Dom-Color Number of a Graph

A.Muthukamatchi

Assistant Professor of Mathematics, R.D. Government Arts College, Sivagangai-630 561.Tamil Nadu,India

Abstract

Let G be a graph with $\chi(G)=k$.then G is called k-chromatic.In a coloring of G, the set of all vertices with a given color is called a color class. Let $C=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ be a k-coloring of G. Let d_{C} denote the number of color classes in C which are dominating sets of G. Then $d_{\chi}=\max d_{C}$, where the maximum is taken over all k colorings of

 G, which we call the dom-color number of G.A partition of V into independent dominating sets of G is called an independent domatic partition of G or indomatic partition of G. A graph G which admits an independent domatic partition is called indominable. The maximum order of an independent domatic partition of G is called the indomatic number of G and is denoted by $d_{i}(G)$.

The chromatic bondage number $\rho(G)$ is the minimum number of edges between two color classes in a $\quad k$-coloring of G, where the minimum is taken over all k-colorings of G. We present several interesting results on dom-color number and chromatic bondage number.

Keywords: dom-color number, Chromatic bondage number, indomatic number

I.INTRODUCTION

The chromatic number is well studied parameter whose history dates back to the famous four-color problem and the early work of Kempe [9] in 1879 and Heawood [8] in 1890.Fink et al.,[3] studied the concept of the bondage number.

Throughout this paper, we assume that $\mathrm{G}=$ (V, E) is a finite, simple connected graph with at least two vertices.

II.MAIN RESULTS

Example 1.1.

(i) $d_{\chi}=\chi\left(\mathrm{C}_{\mathrm{n}}\right)=2$, if n is even. If n is odd, then $\chi\left(\mathrm{C}_{\mathrm{n}}\right)=3$ and $d_{\chi}\left(\mathrm{C}_{\mathrm{n}}\right)=2$.
(ii) $d_{\chi}\left(\mathrm{K}_{\mathrm{n}}\right)=\chi\left(\mathrm{K}_{\mathrm{n}}\right)=\mathrm{n}$
(iii) For any bipartite graph $\mathrm{G}, d_{\chi}(\mathrm{G})=\chi(\mathrm{G})=2$.

Theorem 1.2.In a k-chromatic graph G,any k coloring of G yields another k-coloring of G containing a color class which is a dominating set of G.
Remark 1.3. It follows from Theorem 1.2 that $d_{\chi}(\mathrm{G}) \geq 1$ and hence $1 \leq d_{\chi}(\mathrm{G}) \leq \chi(\mathrm{G})$. Further these bounds are sharp. For the complete graph K_{n}, we have $d_{\chi}\left(\mathrm{K}_{\mathrm{n}}\right)=\chi\left(\mathrm{K}_{\mathrm{n}}\right)=\mathrm{n}$. Also if H is any connected graph of order at least 3 , then the corona $\mathrm{G}=\mathrm{H} \circ \mathrm{K} 1$ does not have two disjoint independent dominating sets and hence $d_{x}(G)=1$. In fact we have the following theorem.
Theorem 1.4. Given integers a and b with $1 \leq a \leq$ b, there exists a graph G such that $d_{\chi}(G)=a$ and $\chi(G)=b$.
Proof. If $\mathrm{a}=1$, then for the corona $\mathrm{G}=\mathrm{K}_{\mathrm{b}} \circ \mathrm{K}_{1}$, we have $d_{x}(G)=1$ and $\chi(G)=b$. If $a \geq 2$, let G be the graph obtained from K_{b} by attaching a copy of K_{a} at a vertices of K_{b}. Then $d_{\chi}(\mathrm{G})=\mathrm{a}$ and $\chi(\mathrm{G})=\mathrm{b}$.

For any graph $\mathrm{G}, d_{\chi}(\mathrm{G})=\chi(\mathrm{G})$ if and only if G admits a k -coloring in which every color class is a dominating set of G and we proceed to study graphs with this property.
Theorem 1.5. For any uniquely colorable graph G, $d_{\chi}(G)=\chi(G)$.
Proof. Let $\mathrm{C}=\left\{\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{\mathrm{k}}\right\}$ be the k-coloring of G , where $\chi(\mathrm{G})=k$. Suppose there exists a color class in C , say V_{1} which is not a dominating set of G . Then there exists a vertex $v \in \mathrm{~V}_{\mathrm{i}}$ where $\mathrm{i}>1$, such that v is not adjacent any of the vertices of V_{1}. Now, $\mathrm{C}_{1}=\left\{\mathrm{V}_{1} \cup\{v\}, \ldots, \mathrm{V}_{\mathrm{i}}-\{v\}, \mathrm{V}_{i+1} \ldots \mathrm{~V}_{k}\right\}$ is a $k-$ coloring of G , which is a contradiction. Thus each V_{i} is a dominating set of G . Hence $d_{\chi}(\mathrm{G})=\chi(\mathrm{G})$.
Corollary 1.6. If G is a uniquely colorable graph, then $d_{i}(G)=\chi(G)$.

