} a x^{\mu_{r}}(x+\alpha)^{v_{r}}(x+\beta)^{w_{r}}\end{array}\right) F^{\prime}\left(\begin{array}{c}\mathrm{Z}_{1}{ }_{1} b x^{\mu_{1}^{\prime}}(x+\alpha)^{v_{1}^{\prime}}(x+\beta)^{w_{1}^{\prime}} \\ \cdots \\ \cdots \\ \mathrm{Z}_{r}{ }_{r} b x^{\mu_{r}^{\prime}}(x+\alpha)^{v_{r}^{\prime}}(x+\beta)^{w_{r}^{\prime}}\end{array}\right)\right.$
$\left.\aleph\left(\begin{array}{c}\mathrm{Z}_{1} x^{U_{1}}(x+\alpha)^{V_{1}}(x+\beta)^{W_{1}} \\ \cdots \\ \cdots \\ \mathrm{Z}_{r} x^{\mu_{r}}(x+\alpha)^{V_{r}}(x+\beta)^{W_{r}}\end{array}\right)\right\}=\sum_{m_{1}, \cdots, m_{r}, m_{1}^{\prime}, \cdots, m_{r}^{\prime}, l, t=0}^{\infty} \alpha^{\alpha^{\prime} \beta^{\beta^{\prime}} L^{\prime \prime} x^{\gamma}}$
$\left.\left.\aleph_{p_{i}+3, q_{i}+3, \tau_{i} ; R: W}^{0, \mathfrak{n}+3: V}\left(\begin{array}{c}\mathrm{Z}_{1} x^{U_{1}} \alpha^{V_{1}} \beta^{W_{1}} \\ \cdots \\ \cdots \\ \mathrm{Z}_{r} x^{U_{r}} \alpha^{V_{r}} \beta^{W_{r}}\end{array}\right)\left(1-\mathrm{c}-\rho^{\prime} ; U_{1}, \cdots, U_{r}\right),\left(\sigma^{\prime} ; V_{1}, \cdots, V_{r}\right),\left(\mu^{\prime} ; W_{1}, \cdots, W_{r}\right), A \quad . \quad . \quad \rho^{\prime} ; U_{1}, \cdots, U_{r}\right),\left(\sigma^{\prime}+l ; V_{1}, \cdots, V_{r}\right),\left(\mu^{\prime}+t ; W_{1}, \cdots, W_{r}\right), B\right)$

Provided that
$\operatorname{Re}(v)>0 ; \min \left\{u_{i}, v_{i}, w_{i}, u_{i}^{\prime}, v_{i}^{\prime} ; w_{i}^{\prime}, U_{i}, V_{i}, W_{i}\right\}>0, i=1, \cdots, r$
$\operatorname{Re}\left[\rho+\sum_{i=1}^{r} U_{i} \min _{1 \leqslant j \leqslant \mathfrak{m}_{i}} \frac{b_{j}^{(i)}}{\beta_{j}^{(i)}}\right]>-c ;\left|\frac{x}{\alpha}\right|<\pi,\left|\frac{x}{\beta}\right|<\pi ;\left|\arg Z_{k}\right|<\frac{1}{2} A_{i}^{(k)} \pi, \quad$ where $A_{i}^{(k)}$ is defined by (1.4)
$1+\sum_{j=1}^{C} \psi_{j}^{(i)}+\sum_{j=1}^{D^{(i)}} \delta_{j}^{(i)}-\sum_{j=1}^{A} \theta_{j}^{(i)}-\sum_{j=1}^{B^{(i)}} \phi_{j}^{(i)}>0,1+\sum_{j=1}^{C^{\prime}}{\psi_{j}^{\prime}}^{(i)}+\sum_{j=1}^{D^{\prime(i)}} \delta_{j}^{\prime(i)}-\sum_{j=1}^{A^{\prime}} \theta_{j}^{\prime(i)}-\sum_{j=1}^{B^{\prime(i)}} \phi_{j}^{\prime(i)}>0, i=1, \cdots, r$
Proof
To establish (2.1), we first express the Srivastava-Daoust functions occuring on the left-hand side in series form given by (1.12) and replace the multivariable Aleph-function by its Mellin-Barnes contour integral (1.1), collecting the power of $x,(x+\alpha)$ and $(x+\beta)$ and applying the binomial expansion (1.15). Further, making use of the result (1.16) and interpreting the resulting Mellin-Barnes-contour integral as the multivariable Aleph-function, we obtain the result (2.1).

