On rgwα-Continuous and rgwα-Irresolute Maps in Topological Spaces

R. S. Wali¹, Vijayalaxmi R.Patil²

¹Department of Mathematics, Bhandari and Rathi College, Guledagudd, Karnataka, INDIA. ²Department of Mathematics, Rani Channamma University Belagavi, Karnataka, INDIA.

Abstract: The aim of this paper is to introduce a new type of functions called the rgwa- continuous map, rgwa- irresolute maps, strongly rgwa-continuous maps, perfectly rgwa-continuous maps and study some of these properties.

Keywords: rgwa-open sets, rgwa-closed sets, rgwacontinuous map, rgwa-irresolute maps, strongly rgwa-

continuous maps, perfectly $rgw\alpha$ -continuous.

Mathematical subject classification (2010): 54C05, 54C10

I. Introduction:

The continuous functions plays very important role in Topology. Balachandran et.al [5], Levine [18], Mashhour et.al [16], Gnanmbal et.al [11], S. P. Arva and Gupta. R [24] have introduced g-continuity. Semicontinuity, pre- continuity, gpr-continuity, regular and completely-continuous respectively. In 1972 Crossley and Hiledebrand [6] introduced the notion of irresoluteness. In 1981, Munshi and Bassan [17] introduced the notion of generalized continuous (briefly g - continuous) functions which are called in [5] as girresolute functions. Furthermore, the notion of gsirresolute [10] (resp.gp-irresolute [2], ag-irresolute [9], gb- irresolute [3], gsp-irresolute [32]) functions is introduced. Also, the concept of wa-continuous functions was introduced by S S Benchalli et al [30]. Recently R S Wali and Vijayalaxmi R.Patil [23] introduced and studied the properties of rgwa-closed set. The purpose of this paper is to introduce a new class of functions, namely, rgwa-continuous functions and rgwa-irresolute functions strongly rgwa-continuous maps, perfectly $rgw\alpha$ -continuous maps. Also, we study some of the characterization and basic properties of rgwα-continuous functions.

II. Preliminaries:

Throughout this paper, (X, τ) and (Y, σ) (or simply X and Y) represent a topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space X, cl(A) and int(A) denote the closure of A and the interior of A respectively. X A or A^c denotes the complement of A in X. We recall the following definitions and results.

Definition 2.1: A subset A of a topological space (X, τ) is called.

(1) semi-open set [19] if $A \subseteq cl(int(A))$ and semiclosed set if $int(cl(A)) \subseteq A$.

(2) pre-open set [1] if $A \subseteq int(cl(A))$ and pre-closed set if $cl(int(A)) \subseteq A$.

(3) α -open set [21] if $A \subseteq int(cl(int(A)))$ and α -closed set if $cl(int(cl(A))) \subseteq A$.

(4) semi-pre open set [7] (= β -open) if A \subseteq cl(int(cl(A)))) and a semi-pre closed set (= β -closed) if int(cl(int(A))) \subseteq A.

(5) regular open set [15] if A = int(clA)) and a regular closed set if A = cl(int(A)).

(6) Regular semi open set [11] if there is a regular open set U such that $U \subseteq A \subseteq cl(U)$.

(7) Regular α -open set [8] (briefly, r α -open) if there is a regular open set U s.t U \subseteq A \subseteq α cl(U).

Definition 2.2: A subset A of a topological space (X, τ) is called

(1) w-closed set [23] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in X.

(2) wa- closed set [30] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is w-open in X.

(3) generalized closed set(briefly g-closed) [18] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

(4) generalized semi-closed set(briefly gs-closed)[27] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X. (5) generalized pre regular closed set(briefly gprclosed)[33]if $pcl(A)\subseteq U$ whenever $A\subseteq U$ and U is regular open in X.

(6) regular generalized α -closed set (briefly, rg α -closed) [2] if α cl (A) \subseteq U whenever A \subseteq U and U is regular α open in X.

(7) α -generalized closed set (briefly αg -closed) [13] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

(8) generalized α -closed set (briefly g α -closed) (20), if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is α open in X.

(9) weakely generalized closed set (briefly, wgclosed)[20] if $cl(int(A))\subseteq U$ whenever $A\subseteq U$ and U is open in X.

(10) regular weakly generalized closed set (briefly, rwg-closed) [20] if $cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.

(11) generalized pre closed (briefly gp-closed) set [12] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

(12) regular w-closed (briefly rw -closed) set [31] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular semi-open in X.

(13) generalized regular closed (briefly gr-closed) set

[24] if $rcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X. (14) regular generalized weak (briefly rgw-closed) set[25] if $cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is regular semi open in X.

