On rgw α-Continuous and rgw α-Irresolute Maps in Topological Spaces

R. S. Wali ${ }^{1}$, Vijayalaxmi R.Patil ${ }^{2}$
${ }^{I}$ Department of Mathematics, Bhandari and Rathi College, Guledagudd, Karnataka, INDIA.
${ }^{2}$ Department of Mathematics, Rani Channamma University Belagavi, Karnataka, INDIA.

Abstract

The aim of this paper is to introduce a new type of functions called the rgw α - continuous map, rgw α - irresolute maps, strongly rgw α-continuous maps, perfectly rgw α-continuous maps and study some of these properties.

Keywords: rgw α-open sets, rgw α-closed sets, rgw α continuous map, rgw α-irresolute maps, strongly rgw α continuous maps, perfectly rgw α-continuous.
Mathematical subject classification (2010): 54C05, $54 \mathrm{C10}$

I. Introduction:

The continuous functions plays very important role in Topology. Balachandran et.al [5], Levine [18], Mashhour et.al [16], Gnanmbal et.al [11], S. P. Arya and Gupta. R [24] have introduced g-continuity, Semicontinuity, pre- continuity, gpr-continuity, regular and completely-continuous respectively. In 1972 Crossley and Hiledebrand [6] introduced the notion of irresoluteness. In 1981, Munshi and Bassan [17] introduced the notion of generalized continuous (briefly g - continuous) functions which are called in [5] as g irresolute functions. Furthermore, the notion of gsirresolute [10] (resp.gp-irresolute [2], αg-irresolute [9], gb- irresolute [3], gsp-irresolute [32]) functions is introduced. Also, the concept of w α-continuous functions was introduced by S S Benchalli et al [30]. Recently R S Wali and Vijayalaxmi R.Patil [23] introduced and studied the properties of rgw α-closed set. The purpose of this paper is to introduce a new class of functions, namely, rgwa-continuous functions and rgw α-irresolute functions strongly rgw α-continuous maps, perfectly rgw α-continuous maps. Also, we study some of the characterization and basic properties of rgw α-continuous functions.

II. Preliminaries:

Throughout this paper, (X, τ) and (Y, σ) (or simply X and Y) represent a topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space $\mathrm{X}, \mathrm{cl}(\mathrm{A})$
and $\operatorname{int}(\mathrm{A})$ denote the closure of A and the interior of A respectively. $\mathrm{X} \backslash \mathrm{A}$ or A^{c} denotes the complement of A in X . We recall the following definitions and results.
Definition 2.1: A subset A of a topological space (X, τ) is called.
(1) semi-open set [19] if $\mathrm{A} \subseteq \operatorname{cl}(\operatorname{int}(\mathrm{A}))$ and semiclosed set if $\operatorname{int}(\mathrm{cl}(\mathrm{A})) \subseteq \mathrm{A}$.
(2) pre-open set [1] if $\mathrm{A} \subseteq \operatorname{int}(\mathrm{cl}(\mathrm{A}))$ and pre-closed set if $\operatorname{cl}(\operatorname{int}(\mathrm{A})) \subseteq \mathrm{A}$.
(3) α-open set [21] if $\mathrm{A} \subseteq \operatorname{int}(\operatorname{cl}(\operatorname{int}(\mathrm{A})))$ and α-closed set if $\operatorname{cl}(\operatorname{int}(\operatorname{cl}(\mathrm{A}))) \subseteq \mathrm{A}$.
(4) semi-pre open set [7] (= β-open) if $\mathrm{A} \subseteq \operatorname{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{A}))))$ and a semi-pre closed set ($=\beta$-closed) if $\operatorname{int}(\operatorname{cl}(\operatorname{int}(\mathrm{A}))) \subseteq \mathrm{A}$.
(5) regular open set [15] if $\mathrm{A}=\operatorname{int}(\mathrm{clA})$) and a regular closed set if $\mathrm{A}=\mathrm{cl}(\operatorname{int}(\mathrm{A}))$.
(6) Regular semi open set [11] if there is a regular open set U such that $U \subseteq A \subseteq \operatorname{cl}(U)$.
(7) Regular α-open set [8] (briefly, r α-open) if there is a regular open set U s.t $U \subseteq A \subseteq \alpha c l(U)$.

Definition 2.2: A subset A of a topological space (X, τ) is called
(1) w-closed set [23] if $\operatorname{cl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is semi-open in X .
(2) w α - closed set $[30]$ if $\alpha c l(A) \subseteq U$ whenever $A \subseteq U$ and U is w-open in X .
(3) generalized closed set(briefly g-closed) [18] if $\operatorname{cl}(\mathrm{A})$ $\subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is open in X .
(4) generalized semi-closed set(briefly gs-closed)[27] if $\operatorname{scl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is open in X . (5) generalized pre regular closed set(briefly gprclosed)[33]if $\operatorname{pcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X .
(6) regular generalized α-closed set (briefly, rg α-closed)
$[2]$ if $\alpha \mathrm{cl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is regular α open in X.
(7) α-generalized closed set (briefly $\alpha \mathrm{g}$-closed) [13] if $\alpha \operatorname{cl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is open in X .
(8) generalized α-closed set (briefly g α-closed) (20), if $\alpha \operatorname{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is $\alpha-$ open in X.
(9) weakely generalized closed set (briefly, wgclosed)[20] if $\operatorname{cl}(\operatorname{int}(A)) \subseteq U$ whenever $A \subseteq U$ and U is open in X .
(10) regular weakly generalized closed set (briefly, rwg-closed) [20] if $\operatorname{cl}(\operatorname{int}(A)) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.
(11) generalized pre closed (briefly gp-closed) set [12] if $\operatorname{pcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
(12) regular w-closed (briefly rw -closed) set [31] if $\mathrm{cl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is regular semi-open in X .
(13) generalized regular closed (briefly gr-closed) set [24] if $\operatorname{rcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
(14) regular generalized weak (briefly rgw-closed) $\operatorname{set}[25]$ if $\operatorname{cl}(\operatorname{int}(A)) \subseteq U$ whenever $A \subseteq U$ and U is regular semi open in X.
(15) generalized weak α-closed (briefly gw α-closed) set
[29] if $\alpha \operatorname{cl}(A) \subseteq U$ whenever $A \subseteq U \& U$ is $w \alpha$ - open in X.
(16) generalized star weakly α-closed set (briefly g^{*} w α closed) [28] if $\operatorname{cl}(A) \subseteq U$ whenever $A \subseteq U \& U$ is $w \alpha-$ open in X.

The compliment of the above mentioned closed sets are their open sets respectively.

Definition 2.3: A map f: $(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is said to be (i) regular-continuous(r-continuous) [24] if $f^{1}(V)$ is r closed in X for every closed subset V of Y.
(ii) completely-continuous [24] if $f^{-1}(\mathrm{~V})$ is regular closed in X for every closed subset V of Y.
(iii) strongly-continuous [15] if $f^{-1}(V)$ is clopen (both open and closed) in X for every subset V of Y .
(iv) g-continuous [30] if $f^{-1}(\mathrm{~V})$ is g-closed in X for every closed subset V of Y
(v) w-continuous [23] if $f^{-1}(V)$ is w-closed in X for every closed subset V of Y
(vi) α-continuous [21] if $\mathrm{f}^{-1}(\mathrm{~V})$ is α-closed in X for every closed subset V of Y .
(vii) w α-continuous [30] if $\mathrm{f}^{-1}(\mathrm{~V})$ is $w \alpha$-closed in X for every closed subset V of Y.
(viii) strongly α-continuous [34] if $f^{-1}(V)$ is α-closed in X for every semi-closed subset V of Y .
(ix) αg-continuous [13] if $f^{-1}(V)$ is αg-closed in X for every closed subset V of Y .
(x) wg-continuous [20] if $f^{-1}(V)$ is wg-closed in X for every closed subset V of Y .
(xi) rwg-continuous [20] if $\mathrm{f}^{-1}(\mathrm{~V})$ is rwg-closed in X for every closed subset V of Y .
(xii) gs-continuous [18] if $\mathrm{f}^{1}(\mathrm{~V})$ is gs-closed in X for every closed subset V of Y .
(xiii) gpr-continuous [33] if $f^{1}(V)$ is gpr-closed in X for every closed subset V of Y.
(xiv) $\operatorname{rg} \alpha$-continuous [2] if $f^{1}(V)$ is $\operatorname{rg} \alpha$-closed in X for every closed subset V of Y .
(xv) gr-continuous [24] if $\mathrm{f}^{-1}(\mathrm{~V})$ is gr-closed in X for every closed subset V of Y.
(xvi) rw-continuous [31] if $\mathrm{f}^{-1}(\mathrm{~V})$ is rw-closed in X for every closed subset V of Y .
(xvii) rgw-continuous [25] if $\mathrm{f}^{-1}(\mathrm{~V})$ is rgw-closed in X for every closed subset V of Y .