Remark 1.7. The converse of Theorem 1.4 is not true.

Consider the graph G given in Figure 1.1.
Clearly $\chi(\mathrm{G})=3$. Also C_{1}
$=\left\{\left\{\mathrm{v}_{2}, \mathrm{v}_{5}\right\},\left\{\mathrm{v}_{3}, \mathrm{v}_{6}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{4}\right\}\right\}$ and $\mathrm{C}_{2}=$ $\left\{\left\{\mathrm{v}_{2}, \mathrm{v}_{4}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{3}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{5}\right\}\right\}$ are two diff erent 3colorings of G and hence G is not uniquely colorable. Further, in any 3-coloring of G each color class contains exactly one vertex from $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{6}\right\}$ and exactly one vertex from $\left\{\mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}\right\}$. Hence every color class forms a dominating set of G , so that $\mathrm{d}_{x}(\mathrm{G})=3$.

Figure 1.1

Remark 1.8. If $d_{\chi}(\mathrm{G})=\chi(\mathrm{G})$, then G is indominable and $\chi \leq d_{i}$. This inequality can be strict. For the graph G give in Figure 1.2, $\chi(\mathrm{G})=3$. Also $\{\{1,6\},\{3,7\},\{4,8\},\{2,5\}\}$ is an indomatic partition of G and hence $d_{\mathrm{i}}(\mathrm{G})=4$

Figure 1.2
Remark 1.9. Let G be an indominable graph. Since $d_{\mathrm{i}}(\mathrm{G}) \geq \chi(\mathrm{G})$ and $\chi(\mathrm{G}) \geq d_{\chi}(\mathrm{G})$, we have $d_{\mathrm{i}}(\mathrm{G}) \geq \mathrm{d}_{x}(\mathrm{G})$.
Theorem 1.10. Let G be a k-chromatic graph. If $=\frac{m}{\binom{k}{2}}$, then every k-coloring of G is an independent domatic partition of G.

Proof. Suppose $=\frac{m}{\binom{k}{2}}$. Then the number of edges between any two color classes in any k-coloring of G is $\frac{m}{\binom{k}{2}}$. Let $\left\{\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{\mathrm{k}}\right\}$ be any k-coloring of G . We claim that each V_{i} is a dominating set of G. Suppose on the contrary that V_{1} is not a dominating set of G. Then there exists a vertex v in a color class other than V_{1}, say V_{2}, such that v is not adjacent to any of the vertices of V_{1}. Hence $\left\{\mathrm{V}_{1} \cup\{v\}, \mathrm{V}_{2}-\{v\}, \mathrm{V}_{3}, \ldots, \mathrm{~V}_{\mathrm{k}}\right\}$ is a k -coloring of G and the number of edges between the color class $\quad \mathrm{V}_{2}$ $-\{v\}$ and some color class is less than $\frac{m}{\binom{k}{2}}$, which is a contradiction. Thus each V_{i} is a dominating set of G.

Corollary 1,11. Let G be a k-chromatic graph with $\rho=\frac{m}{\binom{k}{2}}$. Then $d_{\chi}(G)=\chi(G)$.
Corollary 1.12. For any k-chromatic graph G with $\rho=\frac{m}{\binom{k}{2}}, i(G) \leq \frac{n}{k}$ and this bound is sharp.
Proof. Let $\left\{\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{\mathrm{k}}\right\}$ be a k-coloring of G .
Since each V_{i} is a dominating set of $\mathrm{G},\left|\mathrm{V}_{i}\right| \geq i(\mathrm{G})$ for all $i=1,2, \ldots, \mathrm{k}$ and hence $\mathrm{i}(\mathrm{G}) \leq \frac{n}{k}$. This bound is sharp, since for the complete k-partite graph $\mathrm{G}=\mathrm{K}_{\lambda, \lambda}, \ldots, \lambda$, we have $i(\mathrm{G})=\frac{n}{k}$.
Remark 1.13. The converse of Theorem 1.9 is not true. For the 3-chromatic graph G given in Figure 1.3,

Figure 1.3
$\left\{\left\{v_{2}, v_{4}, v_{5}, v_{6}\right\},\left\{v_{3}, v_{8}\right\},\left\{v_{1}, v_{7}, v_{9}, v_{10}\right\}\right\}$ is the unique 3-coloring of G in which each color class is a dominating set of G. However $\rho=5 \neq \frac{m}{\binom{k}{2}}$.