(15) generalized weak α -closed (briefly gw α -closed) set [29] if α cl(A) \subseteq U whenever A \subseteq U & U is w α - open in X.

(16) generalized star weakly α -closed set (briefly g*w α -closed) [28] if cl(A) \subseteq U whenever A \subseteq U & U is w α -open in X.

The compliment of the above mentioned closed sets are their open sets respectively.

Definition 2.3: A map f: $(X, \tau) \rightarrow (Y, \sigma)$ is said to be

(i) regular-continuous (r-continuous) [24] if $f^{_1}(V)$ is r-closed in X for every closed subset V of Y.

(ii) completely-continuous [24] if $f^{i}(V)$ is regular closed in X for every closed subset V of Y.

(iii) strongly-continuous [15] if $f^{1}(V)$ is clopen (both open and closed) in X for every subset V of Y.

(iv) g-continuous [30] if $f^{\imath}(V)$ is g-closed in X for every closed subset V of Y

(v) w-continuous [23] if $f^{\imath}(V)$ is w-closed in X for every closed subset V of Y

(vi) α -continuous [21] if $f^{i}(V)$ is α -closed in X for every closed subset V of Y.

(vii) wa-continuous [30] if $f^1(V)$ is wa-closed in X for every closed subset V of Y.

(viii) strongly α -continuous [34] if $f^{i}(V)$ is α -closed in X for every semi-closed subset V of Y.

(ix) α g-continuous [13] if $f^{1}(V)$ is α g-closed in X for every closed subset V of Y.

(x) wg-continuous [20] if $f^{i}(V)$ is wg-closed in X for every closed subset V of Y.

(xi) rwg-continuous [20] if $f^{1}(V)$ is rwg-closed in X for every closed subset V of Y.

(xii) gs-continuous [18] if $f^{i}(V)$ is gs-closed in X for every closed subset V of Y.

(xiii) gpr-continuous [33] if $f^{_1}(V)$ is gpr-closed in X for every closed subset V of Y.

(xiv) rga-continuous [2] if $f^{i}(V)$ is rga-closed in X for every closed subset V of Y.

(xv) gr-continuous [24] if $f^{1}(V)$ is gr-closed in X for every closed subset V of Y.

(xvi) rw-continuous [31] if $f^{i}(V)$ is rw-closed in X for every closed subset V of Y.

(xvii) rgw-continuous [25] if $f^4(V)$ is rgw-closed in X for every closed subset V of Y.

Definition 2.4: A map f: $(X,\tau) \rightarrow (Y,\sigma)$ is said to be

(i) irresolute [30] if $f^{i}(V)$ is semi- closed in X for every semi-closed subset V of Y

(ii) α -irresolute [21] if $f^{i}(V)$ is α -closed in X for every α -closed subset V of Y.

(iii) contra irresolute [21] if $f^{I}(V)$ is semi-open in X for every semi-closed subset V of Y.

(iv) contra w-irresolute [23] if $f^{1}(V)$ is w-open in X for every w-closed subset V of Y.

(v) contra r-irresolute [24] if $f^{4}(V)$ is regular-open in X for every regular-closed subset V of Y.

(vi) contra continuous [4] if $f^{\imath}(V)$ is open in X for every closed subset V of Y .

(vii) rw^* -open(resp rw^* -closed) [31] map if f(U) is rw-open (resp. rw-closed) in Y for every rw-open (resp rw-closed) subset U of X.

Lemma 2.5: see [23]

1) Every closed (resp. regular-closed, w-closed, α closed and β -closed) set is rgw α -closed set in X.

2) Every rw-closed (resp. rs-closed, ra-closed, wa-

closed, ga-closed, rga-closed, gwa-closed and g*wa-

closed) set is $rgw\alpha$ -closed set in X.

3) Every rgw α -closed set is g β -closed set

4) The set g-closed (resp. wg-closed, rg-closed, grclosed, gpr-closed, rgw-closed, rwg-closed and α g closed) set is independent with rgw α -closed set.

Lemma 2.6: see [23] If a subset A of a topological space X, and

1) If A is weak-open and $rgw\alpha$ -closed then A is α -closed set in X.

2) If A is both weak α -open and rgw α -closed then it is r α -closed set in X

3) If A is weak-open and ra-closed then A is rgwa-closed set in X

4) If A is both open and g-closed then A is $rgw\alpha$ -closed set in

Definition 2.7: A topological space (X, τ) is called

(1) an α -space if every α -closed subset of X is closed in X.

3. rgwa- Continuous Functions.

