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ABSTRACT
In this paper, we shall establish two fractional integral formulae involving the product of the Srivastava-Daoust functions and the multivariable Aleph-
function. Since these functions includes a large number of special functions as its particular cases, therefore, the result establish here will be serve as
key formulae. We shall given the particular cases concerning the multivariable H-function and the Aleph-function of two variables.
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1.Introduction and preliminaries.

The multivariable Aleph-function which was introduced by Ayant [1] is an extension of the multivariable I-function
recently defined by C.K. Sharma and Ahmad [4] , itself is a generalization of  the multivariable H-function defined by
Srivastava et al [7]. The multivariable Aleph-function is defined by means of the multiple contour integral :

We have :      

                                                               

      

        

 =                                                                       (1.1)

with  

        (1.2)

       

and         (1.3)

For more details, see Ayant [1]. The condition for absolute convergence of multiple Mellin-Barnes type contour  can be
obtained by extension of the corresponding conditions for multivariable H-function given by as :
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    ,   where

 

           

    ,  with  ,   ,            (1.4)

The complex numbers  are not zero.Throughout this document , we assume the existence and absolute convergence 
conditions of the multivariable Aleph-function.

We may establish the the asymptotic expansion in the following convenient form :

     ,     

    ,      

where   :  and 

                                                

                  
For convenience, we will use the following notations in this paper.

                                                                                                                                        (1.5)

 W                                                                                    (1.6)

                                      

                                         (1.7)

                     

                                                                                               (1.8)

The contracted form concerning the multivariable Aleph-function writes :

                                                                                                                                      (1.9)

The familiar fractional integral operator is defined and represented in the present paper as :
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  ,                                                                                                 (1.10)

the special case of the above operator (when  ) is well known in the literature as Riemann-Liouville fractional
integral operator and is written as .

Also the fractional integral operator investigated by Erdelyi-Kober is defined and represented as Ross ( [2],1975).

  ,                                                                     (1.11)

which is obviously a generalization of the  Riemann-Liouville fractional integral operator.

The Srivastava-Daoust function is defined by (see [6]):

                   (1.12)

where

                                                                            (1.13)                                                                     (1.13)

The series given by (1.12) converges absolutely if 

                                                                                      (1.14)

For more details, see Srivastava and Daoust ([6], 1969).

The binomial expansion is given by 

                                                                                                                 (1.15)

We have the following formulae

                                                                              

                                                                                              (1.16)                                                                                              (1.16)

                                                 (1.17) (1.17) 

2. Results

We also  use the following short notations.
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Theorem 1Theorem 1

    

  (2.1) (2.1) 

Provided that 
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     ,   where  is defined by (1.4)

  

Theorem 2

    

  (2.2)(2.2)

Provided that 

     ,   where  is defined by (1.4)

  

Proof 

To establish (2.1), we first express the Srivastava-Daoust functions occuring on the left-hand side in series form given
by (1.12) and replace the multivariable Aleph-function by its Mellin-Barnes contour integral (1.1), collecting the power
of   and   and applying the binomial expansion (1.15). Further, making use of the result (1.16) and
interpreting the resulting Mellin-Barnes-contour integral as the multivariable Aleph-function, we obtain the result (2.1).

Following the procedure (2.1) and using the result (1.17) in place (1.16), we obtain the result (2.2) for Erdelyi-Kober
operator defined by (1.11).

3. Particular cases

a) The multivariable Aleph-function reduces to multivariable H-function defined by Srivastava et al [7]. We have the
two following results.
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Corollary 1

    

    (3.1)  (3.1)

Under the same notations and conditions that (2.1).

Corollary  2 

    

   (3.2) (3.2)

Under the same notations and conditions that (2.2).

b) If  the multivariable Aleph-function reduces to Aleph-function of two variables defined by Sharma [3] and we
have the two following relations. 

Corollary  3
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                  (3.3)                (3.3)

Under the same notations and conditions that (2.1) with . 

Corollary 4 

    

             (3.4)           (3.4)

Under the same notations and conditions that (2.2) with . 

Remarks

By the following similar procedure, the results of this document can be extented to product of any finite number of
Srivastava-Daoust functions.
 
If  and  ,we obtain the results of Sharma et al [5]. 

4. Conclusion

The  Srivastava-Daoust  functions  and  the  multivariable  Aleph-function  are quite  basic  in  nature.  Therefore  
on specializing the parameters of these functions, we may obtain various other special functions of several variables and
one variable such as multivariable H-function, Fox's  H-function ,  Meijer's  G-function, Wright's  generalized Bessel
function, Wright's generalized hypergeometric function, MacRobert's E-function, generalized hypergeometric function,
Bessel function of first kind, modied Bessel function, Whittaker function, exponential function , binomial function etc.
as its special cases, and therefore, various unified integral presentations can be obtained as special cases of our results. 
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