Problem 1.14. Characterize k-chromatic graphs G with $\rho(G)=\frac{m}{\binom{k}{2}}$ for which $i(G)=\frac{n}{k}$.

We observe that a k-chromatic graph G with $\rho(\mathrm{G})=\frac{m}{\binom{k}{2}}$ for which $i(\mathrm{G})=\frac{n}{k}$ must be a k-partite graph with a partition $\left\{\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{\mathrm{k}}\right\}$ such that each V_{i} is an $i(\mathrm{G})$-set of G and the number of edges in $\left\langle V_{i} \cup V_{j}\right\rangle$ is same for all $\mathrm{i} \neq \mathrm{j}$.

Theorem 1.9 leads to the following problem.

Problem 1.15. Characterize k-chromatic graphs G in which every k-coloring of G is an independent domatic partition of G.

Theorem 1.16. For any uniquely colorable graph $G, \rho(G) \geq 2 i(G)-1$. Further, equality holds if and only if the k-coloring of G contains two color classes V_{1} and V_{2} such that $\left|V_{1}\right|=\left|V_{2}\right|=i(G)$ and $\left\langle V_{1} \cup V_{2}\right\rangle$ is a tree.
Proof. Let $\left\{\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{\mathrm{k}}\right\}$ be the k-coloring of G . Since G is uniquely colorable, it follows from Theorem 1.4 that each V_{i} is a dominating set of G and hence $|\mathrm{V} i| \geq i(\mathrm{G})$. Now, it follows from Theorem 1.45 that the induced subgraph $\left\langle V_{i} \cup V_{j}\right\rangle$ is connected for all $\mathrm{i} \neq \mathrm{j}$ so that the number of edges in $\left\langle V_{i} \cup V_{j}\right\rangle$ is at least $2 i(\mathrm{G})-1$. Thus $\rho(\mathrm{G}) \geq$ $2 i(\mathrm{G})^{-1}$. Obviously, equality holds if and only if the k -coloring of G contains two color classes V_{1} and V_{2} such that $\left|\mathrm{V}_{1}\right|=\left|\mathrm{V}_{2}\right|=i(\mathrm{G})$ and $\left\langle V_{1} \cup V_{2}\right\rangle$ is a tree.

Remark 1.17. The above bound is sharp. For the complete graph K_{n}, we have $\rho\left(K_{n}\right)=1=2 i\left(K_{n}\right)-1$. The following are some interesting problems for further investigation.

Problem 1.18.

(i) Characterize uniquely colorable graphs G
for which $\rho(G)=2 i(G)-1$.
(ii) Characterize graphs G for which $\rho(G)=\frac{m}{\binom{k}{2}}$

REFERENCES

[1] G. Chartrand and L. Lesniak, Graphs and Digraphs, Fourth Edition, CRC Press, Boca Raton, 2004.
[2] E.J. Cockayne and S.T. Hedetniemi, Towards a theory of domination in graphs, Networks, 7(1977), 241-261.
[3] J.F.Fink,M.S.Jocobson,L.F.kinch and Roberts, The bondage number of A graph,DisceeteMath.,86(1990), 47-57
[4] F. Harary, Graph Theory, Addision - Wesley, Reading Mass, 1972.
[5] F. Harary, Covering and packing in graphs I, Ann. N. Y. Acad. Sci., 175(1970), 198-205.
[6] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, (1997).
[7] T. W. Haynes, S. T. Hedetniemi and P. J. Slater. Domination in Graphs - Advanced Topics, Marcel Dekker, Inc.,New York, (1997).
[8] P.J. Heawood, Map-colour theorem, Quart. J. Pure Appl.Math.,24 (1890), 332-338 .
[9] A.B.Kempe, On the geographoical problem of four colors,Amer.J.Math.,2(1879),193-204.
[10] H.B. Walikar, B.D. Acharya and E. Sampathkumar, Recent Development in the theory of domination in graphs, In MRI

Lecture Notes in Math., Mehta Research Instit., Allahabad,1, 1979.