Definition 3.1: A function f from a topological space X into a topological space Y is called regular generalized weakly α - continuous (briefly rgw α - continuous) if f

 $^{\iota}(V)$ is rgwa- closed set in X for every closed set V in Y.

Theorem 3.2: If a map f is continuous, then it is rgwa-continuous but not conversely.

Proof: Let f: $X \rightarrow Y$ be continuous. Let F be any closed set in Y. Then the inverse image $f^{-1}(F)$ is closed set in X. Since every closed set is rgwa- closed, by Lemma 2.5,

 $f^{\imath}(F)$ is rgwa- closed in X. Therefore f is rgwa-continuous.

Theorem 3.3: If a map f: $X \rightarrow Y$ is α -continuous, then it is rgw α -continuous but not conversely.

Proof: Let f: $X \rightarrow Y$ be α -continuous. Let F be any closed set in Y. Then the inverse image $f^{-1}(F)$ is α -closed set in X. Since every α -closed set is rgw α - closed by

Lemma 2.5, $f^{_1}(F)$ is rgwa-closed in X. Therefore f is

rgwα-continuous.

The converse need not be true as seen from the following example.

Example 3.4: Let $X=Y=\{a,b,c,d,e\}, \tau$ ={X, φ ,{a},{d},{e},{a,d},{a,e},{d,e},{a,d,e}, and σ ={Y, φ , {a},{d},{e}, {a,d}, {a,e},{d,e},{a,d,e}, Let map f: $X \rightarrow Y$ defined by f(a)=c, f(b)=a, f(c)=b, f(d)=d ,f(e)=e, then f is rgwa- continuous but not continuous and not α -continuous, as closed set F= {a,c,e} in Y, then f¹(F)={a,b,e} in X which is not closed and also not α -closed set in X.

Theorem 3.5: If a map $f: X \rightarrow Y$ is continuous, then the following holds.

(i) if f is r-continuous, then f is $rgw\alpha$ -continuous.

(ii) if f is w-continuous, β - continuous, rw- continuous,

rs- continuous, ra- continuous, wa continuous, ga-

continuous, rga- continuous, gwa- continuous, g*wa-

continuous, then f is $rgw\alpha$ -continuous.

Proof: (i) Let F be a closed set in Y. Since F is r-continuous, then $f^{i}(F)$ is r-closed in X. Since every r-

closed set is rgwa-closed by Lemma 2.5, then $f^{1}(F)$ is

rgwα-closed in X. Hence f is rgwα-continuous.

Similarly we can prove (ii).

The converse need not be true as seen from the following example.

Example 3.6: Let $X=Y=\{a,b,c,d,e\}, \tau = \{X, \phi, \{a\}, \{d\}, \{e\}, \{a,d\}, \{a,e\}, \{d,e\}, \{a,d,e\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{d\}, \{e\}, \{a,d\}, \{a,e\}, \{d,e\}, \{a,d,e\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{d\}, \{e\}, \{a,d\}, \{a,e\}, \{d,e\}, \{a,d,e\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{d\}, \{e\}, \{a,d\}, \{a,e\}, \{d,e\}, \{a,d,e\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{d\}, \{e\}, \{a,d\}, \{a,e\}, \{d,e\}, \{a,d,e\}\}$. Let map f: $X \rightarrow Y$ defined by f(a)=c, f(b)=a, f(c)=b, f(d)=d, f(e)=e, then f is rgwa- continuous but not r-continuous, w-continuous, β -continuous, rs-continuous and racontinuous, rw-continuous, gwa- continuous, g^* wacontinuous as closed set $F=\{b,c,d,e\}$ in Y, then f⁻¹(F)=\{a,c,d.e\} in X which is rgwa-closed but not rclosed, w-closed, β -closed, rs-closed and ra-closed set in X. and closed set $F=\{b,c,d\}$ in Y f⁻¹(F)=\{a,b,d\} which is not rw-closed, wa-closed, ga- closed, rga- closed, gwa- closed, g^*wa - closed.

Theorem 3.7: If a map f: $X \rightarrow Y$ is rgw α -continuous, then it is g β - continuous but not conversely.

Proof: Let f: $X \rightarrow Y$ is rgwa- continuous. Let F be any

closed set in Y. Then the inverse image $f^{i}(F)$ is rgwa-

closed set in X. Since every $rgw\alpha$ -closed set is gβclosed set by lemma 2.5, $f^{i}(F)$ is gβ-closed set in X. Therefore f is gβ- continuous.

The converse need not be true as seen from the following example.