Following the procedure (2.1) and using the result (1.17) in place (1.16), we obtain the result (2.2) for Erdelyi-Kober operator defined by (1.11).

3. Particular cases

a) The multivariable Aleph-function reduces to multivariable H -function defined by Srivastava et al [7]. We have the two following results.

Corollary 1
${ }_{c}{ }_{x}^{v}\left\{x^{\rho}(x+\alpha)^{\sigma}(x+\beta)^{\mu} F\left(\begin{array}{c}\mathrm{Z}_{1} a x^{\mu_{1}}(x+\alpha)^{v_{1}}(x+\beta)^{w_{1}} \\ \cdots \\ \cdots \\ \mathrm{Z}_{r} a x^{\mu_{r}}(x+\alpha)^{v_{r}}(x+\beta)^{w_{r}}\end{array}\right) F^{\prime}\left(\begin{array}{c}\mathrm{Z}^{\prime}{ }_{1} b x^{\mu_{1}^{\prime}}(x+\alpha)^{v_{1}^{\prime}}(x+\beta)^{w_{1}^{\prime}} \\ \cdots \\ \cdots \\ \mathrm{Z}^{\prime}{ }_{r} b x^{\mu_{r}^{\prime}}(x+\alpha)^{v_{r}^{\prime}}(x+\beta)^{w_{r}^{\prime}}\end{array}\right)\right.$
$\left.H\left(\begin{array}{c}\mathrm{Z}_{1} x^{U_{1}}(x+\alpha)^{V_{1}}(x+\beta)^{W_{1}} \\ \cdots \\ \cdots \cdot \\ \mathrm{Z}_{r} x^{\mu_{r}}(x+\alpha)^{V_{r}}(x+\beta)^{W_{r}}\end{array}\right)\right\}=\sum_{m_{1}, \cdots, m_{r}, m_{1}^{\prime}, \cdots, m_{r}^{\prime}, s, l, t=0}^{\infty}(-)^{s} \frac{\Gamma(\lambda+1)(x-c)^{s+v} \alpha^{\alpha^{\prime}} \beta^{\beta^{\prime}} L^{\prime \prime} x^{\gamma-s}}{\Gamma(v)(s+v) s!}$
$H_{p+3, q+3: W}^{0, \mathfrak{n}+3: V}\left(\begin{array}{c|c}\mathrm{Z}_{1} x^{U_{1}} \alpha^{V_{1}} \beta^{W_{1}} \\ \cdots & \left(\rho^{\prime} ; U_{1}, \cdots, U_{r}\right),\left(\sigma^{\prime} ; V_{1}, \cdots, V_{r}\right),\left(\mu^{\prime} ; W_{1}, \cdots, W_{r}\right), A \\ \cdot \cdot \\ \mathrm{Z}_{r} x^{U_{r}} \alpha^{V_{r}} \beta^{W_{r}} & \left(\rho^{\prime}+l+t ; U_{1}, \cdots, U_{r}\right),\left(\sigma^{\prime}+l ; V_{1}, \cdots, V_{r}\right),\left(\mu^{\prime}+t ; W_{1}, \cdots, W_{r}\right), B\end{array}\right)$
Under the same notations and conditions that (2.1).
Corollary 2
$I_{x}^{c, v}\left\{x^{\rho}(x+\alpha)^{\sigma}(x+\beta)^{\mu} F\left(\begin{array}{c}\mathrm{Z}_{1} a x^{\mu_{1}}(x+\alpha)^{v_{1}}(x+\beta)^{w_{1}} \\ \cdots \\ \cdots \\ \mathrm{Z}_{r} a x^{\mu_{r}}(x+\alpha)^{v_{r}}(x+\beta)^{w_{r}}\end{array}\right) F^{\prime}\left(\begin{array}{c}\mathrm{Z}_{1}{ }_{1} b x^{\mu_{1}^{\prime}}(x+\alpha)^{v_{1}^{\prime}}(x+\beta)^{w_{1}^{\prime}} \\ \cdots \\ \cdots \\ \mathrm{Z}_{r}{ }_{r} b x^{\mu_{r}^{\prime}}(x+\alpha)^{v_{r}^{\prime}}(x+\beta)^{w_{r}^{\prime}}\end{array}\right)\right.$
$\left.H\left(\begin{array}{c}\mathrm{Z}_{1} x^{U_{1}}(x+\alpha)^{V_{1}}(x+\beta)^{W_{1}} \\ \cdots \\ \cdot \cdot \\ \mathrm{Z}_{r} x^{\mu_{r}}(x+\alpha)^{V_{r}}(x+\beta)^{W_{r}}\end{array}\right)\right\}=\sum_{m_{1}, \cdots, m_{r}, m_{1}^{\prime}, \cdots, m_{r}^{\prime}, l, t=0}^{\infty} \alpha^{\alpha^{\prime}} \beta^{\beta^{\prime}} L^{\prime \prime} x^{\gamma}$