Definition 2.4: A map $f:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is said to be
(i) irresolute [30] if $\mathrm{f}^{1}(\mathrm{~V})$ is semi- closed in X for every semi-closed subset V of Y
(ii) α-irresolute [21] if $\mathrm{f}^{-}(\mathrm{V})$ is α-closed in X for every α-closed subset V of Y .
(iii) contra irresolute [21] if $f^{-1}(V)$ is semi-open in X for every semi-closed subset V of Y .
(iv) contra w-irresolute [23] if $f^{1}(V)$ is w-open in X for every w-closed subset V of Y.
(v) contra r-irresolute [24] if $\mathrm{f}^{\prime}(\mathrm{V})$ is regular-open in X for every regular-closed subset V of Y .
(vi) contra continuous [4] if $f^{-1}(V)$ is open in X for every closed subset V of Y .
(vii) rw*-open(resp rw*-closed) [31] map if $f(U)$ is rwopen (resp. rw-closed) in Y for every rw-open (resp rwclosed) subset U of X.

Lemma 2.5: see [23]

1) Every closed (resp. regular-closed, w-closed, α closed and β-closed) set is rgw α-closed set in X.
2) Every rw-closed (resp. rs-closed, r α-closed, w α closed, $\mathrm{g} \alpha$-closed, $\mathrm{rg} \alpha$-closed, gw α-closed and $\mathrm{g}^{*} \mathrm{w} \alpha-$ closed) set is rgw α-closed set in X.
3) Every rgw α-closed set is $g \beta$-closed set
4) The set g-closed (resp. wg-closed, rg-closed, grclosd, gpr-closed, rgw-closed, rwg-closed and αg closed) set is independent with rgw α-closed set.

Lemma 2.6: see [23] If a subset A of a topological space X, and

1) If A is weak-open and rgw α-closed then A is α closed set in X.
2) If A is both weak α-open and rgw α-closed then it is r α-closed set in X
3) If A is weak-open and r α-closed then A is $r g w \alpha$ closed set in X
4) If A is both open and g-closed then A is rgw α-closed set in

Definition 2.7: A topological space (X, τ) is called
(1) an α-space if every α-closed subset of X is closed in X.

3. rgw α - Continuous Functions.

Definition 3.1: A function f from a topological space X into a topological space Y is called regular generalized weakly α - continuous (briefly rgw α - continuous) if f ${ }^{1}(\mathrm{~V})$ is rgw α - closed set in X for every closed set V in Y.

Theorem 3.2: If a map f is continuous, then it is rgw α continuous but not conversely.
Proof: Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be continuous. Let F be any closed set in Y. Then the inverse image $\mathrm{f}^{4}(\mathrm{~F})$ is closed set in X. Since every closed set is rgw α - closed, by Lemma 2.5, $f^{-1}(F)$ is rgw α - closed in X. Therefore f is rgw $\alpha-$ continuous.

Theorem 3.3: If a map $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is α-continuous, then it is rgw α-continuous but not conversely.
Proof: Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be α-continuous. Let F be any closed set in Y. Then the inverse image $\mathrm{f}^{-1}(\mathrm{~F})$ is α-closed set in X. Since every α-closed set is rgw α - closed by Lemma 2.5, $\mathrm{f}^{1}(\mathrm{~F})$ is rgw α-closed in X . Therefore f is rgw α-continuous.
The converse need not be true as seen from the following example.

Example 3.4: Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$, $\quad \tau$ $=\{X, \phi,\{\mathrm{a}\},\{\mathrm{d}\},\{\mathrm{e}\},\{\mathrm{a}, \mathrm{d}\},\{\mathrm{a}, \mathrm{e}\},\{\mathrm{d}, \mathrm{e}\},\{\mathrm{a}, \mathrm{d}, \mathrm{e}\}\}$ and σ $=\{\mathrm{Y}, \phi,\{\mathrm{a}\},\{\mathrm{d}\},\{\mathrm{e}\},\{\mathrm{a}, \mathrm{d}\},\{\mathrm{a}, \mathrm{e}\},\{\mathrm{d}, \mathrm{e}\},\{\mathrm{a}, \mathrm{d}, \mathrm{e}\}$. Let map $f: X \rightarrow Y$ defined by $f(a)=c, f(b)=a, f(c)=b, f(d)=d$, $\mathrm{f}(\mathrm{e})=\mathrm{e}$, then f is rgw α - continuous but not continuous and not α-continuous, as closed set $\mathrm{F}=\{\mathrm{a}, \mathrm{c}, \mathrm{e}\}$ in Y , then $f^{-1}(F)=\{a, b, e\}$ in X which is not closed and also not α-closed set in X .

Theorem 3.5: If a map $f: X \rightarrow Y$ is continuous, then the following holds.
(i) if f is r -continuous, then f is $\mathrm{rgw} \alpha$-continuous.
(ii) if f is w-continuous, β - continuous, rw- continuous, rs- continuous, r α - continuous, w α continuous, $\mathrm{g} \alpha-$ continuous, $\operatorname{rg} \alpha$ - continuous, gw α - continuous, g^{*} w $\alpha-$ continuous, then f is $\mathrm{rgw} \alpha$-continuous.
Proof: (i) Let F be a closed set in Y. Since F is rcontinuous, then $f^{-1}(F)$ is r-closed in X. Since every r-
closed set is rgw α-closed by Lemma 2.5, then $f^{-1}(F)$ is $\operatorname{rgw} \alpha$-closed in X. Hence f is $\mathrm{rgw} \alpha$-continuous. Similarly we can prove (ii).
The converse need not be true as seen from the following example.

Example 3.6: Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}, \quad \tau \quad=\{\mathrm{X}$, $\phi,\{\mathrm{a}\},\{\mathrm{d}\},\{\mathrm{e}\},\{\mathrm{a}, \mathrm{d}\},\{\mathrm{a}, \mathrm{e}\},\{\mathrm{d}, \mathrm{e}\},\{\mathrm{a}, \mathrm{d}, \mathrm{e}\}\}$ and $\sigma=\{\mathrm{Y}, \phi$, $\{\mathrm{a}\},\{\mathrm{d}\},\{\mathrm{e}\},\{\mathrm{a}, \mathrm{d}\},\{\mathrm{a}, \mathrm{e}\},\{\mathrm{d}, \mathrm{e}\},\{\mathrm{a}, \mathrm{d}, \mathrm{e}\}$. Let map $\mathrm{f}:$ $X \rightarrow Y$ defined by $f(a)=c, f(b)=a, f(c)=b, f(d)=d$, $f(e)=e$, then f is rgw α - continuous but not r-continuous, w-continuous, β-continuous, rs-continuous and r α continuous, rw-continuous, $\quad \mathrm{w} \alpha-$ continuous, $\mathrm{g} \alpha$ continuous, $\mathrm{rg} \alpha$ - continuous, gw α - continuous, $\mathrm{g} * \mathrm{w} \alpha-$ continuous as closed set $F=\{b, c, d, e\}$ in Y, then f ${ }^{\prime}(F)=\{a, c, d . e\}$ in X which is rg $\omega \alpha$-closed but not r closed, w-closed, β-closed, rs-closed and r α-closed set in X. and closed set $F=\{b, c, d\}$ in $Y f^{-1}(F)=\{a, b, d\}$ which is not rw-closed, w α-closed, $\mathrm{g} \alpha$ - closed, $\operatorname{rg} \alpha$ - closed, gw α - closed, g^{*} w α - closed.

Theorem 3.7: If a map $f: X \rightarrow Y$ is rgw α-continuous, then it is $g \beta$ - continuous but not conversely.
Proof: Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is rgw α - continuous. Let F be any closed set in Y. Then the inverse image $\mathrm{f}^{1}(\mathrm{~F})$ is rgw $\alpha-$ closed set in X . Since every rgw α-closed set is $\mathrm{g} \beta$ closed set by lemma 2.5, $\mathrm{f}^{-1}(\mathrm{~F})$ is $\mathrm{g} \beta$-closed set in X . Therefore f is $g \beta$ - continuous.
The converse need not be true as seen from the following example.
Example 3.8: Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau=\{\mathrm{X}, \phi,\{\mathrm{a}\},\{\mathrm{b}, \mathrm{c}\}\}$ and $\sigma=\{Y, \phi,\{a\}\}$. Let map $f: X \rightarrow Y$ defined by $f(a)=b$, $f(b)=a, f(c)=c$, then f is $g \beta$ - continuous but not rgw $\alpha-$ continuous as a closed set $\mathrm{F}=\{\mathrm{b}, \mathrm{c}\}$ in $\mathrm{Y}, \mathrm{f}^{1}(\mathrm{~F})=\mathrm{f}$ ${ }^{\prime}\{b, c\}=\{a, c\}$ which is not rgw α-closed set.