Example 3.8: Let $X=Y=\{a,b,c\}, \tau=\{X, \phi,\{a\},\{b,c\}\}$ and $\sigma=\{Y, \phi, \{a\}\}$. Let map f: $X \rightarrow Y$ defined by f(a)=b, f(b)= a, f(c)=c, then f is g\beta- continuous but not rgwacontinuous as a closed set F={b,c} in Y,f⁴(F)= f⁴{b,c}={a,c} which is not rgwa-closed set.

Remark 3.9: The following examples show that rgwacontinuous maps are independent of g-continuous, wgcontinuous, rg-continuous, gr-continuous, gprcontinuous, rgw-continuous, rwg-continuous and αg continuous maps.

Example 3.9: Let $X=Y=\{a,b,c\}, \tau=\{X, \phi,\{a\},\{b,c\}\}\)$ and $\sigma=\{Y, \phi, \{a\}\}$. Let map f: $X \rightarrow Y$ defined by f(a)=b, f(b)=a, f(c)=c, then f is g-continuous, wg-continuous, rgw-representation rgwcontinuous, rwg-continuous and αg continuous but not rgw α -continuous function, as a closed set F={b,c} in Y f'(F)= f'{b,c} ={a,c} is not rgw α -closed set.

Example 3.10: Let $X = \{a,b,c,d\}$ and $Y = \{a,b,c\}$, $\tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b,c\}\}$. Let map f: $X \rightarrow Y$ defined by f(a)=b, f(b)=a, f(c)=a, f(d)=c

then f is $rgw\alpha$ -continuous but not g-continuous, wg-

continuous, rg-continuous, gr-continuous, gprcontinuous, rgw-continuous, rwg-continuous and αg continuous, as a closed set F={a} closed set in Y f '(F)={b} which is not g-closed, wg-closed, rg-closed, gr-closed, gpr-closed, rgw-closed, rwg-closed and αg closed set.

Remark 3.11: From the above discussion and known results we have the following implications

By $A \rightarrow B$ we mean A implies B but not conversely and $A \leftrightarrow B$ means A and B are independent of each other.

Theorem 3.12: Let f: $X \rightarrow Y$ be a map. Then the following statements are equivalent:

(i)f is rgw α -continuous.

(ii) the inverse image of each open set in Y is $rgw\alpha$ -open in X.

Proof: Assume that $f:X \rightarrow Y$ is rgwa-continuous. Let G be open in Y. The G^c is closed in Y. Since f is rgwa-continuous, $f^{-1}(G^c)$ is rgwa-closed in X. But $f^{-1}(G^c) = X - G^{-1}(G^c)$

 $f^{\scriptscriptstyle 1}(G^{\scriptscriptstyle c})$. Thus $f^{\scriptscriptstyle 1}(G^{\scriptscriptstyle c})$ is rgwa-open in X.

Converserly, Assume that the inverse image of each open set in Y is rgwa-open in X. Let F be any closed set in Y. By assumption $f^4(F^c)$ is rgwa-open in X. But $f^4(F^c) = X - f^4(F)$. Thus $X - f^4(F)$ is rgwa-open in X and so $f^4(F)$ is rgwa-closed in X. Therefore f is rgwa-continuous. Hence (i) and (ii) are equivalent.

Theorem 3.13: If f: $(X,\tau) \rightarrow (Y,\sigma)$ is map. Then the following holds.

1) f is rgwa-continuous and contra w-irresolute map then f is a-continuous

2) f is rgwa-continuous and contra wa-irresolute map

then f is $r\alpha$ -continuous.

3) f is r α -continuous and contra w-irresolute map then f

is rgwa-continuous

4) f is g-continuous and contra irresolute map then f is $rgw\alpha$ -continuous.

Proof:

1) Let V be w-closed set of Y, As every w-closed set is closed, V is closed set in Y. Since f is $rgw\alpha$ -continuous and contra w-irresolute map, $f^{i}(V)$ is $rgw\alpha$ -closed and w-open in X, Now by Lemma 2.6, $f^{1}(V)$ is α -closed in X. Thus f is α -continuous.

2) Similarly using Lemma 2.6 we can prove this.

3) Let V be closed set of Y. Since f is ra-continuous and contra w-irresolute map, $f^{1}(V)$ is ra-closed and w-

open in X, Now by Lemma 2.6, $f_{^{-1}}(V)$ is $rgw\alpha\text{-closed}$

in X. Thus f is $rgw\alpha$ -continuous.

4) Similarly using Lemma 2.6 we can prove this.

Theorem 3.14: Let A be a subset of a topological space X. Then $x \in \operatorname{rgw}\alpha \operatorname{cl}(A)$ if and only if for any $\operatorname{rgw}\alpha$ -open set U containing x, $A \cap U \neq \Phi$.