Under the same notations and conditions that (2.2).
b) If $r=2$, the multivariable Aleph-function reduces to Aleph-function of two variables defined by Sharma [3] and we have the two following relations.

Corollary 3
${ }_{c}{ }_{x}^{v}\left\{x^{\rho}(x+\alpha)^{\sigma}(x+\beta)^{\mu} F\left(\begin{array}{c}\mathrm{Z}_{1} a x^{\mu_{1}}(x+\alpha)^{v_{1}}(x+\beta)^{w_{1}} \\ \cdots \\ \cdots \\ \mathrm{Z}_{2} a x^{\mu_{r}}(x+\alpha)^{v_{2}}(x+\beta)^{w_{2}}\end{array}\right) F^{\prime}\left(\begin{array}{c}\mathrm{Z}_{1}{ }_{1} b x^{\mu_{1}^{\prime}}(x+\alpha)^{v_{1}^{\prime}}(x+\beta)^{w_{1}^{\prime}} \\ \cdots \\ \cdots \\ \mathrm{Z}_{2}{ }_{2} b x^{\mu_{2}^{\prime}}(x+\alpha)^{v_{2}^{\prime}}(x+\beta)^{w_{2}^{\prime}}\end{array}\right)\right.$
$\left.\aleph\left(\begin{array}{c}\mathrm{Z}_{1} x^{U_{1}}(x+\alpha)^{V_{1}}(x+\beta)^{W_{1}} \\ \cdots \cdot \\ \cdot \cdot \\ \mathrm{Z}_{2} x^{\mu_{2}}(x+\alpha)^{V_{2}}(x+\beta)^{W_{2}}\end{array}\right)\right\}=\sum_{m_{1}, m_{2}, m_{1}^{\prime}, m_{2}^{\prime}, s, l, t=0}^{\infty}(-)^{s} \frac{\Gamma(\lambda+1)(x-c)^{s+v} \alpha^{\alpha^{\prime}} \beta^{\beta^{\prime}} L^{\prime \prime} x^{\gamma-s}}{\Gamma(v)(s+v) s!}$
$\left.\left.\aleph_{p_{i}+3, q_{i}+3, \tau_{i} ; R: W}^{0, \mathfrak{n}+3: V}\left(\begin{array}{c}\mathrm{Z}_{1} x^{U_{1}} \alpha^{V_{1}} \beta^{W_{1}} \\ \cdot \cdot \\ \dot{\cdot} \\ \mathrm{Z}_{2} x^{U_{2}} \alpha^{V_{2}} \beta^{W_{2}}\end{array}\right)\left(\rho^{\prime} ; U_{1}, U_{2}\right),\left(\sigma^{\prime} ; V_{1}, V_{2}\right),\left(\mu^{\prime} ; W_{1}, W_{2}\right), A+t ; U_{1}, U_{2}\right),\left(\sigma^{\prime}+l ; V_{1}, V_{2}\right),\left(\mu^{\prime}+t ; W_{1}, W_{2}\right), B\right)$