Remark 3.9: The following examples show that rgw α continuous maps are independent of g-continuous, wgcontinuous, rg-continuous, gr-continuous, gprcontinuous, rgw-continuous, rwg-continuous and αg continuous maps.

Example 3.9: Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau=\{\mathrm{X}, \phi,\{\mathrm{a}\},\{\mathrm{b}, \mathrm{c}\}\}$ and $\sigma=\{Y, \phi,\{a\}\}$. Let map $f: X \rightarrow Y$ defined by $f(a)=b$, $f(b)=a, f(c)=c$, then f is g-continuous, wg-continuous, rg-continuous, gr-continuous, gpr-continuous, rgw-
continuous, rwg-continuous and αg continuous but not rgw α-continuous function, as a closed set $\mathrm{F}=\{\mathrm{b}, \mathrm{c}\}$ in Y $f^{1}(F)=f^{1}\{b, c\}=\{a, c\}$ is not rgw α-closed set.

Example 3.10: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ and $\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau=\{\mathrm{X}$, $\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}\}$ and $\sigma=\{\mathrm{Y}, \phi,\{\mathrm{a}\},\{\mathrm{b}, \mathrm{c}\}\}$. Let map $f: X \rightarrow Y$ defined by $f(a)=b, f(b)=a, f(c)=a, f(d)=c$ then f is rgw α-continuous but not g -continuous, wg-
continuous, rg-continuous, gr-continuous, gprcontinuous, rgw-continuous, rwg-continuous and αg continuous, as a closed set $\mathrm{F}=\{\mathrm{a}\}$ closed set in Y f ${ }^{1}(F)=\{b\}$ which is not g-closed, wg-closed, rg-closed, gr-closd, gpr-closed, rgw-closed, rwg-closed and α g closed set.

Remark 3.11: From the above discussion and known results we have the following implications

By A $\rightarrow \mathrm{B}$ we mean A implies B but not conversely
and $A \leftrightarrow B$ means A and B are independent of each other.

Theorem 3.12: Let $f: X \rightarrow Y$ be a map. Then the following statements are equivalent:
(i)f is rgw α-continuous.
(ii) the inverse image of each open set in Y is rgw α open in X.
Proof: Assume that $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is rgw α-continuous. Let G be open in Y. The G^{c} is closed in Y. Since f is rgw α continuous, $f^{4^{1}}\left(G^{c}\right)$ is rgw α-closed in X. But $f^{1}\left(G^{c}\right)=X-$ $f^{1}\left(G^{c}\right)$. Thus $f^{4^{1}}\left(G^{c}\right)$ is rgw α-open in X.
Converserly, Assume that the inverse image of each open set in Y is rgw α-open in X. Let F be any closed set in Y. By assumption $f^{-1}\left(F^{c}\right)$ is rgw α-open in X. But f^{-} ${ }^{1}\left(F^{c}\right)=X-f^{1}(F)$. Thus $X-f^{-1}(F)$ is rgw α-open in X and so $f^{-1}(F)$ is rgw α-closed in X. Therefore f is $r g w \alpha-$ continuous. Hence (i) and (ii) are equivalent.

Theorem 3.13: If $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is map. Then the following holds.

1) f is rgw α-continuous and contra w-irresolute map then f is α-continuous
2) f is rgw α-continuous and contra w α-irresolute map then f is $\mathrm{r} \alpha$-continuous.
3) f is r α-continuous and contra w-irresolute map then f is rgw α-continuous
4) f is g-continuous and contra irresolute map then f is rgw α-continuous.

Proof:

1) Let V be w-closed set of Y, As every w-closed set is closed, V is closed set in Y. Since f is rgw α-continuous and contra w -irresolute map, $\mathrm{f}^{-1}(\mathrm{~V})$ is rgw α-closed and w-open in X , Now by Lemma 2.6, $\mathrm{f}^{-1}(\mathrm{~V})$ is α-closed in X . Thus f is α-continuous.
2) Similarly using Lemma 2.6 we can prove this.
3) Let V be closed set of Y. Since f is r α-continuous and contra w-irresolute map, $\mathrm{f}^{-1}(\mathrm{~V})$ is r α-closed and w open in X , Now by Lemma 2.6, $\mathrm{f}_{-1}(\mathrm{~V})$ is rgw α-closed in X. Thus f is rgw α-continuous.
4) Similarly using Lemma 2.6 we can prove this.

Theorem 3.14: Let A be a subset of a topological space X. Then $x \in \operatorname{rgw} \alpha c l(A)$ if and only if for any $\operatorname{rgw} \alpha-$ open set U containing $x, A \cap U \neq \phi$.
Proof: Let $\mathrm{x} \in \operatorname{rgwacl}(\mathrm{A})$ and suppose that, there is a rgw α-open set U in X such that $x \in U$ and $A \cap U=\phi$ implies that $\mathrm{A} \subset \mathrm{U}^{\mathrm{c}}$ which is rgw α-closed in X implies $\operatorname{rgw} \alpha c l(A) \subseteq \operatorname{rgw} \alpha \operatorname{cl}\left(\mathrm{U}^{c}\right)=\mathrm{U}^{c}$. Since $\mathrm{x} \in \mathrm{U}$ implies that $x \notin U^{c}$ implies that $x \notin \operatorname{rgwacl}(A)$, this is a contradiction.
Converserly, Suppose that, for any rgw α-open set U containing $\mathrm{x}, \mathrm{A} \cap \mathrm{U} \neq \phi$. To prove that $\mathrm{x} \in \operatorname{rgwacl}(\mathrm{A})$. Suppose that $\mathrm{x} \notin \operatorname{rgw} \alpha \mathrm{cl}(\mathrm{A})$, then there is a $\operatorname{rgw} \alpha$ closed set F in X such that $x \notin F$ and $A \subseteq F$. Since $x \notin$ F implies that $x \in F^{c}$ which is rgw α-open in X. Since A $\subseteq \mathrm{F}$ implies that $\mathrm{A} \cap \mathrm{F}^{\mathrm{c}}=\phi$, this is a contradiction. Thus $x \in \operatorname{rgwacl}(A)$.

Theorem 3.15: Let $f: X \rightarrow Y$ be a function from a topological space X into a topological space Y. If $f:$ $\mathrm{X} \rightarrow \mathrm{Y}$ is rgw α-continuous, then $\mathrm{f}(\operatorname{rgwacl}(\mathrm{A})) \subseteq$ $\mathrm{cl}(\mathrm{f}(\mathrm{A}))$ for every subset A of X .
Proof: Since $f(A) \subseteq \operatorname{cl}(f(A))$ implies that $A \subseteq f$ ${ }^{1}(\mathrm{cl}(\mathrm{f}(\mathrm{A})))$. Since $\mathrm{cl}(\mathrm{f}(\mathrm{A}))$ is a closed set in Y and f is rgw α-continuous, then by definition $\mathrm{f}^{1}(\mathrm{cl}(\mathrm{f}(\mathrm{A}))$) is a $\operatorname{rgw} \alpha$-closed set in X containing A . Hence $\operatorname{rgwacl}(\mathrm{A}) \subseteq$ $\mathrm{f}^{-1}(\mathrm{cl}(\mathrm{f}(\mathrm{A})))$. Therefore $\mathrm{f}(\operatorname{rgw} \alpha \mathrm{cl}(\mathrm{A})) \subseteq \operatorname{cl}(\mathrm{f}(\mathrm{A}))$.
The converse of the above theorem need not be true as seen from the following example.

Example 3.16: Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau=\{\mathrm{X}, \phi,\{\mathrm{a}\},\{\mathrm{b}, \mathrm{c}\}\}$ $\sigma=\{Y, \phi,\{a\}\}$, Let map $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ defined by, $\mathrm{f}(\mathrm{a})=\mathrm{b}$, $\mathrm{f}(\mathrm{b})=\mathrm{a}, \mathrm{f}(\mathrm{c})=\mathrm{c}$. For every subset of $\mathrm{X}, \mathrm{f}(\operatorname{rgw} \alpha \mathrm{cl}(\mathrm{A})) \subseteq$ $\operatorname{cl}(\mathrm{f}(\mathrm{A}))$ holds . But f is not rgw α-continuous since closed set $V=\{b, c\}$ in $Y, f^{-1}(V)=\{a, c\}$ which is not rgw α-closed set in X.