Proof: Let $x \in rgw\alpha cl(A)$ and suppose that, there is a $rgw\alpha$ -open set U in X such that $x \in U$ and $A \cap U = \phi$ implies that $A \subset U^c$ which is $rgw\alpha$ -closed in X implies $rgw\alpha cl(A) \subseteq rgw\alpha cl(U^c) = U^c$. Since $x \in U$ implies that $x \notin U^c$ implies that $x \notin rgw\alpha cl(A)$, this is a

 $x \notin U^{\circ}$ implies that $x \notin rgw\alpha cl(A)$, this is a contradiction.

Converserly, Suppose that, for any $rgw\alpha$ -open set U containing x, $A \cap U \neq \phi$. To prove that $x \in rgw\alpha cl(A)$. Suppose that $x \notin rgw\alpha cl(A)$, then there is a $rgw\alpha$ -closed set F in X such that $x \notin F$ and $A \subseteq F$. Since $x \notin F$ implies that $x \in F^c$ which is $rgw\alpha$ -open in X. Since $A \subseteq F$ implies that $A \cap F^c = \phi$, this is a contradiction. Thus $x \in rgw\alpha cl(A)$.

Theorem 3.15: Let f: $X \rightarrow Y$ be a function from a topological space X into a topological space Y. If f: $X \rightarrow Y$ is rgwa-continuous, then $f(rgwacl(A)) \subseteq cl(f(A))$ for every subset A of X.

Proof: Since $f(A) \subseteq cl(f(A))$ implies that $A \subseteq f^{-1}(cl(f(A)))$. Since cl(f(A)) is a closed set in Y and f is rgwa-continuous, then by definition $f^{-1}(cl(f(A)))$ is a

rgwa-closed set in X containing A. Hence rgwacl(A)⊆

 $f^{-1}(cl(f(A)))$. Therefore $f(rgwacl(A)) \subseteq cl(f(A))$.

The converse of the above theorem need not be true as seen from the following example.

Example 3.16: Let $X=Y=\{a,b,c\}, \tau = \{X, \phi, \{a\}, \{b,c\}\}\$ $\sigma = \{Y, \phi, \{a\}\},$ Let map f: $X \rightarrow Y$ defined by , f(a)=b ,

f(b)=a, f(c)=c. For every subset of X, $f(rgwacl(A)) \subseteq$

cl(f(A)) holds . But f is not rgwa-continuous since closed set $V{=}$ {b,c} in Y, $f^1(V){=}\{a,c\}$ which is not rgwa-closed set in X.

Theorem 3.17: Let f: $X \rightarrow Y$ be a function from a topological space X into a topological space Y. Then the following statements are equivalent:

(i) For each point \boldsymbol{x} in \boldsymbol{X} and each open set \boldsymbol{V} in \boldsymbol{Y} with

 $f(x) \in V$, there is a rgw α -open set U in X such that $x \in U$ and $f(U) \subseteq V$.

(ii) For each subset A of X, $f(rgwacl(A)) \subseteq cl(f(A))$.

(iii) For each subset B of Y, $rgwacl(f^{1}(B)) \subseteq f^{1}(cl(B))$.

(iv) For each subset B of Y, $f^{1}(int(B)) \subseteq rgwaint(f^{1}(B))$.

Proof: (i) \rightarrow (ii) Suppose that (i) holds and let $y \in f(rgwacl(A))$ and let V be any open set of Y. Since $y \in f(rgwacl(A))$ implies that there exists $x \in rgwacl(A)$ such that f(x) = y. Since $f(x) \in V$, then by (i) there exists a rgwa-open set U in X such that $x \in U$ and

 $\begin{array}{ll} f(U) \subseteq V. \mbox{ Since } x \in f(rgwacl (A)), \mbox{ then by theorem } 3.14 \\ U \cap A \neq \varphi. & \varphi \neq f(U \cap A) \subseteq f(U) \cap f(A) \\ \subseteq V \cap f(A), \mbox{ then } V \cap f(A) \neq \varphi \mbox{ .Therefore we have } y = f(x) \in cl(f((A)). & Hence \end{array}$

 $f(rgwacl(A)) \subseteq cl(f(A)).$

(ii) \rightarrow (i) Let if (ii) holds and let $x \in X$ and V be any open set in Y containing f(x). Let $A = f^{-1}(V^c)$ this implies that $x \notin A$. Since $f(rgwacl(A)) \subseteq cl(f(A)) \subseteq V^c$

this implies that $rgwacl(A) \subseteq f^{-1}(V^c) = A$. Since $x \notin A$

implies that $x \notin rgw\alpha cl(A)$ and by theorem 3.14 there

exists a rgw α -open set U containing x such that U \cap A= ϕ , then U \subseteq A^c and hence f(U) \subseteq f(A^c) \subseteq V.

