Dom-Color Number of a Graph

A.Muthukamatchi

Assistant Professor of Mathematics, R.D. Government Arts College, Sivagangai-630 561. Tamil Nadu, India

Abstract: Let G be a graph with $\chi(G) = k$.then G is called k-chromatic.In a coloring of G, the set of all vertices with a given color is called a color class. Let $C = \{V_1, V_2, ..., V_k\}$ be a k-coloring of G. Let d_C denote the number of color classes in C which are dominating sets of G. Then $d_{\chi} = \max d_C$, where the maximum is taken over all k colorings of G, which we call the dom-color number of G.

A partition of V into independent dominating sets of G is called an independent domatic partition of G or indomatic partition of G. A graph G which admits an independent domatic partition is called indominable. The maximum order of an independent domatic partition of G is called the indomatic number of G and is denoted by $d_i(G)$.

The chromatic bondage number $\rho(G)$ is the minimum number of edges between two color classes in a k- coloring of G, where the minimum is taken over all k-colorings of G. We present several interesting results on dom-color number and chromatic bondage number. **Keywords**: dom-color number, Chromatic bondage number, indomatic number

I.INTRODUCTION

The chromatic number is well studied parameter whose history dates back to the famous four-color problem and the early work of Kempe [9] in 1879 and Heawood [8] in 1890.Fink et al.,[3] studied the concept of the bondage number.

Throughout this paper, we assume that G = (V,E) is a finite, simple connected graph with at least two vertices.

II.MAIN RESULTS

Example 1.1.

(i) $d_{\chi} = \chi(C_n) = 2$, if n is even. If n is odd, then $\chi(C_n) = 3$ and $d_{\chi}(C_n) = 2$. (ii) $d_{\chi}(\mathbf{K}_n) = \chi(\mathbf{K}_n) = \mathbf{n}$

(iii) For any bipartite graph G, $d_{\chi}(G) = \chi(G) = 2$.

Theorem 1.2.*In a k-chromatic graph G, any kcoloring of G yields another k-coloring of G containing a color class which is a dominating set of G.*

Remark 1.3. It follows from Theorem 1.2 that $d_{\chi}(G) \ge 1$ and hence $1 \le d_{\chi}(G) \le \chi(G)$. Further these bounds are sharp. For the complete graph K_n , we have $d_{\chi}(K_n) = \chi(K_n) = n$. Also if H is any connected graph of order at least 3, then the corona $G = H \circ K1$ does not have two disjoint independent dominating sets and hence $d_{\chi}(G) = 1$. In fact we have the following theorem.

Theorem 1.4. Given integers a and b with $1 \le a \le b$, there exists a graph G such that $d_{\chi}(G) = a$ and $\chi(G) = b$.

Proof. If a = 1, then for the corona $G = K_b \circ K_1$, we have $d_{\chi}(G) = 1$ and $\chi(G) = b$. If $a \ge 2$, let G be the graph obtained from K_b by attaching a copy of K_a at a vertices of K_b . Then $d_{\chi}(G) = a$ and $\chi(G) = b$.

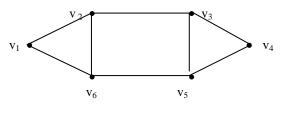
For any graph G, $d_{\chi}(G) = \chi(G)$ if and only if G admits a k-coloring in which every color class is a dominating set of G and we proceed to study graphs with this property.

Theorem 1.5. For any uniquely colorable graph G, $d_{\chi}(G) = \chi(G)$.

Proof. Let $C = \{V_1, V_2, ..., V_k\}$ be the *k*-coloring of G, where $\chi(G) = k$. Suppose there exists a color class in C, say V_1 which is not a dominating set of G. Then there exists a vertex $v \in V_i$ where i > 1, such that v is not adjacent any of the vertices of V_1 . Now, $C_1 = \{V_1 \cup \{v\}, ..., V_i - \{v\}, V_{i+1} ... V_k\}$ is a *k*-coloring of G, which is a contradiction. Thus each V_i is a dominating set of G. Hence $d_{\chi}(G) = \chi(G)$. **Corollary 1.6.** *If G is a uniquely colorable graph, then* $d_i(G) = \chi(G)$. **Remark 1.7**. The converse of Theorem 1.4 is not true.

Consider the graph G given in Figure 1.1. Clearly $\chi(G) = 3$. Also C₁

={{ v_2, v_5 }, { v_3, v_6 }, { v_1, v_4 }} and C₂ = {{ v_2, v_4 }, { v_1, v_3 }, { v_1, v_5 }} are two different 3colorings of G and hence G is not uniquely colorable. Further, in any 3-coloring of G each color class contains exactly one vertex from { v_1, v_2, v_6 } and exactly one vertex from { v_3, v_4, v_5 }. Hence every color class forms a dominating set of G, so that $d_r(G) = 3$.



Remark 1.8. If $d_{\chi}(G) = \chi(G)$, then G is indominable and $\chi \le d_i$. This inequality can be strict. For the graph G give in Figure 1.2, $\chi(G) = 3$. Also {{1,6},{3,7},{4,8},{2,5}} is an indomatic partition of G and hence $d_i(G) = 4$

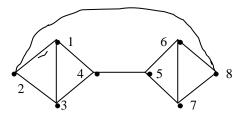


Figure 1.2

Remark 1.9. Let G be an indominable graph. Since $d_i(G) \ge \chi(G)$ and $\chi(G) \ge d_{\chi}(G)$, we have $d_i(G) \ge d_{\chi}(G)$.