Theorem 3.17: Let $f: X \rightarrow Y$ be a function from a topological space X into a topological space Y. Then the following statements are equivalent:
(i) For each point x in X and each open set V in Y with $f(x) \in V$, there is a rgw α-open set U in X such that $x \in$ U and $\mathrm{f}(\mathrm{U}) \subseteq \mathrm{V}$.
(ii) For each subset A of $\mathrm{X}, \mathrm{f}(\operatorname{rgwacl}(\mathrm{A})) \subseteq \operatorname{cl}(\mathrm{f}(\mathrm{A}))$.
(iii) For each subset B of $Y, \operatorname{rgwacl}\left(f^{\prime}(B)\right) \subseteq f^{-1}(\operatorname{cl}(B))$.
(iv) For each subset B of $Y, f^{1}(\operatorname{int}(B)) \subseteq \operatorname{rgw\alpha int}\left(f^{-}\right.$ ${ }^{1}$ (B)).
Proof: (i) \rightarrow (ii) Suppose that (i) holds and let $y \in$ $f(\operatorname{rgwacl}(A))$ and let V be any open set of Y. Since $y \in$ $\mathrm{f}(\operatorname{rgw} \alpha \operatorname{cl}(\mathrm{A}))$ implies that there exists $\mathrm{x} \in \operatorname{rgw} \alpha c l(\mathrm{~A})$ such that $f(x)=y$. Since $f(x) \in V$, then by (i) there exists a rgwo-open set U in X such that $x \in U$ and $f(U) \subseteq V$. Since $x \in f(\operatorname{rgw} \alpha \mathrm{cl}(A))$, then by theorem 3.14 $\mathrm{U} \cap \mathrm{A} \neq \phi . \quad \phi \neq \mathrm{f}(\mathrm{U} \cap \mathrm{A}) \subseteq \mathrm{f}(\mathrm{U}) \cap \mathrm{f}(\mathrm{A})$ $\subseteq \mathrm{V} \cap \mathrm{f}(\mathrm{A})$, then $\mathrm{V} \cap f(\mathrm{~A}) \neq \phi$.Therefore we have $\mathrm{y}=$ $f(x) \in \operatorname{cl}(f((A))$. Hence $\mathrm{f}(\mathrm{rgwacl}(\mathrm{A})) \subseteq \mathrm{cl}(\mathrm{f}(\mathrm{A}))$.
(ii) \rightarrow (i) Let if (ii) holds and let $x \in X$ and V be any open set in Y containing $f(x)$. Let $A=f^{-1}\left(V^{c}\right)$ this implies that $x \notin A$. Since $f(\operatorname{rgw} \alpha \mathrm{cl}(\mathrm{A})) \subseteq \operatorname{cl}(f(\mathrm{~A})) \subseteq \mathrm{V}^{\mathrm{c}}$ this implies that $\operatorname{rgw} \alpha \operatorname{cl}(A) \subseteq f^{-1}\left(V^{c}\right)=A$. Since $x \notin A$ implies that $\mathrm{x} \notin \operatorname{rgw} \alpha \mathrm{cl}(\mathrm{A})$ and by theorem 3.14 there exists a rgw α-open set U containing x such that $U \cap A=$ ϕ,then $U \subseteq A^{c}$ and hence $f(U) \subseteq f\left(A^{c}\right) \subseteq V$.
(ii) \rightarrow (iii) Suppose that (ii) holds and Let B be any subset of Y. Replacing A by $f^{-1}(B)$ we get from (ii) $\mathrm{f}\left(\mathrm{rgw} \mathrm{\alpha cl}\left(\mathrm{f}^{-}(\mathrm{B})\right)\right) \subseteq \operatorname{cl}\left(\mathrm{f}\left(\mathrm{f}^{1}(\mathrm{~B})\right)\right) \subseteq \operatorname{cl}(\mathrm{B})$. Hence $\operatorname{rgwacl}\left(\mathrm{f}^{1^{\prime}}(\mathrm{B})\right) \subseteq \mathrm{f}^{\prime}(\operatorname{cl}(\mathrm{B}))$.
(iii) \rightarrow (ii) Suppose that (iii) holds, let $B=f(A)$ where A is a subset of X. Then we get from (iii), $\operatorname{rgwacl}(f-$ ${ }^{1}(\mathrm{f}(\mathrm{A})) \subseteq \mathrm{f}^{-1}(\mathrm{cl}(\mathrm{f}(\mathrm{A})))$ implies $\operatorname{rgw} \alpha \mathrm{cl}(\mathrm{A}) \subseteq \mathrm{f}^{1}(\mathrm{cl}(\mathrm{f}(\mathrm{A})))$. Therefore $\mathrm{f}(\operatorname{rgwacl}(\mathrm{A})) \subseteq \operatorname{cl}(\mathrm{f}(\mathrm{A}))$.
(iii) \rightarrow (iv) Suppose that (iii) holds. Let $\mathrm{B} \subseteq \mathrm{Y}$, then $\mathrm{Y}-$ $\mathrm{B} \subseteq \mathrm{Y}$. By (iii) , $\operatorname{rgwacl}\left(\mathrm{f}^{1}(\mathrm{Y}-\mathrm{B})\right) \subseteq \mathrm{f}^{-1}(\mathrm{cl}(\mathrm{Y}-\mathrm{B}))$ this implies $\mathrm{X}-\operatorname{rgwaint}\left(\mathrm{f}^{\prime}(\mathrm{B})\right) \subseteq \mathrm{X}-\mathrm{f}^{\prime}(\operatorname{int}(\mathrm{B}))$. Therefore f '(int(B)) $\subseteq \quad \operatorname{rgwaint}\left(\mathrm{f}^{1}(\mathrm{~B})\right)$. (iv) \rightarrow (iii) Suppose that (iv) holds Let $\mathrm{B} \subseteq \mathrm{Y}$, then $\mathrm{Y}-$ $\mathrm{B} \subseteq \mathrm{Y}$. $\mathrm{By}(\mathrm{iv}), \mathrm{f}^{1}(\operatorname{int}(\mathrm{Y}-\mathrm{B})) \subseteq \operatorname{rgwaint}\left(\mathrm{f}^{1}(\mathrm{Y}-\mathrm{B})\right)$ this implies that $\mathrm{X}-\mathrm{f}^{-1}(\operatorname{cl}(\mathrm{~B})) \subseteq \mathrm{X}-\operatorname{rgwacl}\left(\mathrm{f}^{1}(\mathrm{~B})\right)$. Therefore $\operatorname{rgwacl}\left(\mathrm{f}^{-1}(\mathrm{~B})\right) \subseteq \mathrm{f}^{-1}(\mathrm{cl}(\mathrm{B}))$.

Definition 3.18: Let (X, τ) be topological space and $\tau_{\operatorname{rg} \omega \alpha}=\left\{\mathrm{V} \subseteq \mathrm{X}: \operatorname{rgwacl}\left(\mathrm{V}^{c}\right)=\mathrm{V}^{\mathrm{c}}\right\}$, $\tau_{\mathrm{rg} \omega \alpha}$ is toplogy on X .
Definition 3.19: 1) A space (X, τ) is called $T_{\text {rgw } \alpha \text {-space }}$ if every rgw α-closed is closed.
2) A space (X, τ) is called $\alpha \operatorname{Trgw~}^{\operatorname{rg}}$-space if every $\operatorname{rgw} \alpha-$ closed set is α-closed set.

Theorem 3.20: Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a function. Let (X, τ) and (Y, σ) be any two spaces such that τ_{rgw} is a topology on X . Then the following statements are equivalent:
(i)For every subset A of $\mathrm{X}, \mathrm{f}(\operatorname{rgwacl}(\mathrm{A})) \subseteq \operatorname{cl}(\mathrm{f}(\mathrm{A}))$ holds,
(ii) $\quad \mathrm{f}:\left(\mathrm{X}, \quad \tau_{\mathrm{rg} \omega \alpha}\right) \rightarrow(\mathrm{Y}, \sigma) \quad$ is \quad continuous. Proof: Suppose (i) holds. Let A be closed in Y. By hypothesis $f\left(\operatorname{rgwacl}\left(\mathrm{f}^{-1}(\mathrm{~A})\right)\right) \subseteq \operatorname{cl}\left(f\left(\mathrm{f}^{-1}(\mathrm{~A})\right)\right) \subseteq \operatorname{cl}(\mathrm{A})=\mathrm{A}$. i.e. $\operatorname{rgwacl}\left(f^{-1}(A)\right) \subseteq f^{1}(A)$. Also $f^{-1}(A) \subseteq \operatorname{rgwacl}\left(f^{-1}(A)\right)$. Hence $\operatorname{rgwacl}\left(f^{-1}(A)\right)=f^{-1}(A)$. This implies $f^{-1}(A) \in \tau_{r g \omega \alpha}$. Thus $\quad f^{-1}(\mathrm{~A})$ is closed in $\left(\mathrm{X}, \tau_{\mathrm{rg} \omega}\right)$ and so f is continuous. This proves (ii).
Suppose (ii) holds. For every subset A of $\mathrm{X}, \operatorname{cl}(\mathrm{f}(\mathrm{A}))$ is closed in Y. Since $\mathrm{f}:\left(\mathrm{X}, \tau_{\mathrm{rgwa}}\right) \rightarrow(\mathrm{Y}, \sigma)$ is continuous, f ${ }^{1}(\mathrm{cl}(\mathrm{A}))$ is closed in $\left(\mathrm{X}, \tau_{\operatorname{rgw} \alpha}\right)$ that implies by definition $3.22 \operatorname{rgwacl}\left(\mathrm{f}^{-1}(\mathrm{cl}(\mathrm{f}(\mathrm{A})))\right)=\mathrm{f}^{-1}(\mathrm{cl}(\mathrm{f}(\mathrm{A})))$. Now we have, $\mathrm{A} \subseteq \mathrm{f}^{-1}(\mathrm{f}(\mathrm{A})) \subseteq \mathrm{f}^{-1}(\mathrm{cl}(\mathrm{f}(\mathrm{A})))$ and by rgw α-closure, $\operatorname{rgw} \alpha \mathrm{cl}(\mathrm{A}) \subseteq \operatorname{rgw} \alpha \operatorname{cl}\left(\mathrm{f}^{-1}(\operatorname{cl}(\mathrm{f}(\mathrm{A})))=\mathrm{f}^{-1}(\mathrm{cl}(\mathrm{f}(\mathrm{A}))\right.$. Therefore $\mathrm{f}(\operatorname{rgwacl}(\mathrm{A})) \subseteq \operatorname{cl}(\mathrm{f}(\mathrm{A}))$. This proves (i).