(ii) \rightarrow (iii) Suppose that (ii) holds and Let B be any subset of Y. Replacing A by $f^{i}(B)$ we get from (ii) $f(rgwacl(f^{i}(B))) \subseteq cl(f(f^{-1}(B))) \subseteq cl(B)$. Hence $rgwacl(f^{i}(B)) \subseteq f^{i}(cl(B))$.

(iii) \rightarrow (ii) Suppose that (iii) holds, let B = f(A) where A is a subset of X. Then we get from (iii), rgwacl(f¹(f(A))) \subseteq f¹(cl(f(A))) implies rgwacl(A) \subseteq f¹(cl(f(A))). Therefore f(rgwacl(A)) \subseteq cl(f(A)).

(iii)→ (iv) Suppose that (iii) holds. Let B ⊆Y, then Y– B ⊆Y. By (iii), rgwacl(f⁴(Y–B)) ⊆ f⁴(cl(Y–B)) this implies X– rgwaint(f⁴(B)) ⊆X– f⁴(int(B)). Therefore f '(int(B)) ⊆ rgwaint(f⁴(B)). (iv) → (iii) Suppose that (iv) holds Let B ⊆Y, then Y– B ⊆Y. By (iv), f⁴(int(Y–B)) ⊆ rgwaint(f¹(Y–B)) this implies that X– f⁴(cl(B)) ⊆ X–rgwacl(f¹(B)). Therefore rgwacl(f⁴(B)) ⊆ f⁴(cl(B)).

Definition 3.18: Let (X, τ) be topological space and $\tau_{rg\omega\alpha} = \{V \subseteq X : rgw\alpha cl(V^c) = V^c\}, \tau_{rg\omega\alpha} \text{ is toplogy on } X.$ **Definition 3.19: 1)** A space (X, τ) is called $T_{rgw\alpha}$ -space if every rgw\alpha-closed is closed.

2) A space (X, τ) is called $_{\alpha}T_{rgw\alpha}$ -space if every rgwaclosed set is α -closed set. **Theorem 3.20:** Let f: $X \rightarrow Y$ be a function. Let (X,τ) and (Y,σ) be any two spaces such that $\tau_{rgw\alpha}$ is a topology on X. Then the following statements are equivalent:

(i)For every subset A of X, $f(rgwacl(A)) \subseteq cl(f(A))$ holds,

(ii) $f:(X, \tau_{rg\omega\alpha}) \rightarrow (Y,\sigma)$ is continuous. **Proof:** Suppose (i) holds. Let A be closed in Y. By hypothesis $f(rgwacl(f^{i}(A))) \subseteq cl(f(f^{i}(A))) \subseteq cl(A) = A$. i.e. $rgwacl(f^{i}(A)) \subseteq f^{i}(A)$. Also $f^{i}(A) \subseteq rgwacl(f^{i}(A))$. Hence $rgwacl(f^{1}(A)) = f^{1}(A)$. This implies $f^{i}(A) \in \tau_{rg\omega\alpha}$.

Thus $f^{i}(A)$ is closed in $(X, \tau_{rg\omega\alpha})$ and so f is continuous. This proves (ii).

Suppose (ii) holds. For every subset A of X, cl(f(A)) is closed in Y. Since $f:(X, \tau_{rgwa}) \rightarrow (Y,\sigma)$ is continuous, f '(cl(A)) is closed in (X, τ_{rgwa}) that implies by definition 3.22 rgwacl(f¹(cl(f(A)))) = f¹(cl(f(A))). Now we have, $A \subseteq f^{1}(f(A)) \subseteq f^{1}(cl(f(A)))$ and by rgwa-closure, rgwacl(A) \subseteq rgwacl(f^{1}(cl(f(A))) = f^{1}(cl(f(A))). Therefore f(rgwacl(A)) $\subseteq cl(f(A))$. This proves (i).

Remark 3.21: The Composition of two rgwacontinuous maps need not be rgwa-continuous map and this can be shown by the following example.

Example 3.22 : Let $X=Y=Z=\{a,b,c\}, \tau = \{X, \phi,\{a\},\{b\},\{a,b\}\}, \sigma = \{Y, \phi,\{a\},\{c\},\{a,c\}\}, \eta = \{Z, \phi,\{a\},\{a,b\},\{a,c\}\}$ and a maps $f: X \rightarrow Y$ is defined as $f(a)=b, f(b)=c, f(c)=a, and g : Y \rightarrow Z$ is defined as $g(a)=b, g(b)=a, g(c)=c, Both f and g are rgwa-continuous maps. But gof not rgwa-continuous map, since closed set <math>V=\{b,c\}$ in Z, $(f\circ g)^{-1}(V)=f^{-1}(g^{-1}(V))=f^{-1}\{b,c\}=\{a,b\}$ which is not rgwa-closed set in X.