Theorem 1.10. Let G be a k-chromatic graph. If $= \frac{m}{\binom{k}{2}}$, then every k-coloring of G is an independent domatic partition of G. *Proof.* Suppose $= \frac{m}{\binom{k}{2}}$. Then the number of edges between any two color classes in any k-coloring of G is $\frac{m}{\binom{k}{2}}$. Let {V₁,V₂,...,V_k} be any k-coloring of G. We claim that each V_i is a dominating set of G. Suppose on the contrary that V₁ is not a dominating set of G. Then there exists a vertex v in a color class other than V₁, say V₂, such that v is not adjacent to any of the vertices of V₁. Hence {V₁U{v},V₂-{v},V₃,...,V_k} is a k-coloring of G and the number of edges between the color class V₂ -{v} and some color class is less than $\frac{m}{\binom{k}{2}}$, which is a contradiction. Thus each V_i is a dominating set of G.

Corollary 1,11. Let G be a k-chromatic graph with $\rho = \frac{m}{\binom{k}{2}}$. Then $d_{\chi}(G) = \chi(G)$.

Corollary 1.12. For any k-chromatic graph G with $\rho = \frac{m}{\binom{k}{2}}$, $i(G) \leq \frac{n}{k}$ and this bound is sharp.

Proof. Let $\{V_1, V_2, ..., V_k\}$ be a k-coloring of G. Since each V_i is a dominating set of G, $|V_i| \ge i(G)$ for all i = 1, 2, ..., k and hence $i(G) \le \frac{n}{k}$. This bound is sharp, since for the complete k-partite graph $G = K_{\lambda,\lambda}, ..., \lambda$, we have $i(G) = \frac{n}{k}$.

Remark 1.13. The converse of Theorem 1.9 is not true. For the 3-chromatic graph G given in Figure 1.3,

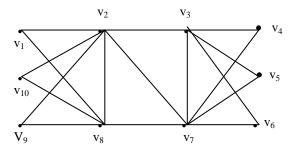


Figure 1.3 { $\{v_2, v_4, v_5, v_6\}, \{v_3, v_8\}, \{v_1, v_7, v_9, v_{10}\}$ } is the unique 3-coloring of G in which each color class is a dominating set of G. However $\rho = 5 \neq \frac{m}{\binom{k}{2}}$.

Problem 1.14. Characterize k-chromatic graphs G with $\rho(G) = \frac{m}{\binom{k}{2}}$ for which $i(G) = \frac{n}{k}$.

We observe that a k-chromatic graph G

with $\rho(G) = \frac{m}{\binom{k}{2}}$ for which $i(G) = \frac{n}{k}$ must be a

k-partite graph with a partition $\{V_1, V_2, ..., V_k\}$ such that each V_i is an i(G)-set of G and the number of edges in $\langle V_i \cup V_j \rangle$ is same for all $i \neq j$.

Theorem 1.9 leads to the following problem.

Problem 1.15. *Characterize k-chromatic graphs G in which every k-coloring of G is an independent domatic partition of G.*

Theorem 1.16. For any uniquely colorable graph G, $\rho(G) \ge 2i(G)-1$. Further, equality holds if and only if the k-coloring of G contains two color classes V_1 and V_2 such that $|V_1| = |V_2| = i(G)$ and $\langle V_1 \cup V_2 \rangle$ is a tree.

Proof. Let $\{V_1, V_2, ..., V_k\}$ be the *k*-coloring of G. Since G is uniquely colorable, it follows from Theorem 1.4 that each V_i is a dominating set of G

and hence $|Vi| \ge i(G)$. Now, it follows from

Theorem 1.45 that the induced subgraph $\langle V_i \cup V_j \rangle$ is connected for all $i \neq j$ so that the number of edges

in $\langle V_i \cup V_j \rangle$ is at least 2i(G)-1. Thus $\rho(G) \ge 1$

2i(G)-1. Obviously, equality holds if and only if

the k-coloring of G contains two color classes V_1 and V_2 such that $|V_1| = |V_2| = i(G)$ and $\langle V_1 \cup V_2 \rangle$ is a tree.

Remark 1.17. *The above bound is sharp. For the complete graph* K_m *we have* $\rho(K_n) = 1 = 2i(K_n)-1$. The following are some interesting problems for further investigation.

Problem 1.18.

(i) Characterize uniquely colorable graphs G for which $\rho(G) = 2i(G)-1$.

(ii) Characterize graphs G for which $\rho(G) = \frac{m}{\binom{k}{2}}$

REFERENCES

[1] G. Chartrand and L. Lesniak, Graphs and Digraphs, Fourth Edition, CRC Press, Boca Raton, 2004.

[2] E.J. Cockayne and S.T. Hedetniemi, Towards a theory of domination in graphs, *Networks*, **7**(1977), 241 - 261.

[3] J.F.Fink, M.S.Jocobson, L.F.kinch and Roberts, The bondage number of A graph, *DisceeteMath.*, **86**(1990), 47-57

[4] F. Harary, Graph Theory, Addision - Wesley, Reading Mass,1972.

[5] F. Harary, Covering and packing in graphs I, Ann. N. Y. Acad. Sci., **175**(1970), 198 - 205.

[6] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, (1997).

[7] T. W. Haynes, S. T. Hedetniemi and P. J. Slater. Domination in Graphs - Advanced Topics, Marcel Dekker, Inc.,New York, (1997).

[8] P.J. Heawood, Map-colour theorem, Quart. J. Pure Appl.Math.,24 (1890), 332 - 338.

[9] A.B.Kempe, On the geographoical problem of four colors, *Amer.J.Math.*, **2**(1879), 193-204.

[10] H.B. Walikar, B.D. Acharya and E. Sampathkumar, Recent Development in the theory of domination in graphs, In MRI

Lecture Notes in Math., Mehta Research Instit., Allahabad,1, 1979.