Remark 3.21: The Composition of two rgw α continuous maps need not be rgwo-continuous map and this can be shown by the following example.
Example 3.22 : Let $\mathrm{X}=\mathrm{Y}=\mathrm{Z}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau=\{\mathrm{X}$, $\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}\}, \sigma=\{\mathrm{Y}, \phi,\{\mathrm{a}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{c}\}\}, \eta=\{\mathrm{Z}$, $\phi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\}\}$ and a maps $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is defined as $\mathrm{f}(\mathrm{a})=\mathrm{b}, \mathrm{f}(\mathrm{b})=\mathrm{c}, \mathrm{f}(\mathrm{c})=\mathrm{a}$, and $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ is defined as $g(a)=b, g(b)=a, g(c)=c$, Both f and g are rgw α continuous maps. But gof not rgw α-continuous map, since closed set $V=\{b, c\}$ in $Z,(f \circ g)^{-1}(V)=f^{-1}\left(g^{-1}(V)\right)=f^{-}$ ${ }^{1}\{b, c\}=\{a, b\}$ which is not rgw α-closed set in X.

Theorem 3.23: Let $\mathrm{f}: ~ \mathrm{X} \rightarrow \mathrm{Y}$ is rgwo-continuous function and $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ is continuous function then $\mathrm{g} \circ \mathrm{f}$: $\mathrm{X} \rightarrow \mathrm{Z}$ is rgw α-continuous.
Proof: Let g be continuous function and V be any open set in Z then $g^{-1}(V)$ is open in Y. Since f is $r g w \alpha-$ continuous, $\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\mathrm{~V})\right)=(\mathrm{g} \circ \mathrm{f})^{-1}(\mathrm{~V})$ is rgw α-open in X . Hence gof is rgw α-continuous.

Theorem 3.24: Let $f: X \rightarrow Y$ is rgw α-continuous function and $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ is rgw α-continuous function and Y is $\tau_{\mathrm{rgw} \alpha-\text {-space , then } \mathrm{g} \circ \mathrm{f}: \mathrm{X} \rightarrow \mathrm{Z} \text { is rgw } \alpha \text {-continuous. }}$
Proof: Let g be rgwa-continuous function and V be any open set in Z then $g^{-1}(V)$ is rgwa-open in Y and Y is Trgw α-space, then $g^{-1}(V)$ is open in Y. Since f is rgw $\alpha-$ continuous, $\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\mathrm{~V})\right)=(\mathrm{g} \circ \mathrm{f})^{-1}(\mathrm{~V})$ is rgw α-open in X . Hence gof is rgw α-continuous.

Theorem 3.25: If a map $f: X \rightarrow Y$ is completelycontinuous, then it is rgw α - continuous.
Proof: Suppose that a map f: $(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is completely-continuous. Let F closed set in Y. Then f
${ }^{1}(F)$ is regular closed in X and hence $f^{-1}(F)$ is is rgw $\alpha-$ closed in X . Thus f is rgw α-continuous.

Theorem 3.26: If a map $f: X \rightarrow Y$ is α-irresolute, then it is rgw α - continuous.
Proof: Suppose that a map f: $(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is $\alpha-$ irresolute. Let V be an open set in Y . Then V is α-open in Y. Since f is α-irresolute, $f^{-1}(V)$ is α-open and hence rgw α-open in X . Thus f is rgw α-continuous.

4. Perfectly rgw α-Continuous and rgw α^{*} -

 Continuous Functions.Definition 4.1: A function f from a topological space X into a topological space Y is called perfectly regular generalized weakly α - continuous (briefly perfectly rgw α-Continuous) if $\mathrm{f}^{-1}(\mathrm{~V})$ is clopen (closed and open) set in X for every rgwo-open set V in Y .

Theorem 4.2: If a map $f: X \rightarrow Y$ is continuous, then the following holds.
(i) If f is perfectly rgw α-continuous, then f is rgw α continuous.
(ii) If f is perfectly rgw α-continuous, then f is $\mathrm{g} \beta$ continuous.

Proof:

(i) Let F be a open set in Y , as every open is rgw α-open in Y, since F is perfectly rgw α-continuous, then $f^{-1}(F)$ is both closed and open in X , as every open is rgw α-open, $f^{1}(F)$ is rgw α-open in X. Hence f is rgw α-continuous.
(ii) Let F be a open set in Y , as every open is rgw α open in Y, since F is perfectly rgwo-continuous, then f ${ }^{1}(\mathrm{~F})$ is both closed and open in X , as every open is rgw α-open that implies is $g \beta$-open, then $f^{-1}(F)$ is $g \beta$ open in X. Hence f is $g \beta$-continuous.

Definition 4.3: A function f from a topological space X into a topological space Y is called regular generalized weakely α^{*} - continuous (briefly rgw α^{*} continuous) if $f^{-1}(V)$ is rgw α-closed set in X for every α-closed set V in Y.

Theorem 4.4: If A map $f:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be function,
(i) f is rgw α-irresolute then it is rgw α^{*}-continuous.
(ii) f is $\mathrm{rgw} \alpha^{*}$-continuous then it is rgw α-continuous.

Proof:

(i) Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be rgw α-irresolute. Let F be any α closed set in Y. Then F is rgw α-closed in Y. Since f is rgw α-irresolute, the inverse image $f^{1}(F)$ is rgw α-closed set in X . Therefore f is $\mathrm{rgw} \alpha^{*}$-continuous.
(ii) Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be $\mathrm{rgw} \alpha^{*}$-continuous. Let F be any closed set in Y. Then F is α-closed in Y. Since f is rgw α^{*}-continuous, the inverse image $\mathrm{f}^{-1}(\mathrm{~F})$ is rgw α closed set in X . Therefore f is rgw α-continuous.

Theorem 4.5: If a bijection $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is $\mathrm{w} \alpha^{*}{ }_{-}$ open , $\mathrm{rgw} \alpha^{*}$-continuous, then it is rgw α-irresolute.
Proof: Let A be rgw α-closed in Y. Let $f^{-1}(A) \subseteq U$ where U is w α-open set in X , Since f is $\mathrm{w} \alpha^{*}$-open map, $f(U)$ is w α-open set in $Y . A \subseteq f(U)$ implies $\operatorname{racl}(A) \subseteq$ $f(\mathrm{U})$. That is, $\mathrm{f}^{1}(\operatorname{r\alpha cl}(\mathrm{~A})) \subseteq \mathrm{U}$. Since f is $\mathrm{rgw} \alpha^{*}$ continuous, $\quad \operatorname{racl}\left(\mathrm{f}^{1}(\alpha \mathrm{cl}(\mathrm{A}))\right) \subseteq \mathrm{U}$. and so $\operatorname{r\alpha cl}(\mathrm{f}$ $\left.{ }^{1}(\mathrm{~A})\right) \subseteq \mathrm{U}$ This shows $\mathrm{f}^{-1}(\mathrm{~A})$ is rgw α-closed set in X. Hence f is rgw α-irresolute.

Theorem 4.6: If $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is rgw α-continuous and $w \alpha^{*}$-closed and if A is rgw α-open (or rgw α-closed) subset of (Y, σ) and (Y, σ) is α-space, then $\mathrm{f}^{1}(\mathrm{~A})$ is rgw α-open (or rgw α-closed) in (X, τ).
Proof: Let A be a rgw α-open set in (Y, σ) and G be any w α-closed set in (X, τ) such that $G \subseteq f^{-1}(A)$. Then $f(G) \subseteq$ A. By hypothesis $f(G)$ is $w \alpha$-closed and A is
 so $\quad G \subseteq f^{-1}(r \alpha \operatorname{Int}(A))$. Since f is $r g w \alpha-$

 ${ }^{1}(\operatorname{ra\operatorname {Int}(\mathrm {A}))\text {is}\operatorname {rgw}\alpha \text {-openin}(\mathrm {X},\tau)\text {.Thus}\mathrm {G}\subseteq r\alpha \operatorname {Int}(\mathrm {f}}$
 ${ }^{1}(\mathrm{~A})$ is rgw α-open in (X, τ). By taking the complements we can show that if A is w α-closed in $(\mathrm{Y}, \sigma), \mathrm{f}^{1}(\mathrm{~A})$ is rgw α-closed in (X, τ).