Theorem 3.23: Let f: $X \rightarrow Y$ is rgwa-continuous function and g: $Y \rightarrow Z$ is continuous function then gof: $X \rightarrow Z$ is rgwa-continuous.

Proof: Let g be continuous function and V be any open set in Z then $g^{i}(V)$ is open in Y. Since f is rgwacontinuous, $f^{i}(g^{i}(V)) = (g \circ f)^{-1}(V)$ is rgwa-open in X. Hence $g \circ f$ is rgwa-continuous.

Theorem 3.24: Let f: $X \rightarrow Y$ is $rgw\alpha$ -continuous function and g: $Y \rightarrow Z$ is $rgw\alpha$ -continuous function and Y is $\tau_{rgw\alpha}$ -space, then $g \circ f: X \rightarrow Z$ is $rgw\alpha$ -continuous.

Proof: Let g be rgwa-continuous function and V be any open set in Z then $g^{_1}(V)$ is rgwa-open in Y and Y is T_{rgwa} -space, then $g^{_1}(V)$ is open in Y. Since f is rgwa-continuous, $f^{_1}(g^{_1}(V)) = (g \circ f)^{_1}(V)$ is rgwa-open in X. Hence g f is rgwa-continuous.

Theorem 3.25: If a map f: $X \rightarrow Y$ is completelycontinuous, then it is rgwa- continuous.

Proof: Suppose that a map f: $(X, \tau) \rightarrow (Y, \sigma)$ is completely-continuous. Let F closed set in Y. Then f

 $^{1}(F)$ is regular closed in X and hence $f^{-1}(F)$ is is rgwaclosed in X. Thus f is rgwa-continuous.

Theorem 3.26: If a map f: $X \rightarrow Y$ is α -irresolute, then it is rgw α - continuous.

Proof: Suppose that a map f: $(X,\tau) \rightarrow (Y,\sigma)$ is airresolute. Let V be an open set in Y. Then V is a-open in Y. Since f is a-irresolute, f¹(V) is a-open and hence rgwa-open in X. Thus f is rgwa-continuous.

4. Perfectly rgwα-Continuous and rgwα*-Continuous Functions.

Definition 4.1: A function f from a topological space X into a topological space Y is called perfectly regular generalized weakly α - continuous (briefly perfectly rgw α -Continuous) if f⁺(V) is clopen (closed and open) set in X for every rgw α -open set V in Y.

Theorem 4.2: If a map $f: X \rightarrow Y$ is continuous, then the following holds.

(i) If f is perfectly $rgw\alpha$ -continuous, then f is $rgw\alpha$ -continuous.

(ii) If f is perfectly $rgw\alpha$ -continuous, then f is gβ-continuous.

Proof:

(i) Let F be a open set in Y, as every open is rgwa-open in Y, since F is perfectly rgwa-continuous, then $f^{i}(F)$ is both closed and open in X, as every open is rgwa-open , $f^{1}(F)$ is rgwa-open in X. Hence f is rgwa-continuous.

(ii) Let F be a open set in Y, as every open is rgwaopen in Y, since F is perfectly rgwa-continuous, then f ¹(F) is both closed and open in X, as every open is rgwa-open that implies is g β -open, then f¹(F) is g β open in X. Hence f is g β -continuous.

Definition 4.3: A function f from a topological space X into a topological space Y is called regular generalized weakely α^{*} - continuous (briefly rgw α^{*} - continuous) if f¹(V) is rgw α -closed set in X for every α -closed set V in Y.

Theorem 4.4: If A map f: $(X,\tau) \rightarrow (Y,\sigma)$ be function, (i) f is rgwa-irresolute then it is rgwa*-continuous. (ii) f is rgwa*-continuous then it is rgwa-continuous. **Proof:**

(i) Let f: $X \rightarrow Y$ be rgwa-irresolute. Let F be any aclosed set in Y. Then F is rgwa-closed in Y. Since f is rgwa-irresolute, the inverse image $f^{-1}(F)$ is rgwa-closed set in X. Therefore f is rgwa*-continuous.

(ii) Let f: $X \rightarrow Y$ be $rgwa^*$ -continuous. Let F be any closed set in Y. Then F is α -closed in Y. Since f is $rgwa^*$ -continuous, the inverse image $f^{-1}(F)$ is rgwa-closed set in X. Therefore f is rgwa-continuous.