Under the same notations and conditions that (2.1) with $r=2$.
Corollary 4

$$
I_{x}^{c, v}\left\{x^{\rho}(x+\alpha)^{\sigma}(x+\beta)^{\mu} F\left(\begin{array}{c}
\mathrm{Z}_{1} a x^{\mu_{1}}(x+\alpha)^{v_{1}}(x+\beta)^{w_{1}} \\
\cdots \\
\cdots \\
\mathrm{Z}_{2} a x^{\mu_{r}}(x+\alpha)^{v_{2}}(x+\beta)^{w_{2}}
\end{array}\right) F^{\prime}\left(\begin{array}{c}
\mathrm{Z}_{1} b x^{\mu_{1}^{\prime}}(x+\alpha)^{v_{1}^{\prime}}(x+\beta)^{w_{1}^{\prime}} \\
\cdots \\
\cdots \cdot \\
\mathrm{Z}_{2} b x^{\mu_{2}^{\prime}}(x+\alpha)^{v_{2}^{\prime}}(x+\beta)^{w_{2}^{\prime}}
\end{array}\right)\right.
$$

$$
\left.\aleph\left(\begin{array}{c}
\mathrm{Z}_{1} x^{U_{1}}(x+\alpha)^{V_{1}}(x+\beta)^{W_{1}} \\
\cdots \\
\cdot \cdot \\
\mathrm{Z}_{2} x^{\mu_{2}}(x+\alpha)^{V_{2}}(x+\beta)^{W_{2}}
\end{array}\right)\right\}=\sum_{m_{1}, m_{2}, m_{1}^{\prime}, m_{2}^{\prime}, s, l, t=0}^{\infty} \alpha^{\alpha^{\prime}} \beta^{\beta^{\prime}} L^{\prime \prime} x^{\gamma}
$$

$$
\aleph_{p_{i}+3, q_{i}+3, \tau_{i} ; R: W}^{0, \mathfrak{n}+3: V}\left(\begin{array}{c}
\mathrm{Z}_{1} x^{U_{1}} \alpha^{V_{1}} \beta^{W_{1}} \tag{3.4}\\
\cdots \cdot \\
\cdot \cdot \\
\mathrm{Z}_{2} x^{U_{2}} \alpha^{V_{2}} \beta^{W_{2}}
\end{array}\right)\left(1-\mathrm{c}-\rho^{\prime} ; U_{1}, U_{2}\right),\left(\sigma^{\prime} ; V_{1}, V_{2}\right),\left(\mu^{\prime} ; W_{1}, W_{2}\right), A
$$

Under the same notations and conditions that (2.2) with $r=2$.
Remarks
By the following similar procedure, the results of this document can be extented to product of any finite number of Srivastava-Daoust functions.

If $\tau_{i}, \tau_{i^{\prime}}, \tau_{i^{\prime \prime}} \rightarrow 1$ and $r=2$,we obtain the results of Sharma et al [5].

4. Conclusion

The Srivastava-Daoust functions and the multivariable Aleph-function are quite basic in nature. Therefore on specializing the parameters of these functions, we may obtain various other special functions of several variables and one variable such as multivariable H-function, Fox's H-function , Meijer's G-function, Wright's generalized Bessel function, Wright's generalized hypergeometric function, MacRobert's E-function, generalized hypergeometric function, Bessel function of first kind, modied Bessel function, Whittaker function, exponential function, binomial function etc. as its special cases, and therefore, various unified integral presentations can be obtained as special cases of our results.

REFERENCES

[1] Ayant F.Y. An integral associated with the Aleph-functions of several variables. International Journal of Mathematics Trends and Technology (IJMTT). 2016 Vol 31 (3), page 142-154.
[2] Ross B Fractional calculus and its applications, Lecture notes in Mathematics, New York : Springer Verlag 1975
[3] Sharma K. On the integral representation and applications of the generalized function of two variables , International Journal of Mathematical Engineering and Sciences, Vol 3 , issue1 (2014) , page 1-13.
[4] Sharma C.K.and Ahmad S.S.: On the multivariable I-function. Acta ciencia Indica Math , 1994 vol 20,no2, p 113116.
[5] Sharma C.K. and Patel K. Fractional integral formulae involving the generalized Kampe de Fériet functions and the I-function of two variables. Bulletin of Pure and Applied Sciences .Vol 13 (no 1), 1994, page 47-52.
[6] Srivastava H.M. and Daoust M.C. Certain generalized Neuman expansions associated with the Kampé de Fériet function. Nederl. Akad. Wetensch. Indag. Math, 31 (1969), page 449-457.
[7] Srivastava H.M. and Panda R. Some expansion theorems and generating relations for the H -function of several complex variables. Comment. Math. Univ. St. Paul. 24(1975), p.119-137.

```
Personal adress : 411 Avenue Joseph Raynaud
    Le parc Fleuri , Bat B
    83140,Six-Fours les plages
    Tel : 06-83-12-49-68
    Department : VAR
    Country : FRANCE
```