Theorem 4.7: Let (X, τ) be a discrete topological space and (Y, σ) be any topological space. Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}$, σ) be a map. Then the following statements are equivalent: (i) f is strongly rgw α-continuous. (ii) f is perfectly rgwo-continuous.
Proof: (i)=>(ii) Let U be any rgw α-open set in (Y, σ). By hypothesis $f^{-1}(U)$ is open in (X, τ). Since (X, τ) is a discrete space, $\mathrm{f}^{-1}(\mathrm{U})$ is also closed in $(\mathrm{X}, \tau) . \mathrm{f}^{1}(\mathrm{U})$ is both open and closed in (X, τ). Hence f is perfectly rgw α-continuous. (ii)=>(i) Let U be any rgw α-open set in (Y, σ). Then $\mathrm{f}^{f^{\prime}}(\mathrm{U})$ is both open and closed in (X, $\left.\tau\right)$. Hence f is strongly rgw α-continuous.

5. rgw α-Irresolute and Strongly rgw α-Continuous Functions.

Definition 5.1: A function f from a topological space X into a topological space Y is called regular generalized weakly α - irresolute (breifly rgw α-irresolute) map if f^{-} ${ }^{1}(\mathrm{~V})$ is rgw α-closed set in X for every rgw α-closed set V in Y .

Definition 5.2: A function f from a topological space X into a topological space Y is called strongly regular generalized weakly α - continuous (strongly rgw α continuous) map if $\mathrm{f}^{-1}(\mathrm{~V})$ is closed set in X for every rgw α-closed set V in Y.

Theorem 5.3: If A map $f:(X, \tau) \rightarrow(Y, \sigma)$ is rgw $\alpha-$ irresolute, then it is rgwa-continuous but not conversely.
Proof: Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be rgw α-irresolute. Let F be any closed set in Y. Then F is rgwo-closed in Y. Since f is rgw α-irresolute, the inverse image $\mathrm{f}^{-1}(\mathrm{~F})$ is rgw α-closed set in X. Therefore f is rgw α-continuous. The converse of the above theorem need not be true as seen from the following example.

Example 5.4 : $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}, \mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\} \quad \tau=\{\mathrm{X}$, $\phi,\{\mathrm{a}\},\{\mathrm{d}\},\{\mathrm{e}\},\{\mathrm{a}, \mathrm{d}\},\{\mathrm{a}, \mathrm{e}\},\{\mathrm{d}, \mathrm{e}\},\{\mathrm{a}, \mathrm{d}, \mathrm{e}\}\} \quad \sigma=\{\mathrm{Y}$, $\phi,\{a\},\{b\},\{a, b\},\{a, b, c\}\}$, Let map $f: X \rightarrow Y$ defined by , $\mathrm{f}(\mathrm{a})=\mathrm{b}, \mathrm{f}(\mathrm{b})=\mathrm{c}, \mathrm{f}(\mathrm{c})=\mathrm{d}, \mathrm{f}(\mathrm{d})=\mathrm{a}, \mathrm{f}(\mathrm{e})=\mathrm{d}$ then f is $\mathrm{rgw} \alpha-$ continuous but f is not rgwo-irresolute, as rgwo-closed set $F=\{a, b\}$ in Y, then $f^{-1}(F)=\{a, d\}$ in X, which is not rgw α-closed set in X .

Theorem 5.5: If A map f: $(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is rgw $\alpha-$ irresolute, if and only if the inverse image $f^{-1}(V)$ is rgw α-open set in X for every rgw α-open set V in Y .
Proof: Assume that $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is rgw α-irresolute. Let G be rgw α-open in Y. The G^{c} is rgw α-closed in Y. Since f is rgw α - irresolute, $f^{-1}\left(G^{c}\right)$ is rgw α-closed in X. But f ${ }^{1}(G)=X-f^{1}(G)$. Thus $f^{1}(G)$ is rgw α-open in X.
Converserly, Assume that the inverse image of each open set in Y is rgwo-open in X . Let F be any rgw $\alpha-$ closed set in Y. By assumption $\mathrm{f}^{-1}\left(\mathrm{~F}^{\mathrm{c}}\right)$ is rgw α-open in X. But $f^{-1}\left(F^{c}\right)=X-f^{-1}(F)$. Thus $X-f^{-1}(F)$ is rgw α-open in X and so $f^{1}(F)$ is rgw α-closed in X. Therefore f is rgw $\alpha-$ irresolute.

Theorem 5.6: If A map f: $(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is rgw $\alpha-$ irresolute, then for every subset A of $\mathrm{X}, \mathrm{f}(\operatorname{rgwacl}(\mathrm{A}) \subset$ $\alpha c l(f(A))$. Proof: If $A \subset X$ then consider $\alpha c l(f(A))$ which is rgw α-closed in Y. since f is rgw α-irresolute, f ${ }^{\prime}(\alpha \mathrm{cl}(\mathrm{f}(\mathrm{A})))$ is rgw α-closed in X. Furthermore $\mathrm{A} \subseteq \mathrm{f}$ ${ }^{1}(f(A)) \subseteq f^{-1}(\alpha \mathrm{cl}(f(A)))$. Therefore by rgw α-closure, $\operatorname{rgw} \alpha \mathrm{cl}(\mathrm{A}) \subseteq \mathrm{f}^{-1}(\alpha \operatorname{cl}(\mathrm{f}(\mathrm{A})))$, consequently, $\mathrm{f}(\operatorname{rgw} \alpha \mathrm{cl}(\mathrm{A}) \subseteq$ $\mathrm{f}\left(\mathrm{f}^{\prime}(\alpha \operatorname{cl}(\mathrm{f}(\mathrm{A})))\right) \subseteq \alpha \operatorname{clf}((\mathrm{A}))$.

Theorem 5.7: Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ and $\mathrm{g}:(\mathrm{Y}, \sigma) \rightarrow(\mathrm{Z}$, η) be any two functions. Then
(i) g o $f:(X, \tau) \rightarrow(Z, \eta)$ is rgw α-continuous if g is r continuous and f is $\mathrm{rgw} \alpha$ - irresolute.
(ii)g of: $(\mathrm{X}, \tau) \rightarrow(\mathrm{Z}, \eta)$ is rgw α-irresolute if g is rgw α irresolute and f is rgw α-irresolute.
(iii) g o $f:(X, \tau) \rightarrow(Z, \eta)$ is rgw α-continuous if g is continuous and f is rgw α-irresolute.

Proof: (i) Let U be a open set in (Z, η). Since g is r continuous, $\mathrm{g}^{-1}(\mathrm{U})$ is r-open set in (Y, σ). Since every r open is rgw α-open then $\mathrm{g}^{-1}(\mathrm{U})$ is rgw α-open in Y , since f is rgw α-irresolute $\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\mathrm{U})\right.$) is an rgw α-open set in (X, τ). Thus (gof) ${ }^{-1}(\mathrm{U})=\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\mathrm{U})\right)$ is an rgw α-open set in (X, τ) and hence gof is rgw α-continuous.
(ii) Let U be a rgw α-open set in (Z, η). Since g is rgw $\alpha-$ irresolute, $g^{-1}(U)$ is rgw α-open set in (Y, σ). Since f is rgw α-irresolute, $\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\mathrm{U})\right.$) is an rgw α-open set in $(\mathrm{X}$, τ). Thus (gof) ${ }^{-1}(U)=f^{-1}\left(g^{-1}(U)\right)$ is an rgw α-open set in (X, τ) and hence gof is rgw α - irresolute.
(iii) Let U be a open set in (Z, η). Since g is continuous, $\mathrm{g}^{-1}(\mathrm{U})$ is open set in (Y, σ). As every open set is rgw $\alpha-$ open, $g^{-1}(U)$ is rgw α-open set in (Y, σ). Since f is rgw $\alpha-$ irresolute $\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\mathrm{U})\right)$ is an rgw α-open set in (X, τ). Thus $(\text { gof })^{-1}(\mathrm{U})=\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\mathrm{U})\right)$ is an rgw α-open set in (X, τ) and hence gof is rgw α-continuous.

Theorem 5.8: Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is strongly rgw $\alpha-$ continuous then it is continuous.
Proof: Assume that $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is strongly rgw $\alpha-$ continuous, Let F be closed set in Y. As every closed is rgw α-closed, F is rgw α-closed in Y. since f is strongly rgw α-continuous then $f^{-1}(F)$ is closed set in X. Therefore f is continuous.

Theorem 5.9: Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is strongly rgw $\alpha-$ continuous then it is strongly α-continuous but not conversely.
Proof: Assume that $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is strongly rgw $\alpha-$ continuous, Let F be α-closed set in Y. As every α closed is rgw α-closed, F is rgw α-closed in Y. since f is strongly rgw α-continuous then $\mathrm{f}^{-1}(\mathrm{~F})$ is closed set in X . Therefore f is strongly α-continuous.
The converse of the above theorem 5.9 need not be true as seen from the following example

Example 5.10: Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}, \quad \tau \quad=\{\mathrm{X}$, $\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}\} \quad$ and $\quad \sigma \quad=\{\mathrm{Y}$, $\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}\}$. Let map $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ defined by $f(a)=b, f(b)=a, f(c)=d, f(d)=c$, then f is strongly α continuous but not continuous and not strongly rgw α continuous, as closed set $\mathrm{F}=\{\mathrm{b}, \mathrm{c}, \mathrm{d}\}$ in Y , then f . ${ }^{1}(F)=\{a, c, d\}$ in X which is not closed set in X.

Theorem 5.11: Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is strongly rgw $\alpha-$ continuous if and only if $f^{-1}(G)$ is open set in X for every rgwo-open set G in Y.
Proof: Assume that $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is strongly rgw $\alpha-$ continuous. Let G be rgw α-open in Y. The $\mathrm{G}^{\text {c }}$ is rgw $\alpha-$ closed in Y. Since f is strongly rgw α-continuous, $\mathrm{f}^{-1}\left(\mathrm{G}^{c}\right)$ is closed in X. But $f^{1}\left(G^{c}\right)=X-f^{1}(G)$. Thus $f^{1}(G)$ is open in X. Conversely, Assume that the inverse image of each open set in Y is rgwo-open in X. Let F be any rgw α-closed set in Y. By assumption F^{c} is rgw α-open in X. But $f^{1}\left(F^{c}\right)=X-f^{-1}(F)$. Thus $X-f^{1}(F)$ is open in X and
so $f^{-1}(F)$ is closed in X. Therefore f is strongly rgw $\alpha-$ continuous.

Theorem 5.12: Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is strongly continuous then it is strongly rgw α-continuous.
Proof: Assume that $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is strongly continuous. Let G be rgwo-open in Y and also it is any subset of Y since f is strongly continuous, $f^{-1}(G)$ is open (and also closed) in $X . f^{-1}(G)$ is open in X Therefore f is strongly rgwa-continuous.
Theorem 5.13: Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is strongly rgw $\alpha-$ continuous then it is rgw α-continuous.
Proof: Let G be open in Y, every open is rgw α-open, G is $\mathrm{rgw} \alpha$-open in Y , since f is strongly $\mathrm{rgw} \alpha$-continuous, $f^{-1}(G)$ is open in X and therefore $f^{1}(G)$ is rgw α-open in X. Hence f is rgwa-continuous.

Theorem 5.14: In discrete space, a map $f:(X, \tau) \rightarrow(Y$, σ) is strongly rgw α-continuous then it is strongly continuous. Proof: F any subset of Y, in discrete space, Every subset F in Y is both open and closed, then subset F is both rgw α-open or rgw α-closed, i) let F is rgw α-closed in Y , since f is strongly rgw α-continuous, then $\mathrm{f}^{1}(\mathrm{~F})$ is closed in X . ii) let F is rgw α-open in Y , since f is strongly rgw α-continuous, then $f^{-1}(F)$ is open in X. Therefore $f^{-1}(F)$ is closed and open in X. Hence f is strongly continuous.

Theorem 5.15: Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ and $\mathrm{g}:(\mathrm{Y}, \sigma) \rightarrow$ (Z, η) be any two functions. Then
(i) g o $f:(X, \tau) \rightarrow(Z, \eta)$ is strongly rgw α-continuous if g is strongly rgw α-continuous and f is strongly rgw α continuous.
(ii) g o $f:(X, \tau) \rightarrow(Z, \eta)$ is strongly rgw α-continuous if g is strongly rgw α-continuous and f is continuous.
(iii) g o $f:(X, \tau) \rightarrow(Z, \eta)$ is rgw α-irresolute if g is strongly rgw α-continuous and f is rgw α-continuous.
(iv) g o $f:(X, \tau) \rightarrow(Z, \eta)$ is continuous if g is rgw α continuous and f is strongly rgw α-continuous
Proof:
(i) Let U be a rgw α-open set in (Z, η). Since g is strongly rgw α-continuous, $\mathrm{g}^{-1}(\mathrm{U})$ is open set in (Y, σ). As every open set is rgw α-open, $\mathrm{g}_{-1}(\mathrm{U})$ is rgw α-open set in (Y, σ). Since f is strongly rgw α-continuous $\mathrm{f}^{1}(\mathrm{~g}$ ${ }^{\prime}(\mathrm{U})$) is an open set in (X, τ). Thus (gof) ${ }^{-1}(\mathrm{U})=\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\mathrm{U})\right)$ is an open set in (X, τ) and hence gof is strongly rgw $\alpha-$ continuous.
(ii) Let U be a rgw α-open set in (Z, η). Since g is strongly rgw α-continuous, $\mathrm{g}^{-1}(\mathrm{U})$ is open set in (Y, σ). Since f is continuous $f^{-1}\left(g^{-1}(U)\right)$ is an open set in (X, $\left.\tau\right)$. Thus (gof) ${ }^{-1}(\mathrm{U})=\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\mathrm{U})\right)$ is an open set in (X, τ) and hence gof is strongly rgw α-continuous.
(iii) Let U be a rgw α-open set in (Z, η). Since g is strongly rgw α-continuous, $\mathrm{g}^{-1}(\mathrm{U})$ is open set in (Y, σ). Since f is $\mathrm{rgw} \alpha$-continuous $\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\mathrm{U})\right.$) is an rgw α-open
set in (X, τ). Thus (gof) $)^{-1}(\mathrm{U})=\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\mathrm{U})\right)$ is an rgw $\alpha-$ open set in (X, τ) and hence gof is rgw α-irresolute
(iv) Let U be open set in (Z, η). Since g is rgw α continuous, $\mathrm{g}^{-1}(\mathrm{U})$ is rgw α-open set in (Y, σ). Since f is strongly rgwo-continuous $\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\mathrm{U})\right)$ is an open set in (X, τ). Thus $(\text { gof })^{-1}(U)=f^{-1}\left(g^{-1}(U)\right)$ is an open set in $(X$, τ) and hence gof is continuous.

Theorem 5.16: Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ and $\mathrm{g}:(\mathrm{Y}, \sigma)$ $\rightarrow(Z, \eta)$ be any two functions. Then

1. g o $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Z}, \eta)$ is strongly rgw α-continuous if g is perfectly rgw α-continuous and f is continuous.
2. g o $f:(X, \tau) \rightarrow(Z, \eta)$ is perfectly rgw α-continuous if g is strongly rgw α-continuous and f is perfectly rgw α continuous.

Proof:

1. Let U be a rgw α-open set in (Z, η). Since g is perfectly rgw α-continuous, $g^{-1}(\mathrm{U})$ is clopen set in (Y, σ). $g^{-1}(U)$ is open set in (Y, σ). Since f is continuous $f^{1}(g$ ${ }^{1}(\mathrm{U})$) is an open set in (X, τ). Thus (gof) ${ }^{-1}(\mathrm{U})=\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\mathrm{U})\right.$) is an open set in (X, τ) and hence gof is strongly rgw α continuous.
2. Let U be a rgw α-open set in (Z, η). Since g is strongly rgw α-continuous, $g^{-1}(\mathrm{U})$ is open set in (Y, σ). g^{-} ${ }^{1}(U)$ is open set in (Y, σ). Since f is perfectly rgw $\alpha-$ continuous, $\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\mathrm{U})\right)$ is an clopen set in (X, $\left.\tau\right)$. Thus (gof) ${ }^{-1}(\mathrm{U})=\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\mathrm{U})\right)$ is an clopen set in (X, $\left.\tau\right)$ and hence gof is perfectly rgw α-continuous.

Theorem 5.17: If A map $f:(X, \tau) \rightarrow(Y, \sigma)$ is strongly rgwo-continuous and A is open subset of X then the restriction $\mathrm{f} / \mathrm{A}: \mathrm{A} \rightarrow \mathrm{Y}$ is strongly rgw α-continuous.
Proof: Let V be any rgwo-open set of Y, since f is strongly rgw α-continuous, then $\mathrm{f}^{-1}(\mathrm{~V})$ is open in X . since A is open in $X,(f / A)^{-1}(V)=A \cap f^{-1}(V)$ is open in A. hence f / A is strongly rgw α-continuous.

Theorem: 5.18 Let (X, τ) be any topological space and (Y, σ) be a $\mathrm{T}_{\mathrm{rgww}}$-space and $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a map. Then the following are equivalent: (i) f is strongly rgwo-continuous. (ii) f is continuous.
Proof: (i) =>(ii) Let U be any open set in (Y, σ). Since every open set is rgw α-open, U is rgw α-open in (Y, σ). Then $f^{1}(U)$ is open in (X, τ). Hence f is continuous. (ii) $\Rightarrow(\mathrm{i})$ Let U be any rgw α-open set in (Y, σ). Since (Y, σ) is a $\mathrm{T}_{\mathrm{rgw} \alpha}$-space, U is open in (Y, σ). Since f is continuous. Then $f^{-1}(U)$ is open in (X, τ). Hence f is strongly rgw α-continuous.

Theorem 5.19: Let (X, τ) be a discrete topological space and (Y, σ) be any topological space. Let $\mathrm{f}:(\mathrm{X}, \tau)$ $\rightarrow(\mathrm{Y}, \sigma)$ be a map. Then the following statements are equivalent: (i) f is strongly rgw α-continuous. (ii) f is perfectly rgw α-continuous.
Proof: (i)=>(ii) Let U be any rgw α-open set in (Y, σ). By hypothesis $f^{1}(U)$ is open in (X, τ). Since (X, τ) is a discrete space, $f^{-1}(U)$ is also closed in (X, τ). $f^{1}(U)$ is
both open and closed in (X, τ). Hence f is perfectly rgw α-continuous. (ii)=> (i) Let U be any rgw α-open set in (Y, σ). Then $f^{-1}(U)$ is both open and closed in (X, $\left.\tau\right)$. Hence f is strongly rgw α-continuous.

Theorem 5.20: Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a map. Both (X, τ) and (Y, σ) are $\tau_{\mathrm{rgw} \alpha}$-spaces. Then the following are equivalent:
(i) f is $\mathrm{rgw} \alpha$-irresolute.
(ii) f is strongly rgw α-continuous
(iii) f is continuous.
(iv) f is $\mathrm{rgw} \alpha$-continuous.

Proof: Straight forward.
Theorem 5.21: Let X and Y be ${ }_{\alpha} \tau_{\mathrm{rgw}} \alpha$-spaces, then for a function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$, the following are equivalent: (i) f is α-irresolute. (ii) f is $\mathrm{rgw} \alpha$ irresolute.
Proof: (i)=> (ii): Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a α-irresolute. Let V be a rgw α-closed set in Y. As $\mathrm{Y}{ }_{\alpha} \tau_{\mathrm{rgw} \alpha}$-space, then V be a α-closed set in Y . Since f is α-irresolute, f^{-1} (V) is α-closed in X . But every α-closed set is rgw α closed in X and hence $f^{-1}(V)$ is a rgw α-closed in X. Therefore, f is rgw α-irresolute.
$(\mathrm{ii})=>(\mathrm{i})$: Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is a rgw α-irresolute. Let V be a α-closed set in Y. But every α-closed set is rgw α-closed set and hence V is rgw α-closed set in Y and f is $\mathrm{rg} \mathrm{w} \alpha$-irresolute implies $\mathrm{f}^{-1}(\mathrm{~V})$ is rgw α-closed in
 in X. Thus, f is α-irresolute.

6. Conclusion.

In this paper we have introduced and studied the properties of rgw α-continuous and rgw α-irresolute maps. Our future extension is rgwa-continuous and rgw α-irresolute in Fuzzy Topological Spaces.

7. Acknowledgement.

The Authors would like to thank the referees for useful comments and suggestions.

References.

[1] A. S. Mashhour, M.E.Abd El-Monsef and S.N.El-Deeb, On precontinuous and weak pre continuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), 47-53.
[2] A.Vadivel \& K.vairamamanickam, rg α-Closed sets\& rg α-open sets in Topological Spaces, Int J of math ,Analysis Vol 3, (2009)37,1803-1819.
[3] Al-Omari A and M.S.M.Naorami, On generalized b-closed sets, Bull. Malays. Math. Sci.Soc(2), 32(2009), 19-30.
[4] Arockiarani. I, Balachandran.K and Dontchev J, Some Characterization of gp-irresolute and gp-continuous maps between topological spaces, Mem.Fac.Sci.Kochi Univ.Ser.A Math.,20(1999),93-104.
[5] Balachandran.K, Sundaram.P and Maki.H, On generalized Continuous maps in topological spaces, Mem Fac.Sci.Kochi Univ.Ser.A.Math ., 12(1991),5-13.
[6] Crossley S. G and Hildebrand S.K, Semi Topological properties, Fund.Math., 74(1972),233-254.
[7] D. Andrijevic, Semi-preopen sets, Mat. Vesnik., 38(1)(1986), 2432.
[8] D. E. Cameron, Properties of s-closed spaces, prac Amer Math, soc 72(1978),581-586.
[9] Devi R, Balachandran.K and Maki H, On generalized α continuous maps and α - generalized continuous maps, Far
East J. Math. Sci., Special volume (1997), Part I, 1-15.
[10] Devi R, Balachandran.K and Maki H, Semi generalized homeomorphisms and generalized Semi homeomorphisms on topological spaces, Indian J. Pure Appl. Math., 26(1995), 271284.
[11] Gnanambal.Y, Balachandran.K, On gpr-continuous functions in topological spaces, Indian J.Pure Appl.Math 1999, 30(6):58193.
[12] H. Maki, J. Umehara andT. Noiri,Every Topological space is pre T½ mem Fac sci,Kochi univ,Math , 17 1996,33-42.
[13] H. Maki, R. Devi and K.Balachandran, Associated topologies of generalized α - closed sets and α-generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser.A. Math., 15(1994), 51-63.
[14] J Dontchev, Contra continuous functions and strongly S-closed spaces, Int.J.Math.Sci,19(1996), 15-31.
[15] M. Stone, Application of the theory of Boolean rings to general topology, Trans.Amer. Math.Soc.41(1937),374-481.
[16] Mashhour.A.S., Abd El-Monsef .M.E. and El-Deeb.S.N.On pre continuous mappings and week pre-continuous mappings, Proc Math,
Phys.Soc.Egypt 53(1982),47-53.
[17] Munshi B.M. and Bassan D S, g-continuous mappings, Vidya J.Gujarat Univ. B.Sci.,24(1981),63-68.
[18] N .Levine, Generalized closed sets in topology, Rend. Circ Mat. Palermo, 19(2) (1970), 89-96.
[19] N .Levine, Semi-open sets and semi-continuity in topological spaces, 70(1963), 36-41.
[20] N. Nagaveni, Studies on Generalizations of Homeomorphisms in Topological Spaces, Ph.D. Thesis, Bharathiar University, Coimbatore, 1999.
[21] O. N. Jastad, On some classes of nearly open sets, Pacific J. Math., 15(1965),961-970.
[22] P. Sundaram and M. Sheik John, On w-closed sets in topology, Acta Ciencia Indica 4 (2000), 389-39.
[23] R.S. Wali and Vijayalaxmi R.Patil, On rgw α-closed sets in topological spaces. Int.J. comp. and Math.Sci. Vol 8,(3). 62-70 (2017).
[24] S. Bhattacharya, on generalized regular closed sets, Int J.Contemp .Math science Vol.6 ,201,145-152.
[25] S. Mishra ,et, all , On regular generalized weakly (rgw)closed sets in topological spaces, Int . J. of Math Analysis Vol 6, 2012 no.(30), 1939-1952.
[26]S.P.Arya and R. Gupta, on stongly continuous functions, Kyungpook Math.j.14:131:143, 1974.
[27] S. P.Arya and T.M. Nour, Chatcterizationsof s-normal spaces, Indian J. Pure Appl, Math 21(1990), 717-719.
[28] S.S. Benchelli, P.G,Patil and Pallavi S. Mirajakar g star woclosed sets in topological spaces. Jl. New results in sciences, Vol. 9, (2015), 37- 45.
[29] S.S. Benchelli, P.G.Patil and P.M.Nalwad, gw α-closed sets in topological spaces. Journal of New results in Sci.vol.7, (2014), 7-19.
[30] S. S. Benchalli, P. G. Patil and T. D. Rayanagaudar, $\omega \alpha$-Closed sets in Topological Spaces, The Global. J. Appl. Math. and Math. Sci,. 2, 2009, 53-63.
[31] S. S. Benchalli and R.S Wali on r ω - Closed sets is Topological Spaces, Bull, Malays, Math, sci, soc30 (2007), 99-110.
[32] Veerakumar M.K.R.S., Semi-pregeneralized closed sets, Mem.Fac.Sci.Kochi Univ. Ser. A Math..,.19(1999),33-46.
[33] Y. Gnanambal, On generalized pre regular closed sets in topological spaces, Indian J. Pure. Appl. Math., 28(3)(1997), 351-360.
[34] Yasuf Becerem, On strongly α-continuous functions far east J.Math.Sci. 1:5 02000.