Theorem 4.5: If a bijection f: $(X, \tau) \rightarrow (Y, \sigma)$ is wa^{*-}open, rgwa^{*}-continuous, then it is rgwa-irresolute.

Proof: Let A be rgwa-closed in Y. Let $f^{1}(A) \subseteq U$ where U is wa-open set in X, Since f is wa*-open map,

f(U) is wa-open set in Y. $A \subseteq f(U)$ implies $racl(A) \subseteq f(U)$. That is, $f^{i}(racl(A)) \subseteq U$. Since f is $rgwa^{*}$ -continuous, $racl(f^{i}(acl(A))) \subseteq U$. and so $racl(f^{1}(A)) \subseteq U$ This shows $f^{-1}(A)$ is rgwa-closed set in X. Hence f is rgwa-irresolute.

Theorem 4.6: If f: $(X, \tau) \rightarrow (Y, \sigma)$ is rgwa-continuous and wa*-closed and if A is rgwa-open (or rgwa-closed) subset of (Y, σ) and (Y, σ) is a-space, then f¹(A) is rgwa-open (or rgwa-closed) in (X, τ) .

Proof: Let A be a rgwa-open set in (Y, σ) and G be any wa-closed set in (X, τ) such that $G \subseteq f^{-1}(A)$. Then

f(G)⊆ A. By hypothesis f(G) is wα-closed and A is rgwα-open in (Y, σ). Therefore f(G) ⊆ rαInt(A) by and so G ⊆ f¹(rαInt(A)). Since f is rgwαcontinuous, rαInt(A) is α-open in (Y, σ) and (Y, σ) is αspace, so rαInt(A) is open in (Y, σ). Therefore f ¹(rαInt(A)) is rgwα-open in (X, τ). Thus G ⊆rαInt(f '(rαInt(A))) ⊆ rαInt(f¹(A)); that is, G ⊆ rαInt(f¹(A)), f ¹(A) is rgwα-open in (X, τ). By taking the complements we can show that if A is wα-closed in (Y, σ), f¹(A) is rgwα-closed in (X, τ).

Theorem 4.7: Let (X, τ) be a discrete topological space and (Y, σ) be any topological space. Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a map. Then the following statements are equivalent: (i) f is strongly rgwa-continuous. (ii) f is perfectly rgwa-continuous.

Proof: (i)=>(ii) Let U be any rgwa-open set in (Y, σ) . By hypothesis $f^{1}(U)$ is open in (X, τ) . Since (X, τ) is a discrete space, $f^{1}(U)$ is also closed in (X, τ) . $f^{1}(U)$ is both open and closed in (X, τ) . Hence f is perfectly rgwa-continuous. (ii)=>(i) Let U be any rgwa-open set in (Y, σ) . Then $f^{1}(U)$ is both open and closed in (X, τ) . Hence f is strongly rgwa-continuous.

5. rgwa-Irresolute and Strongly rgwa-Continuous Functions.

Definition 5.1: A function f from a topological space X into a topological space Y is called regular generalized weakly α - irresolute (breifly rgw α -irresolute) map if f¹(V) is rgw α -closed set in X for every rgw α -closed set V in Y.

Definition 5.2: A function f from a topological space X into a topological space Y is called strongly regular generalized weakly α - continuous (strongly rgw α -continuous) map if f⁺(V) is closed set in X for every rgw α -closed set V in Y.

Theorem 5.3: If A map f: $(X, \tau) \rightarrow (Y, \sigma)$ is rgwairresolute, then it is rgwa-continuous but not conversely.

Proof: Let f: $X \rightarrow Y$ be rgwa-irresolute. Let F be any closed set in Y. Then F is rgwa-closed in Y. Since f is rgwa-irresolute, the inverse image f⁴(F) is rgwa-closed set in X. Therefore f is rgwa-continuous. The converse of the above theorem need not be true as seen from the following example.

Example 5.4 : X={a,b,c,d,e}, Y={a,b,c,d} $\tau = \{X, \phi, \{a\}, \{d\}, \{e\}, \{a,d\}, \{a,e\}, \{d,e\}, \{a,d,e\}\} \sigma = \{Y, \phi, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}\}$, Let map f: X→Y defined by , f(a)=b , f(b)=c , f(c)=d , f(d)=a, f(e)=d then f is rgwa-continuous but f is not rgwa-irresolute, as rgwa-closed set F= {a,b} in Y, then f'(F)={a,d} in X , which is not rgwa-closed set in X.

Theorem 5.5: If A map f: $(X, \tau) \rightarrow (Y, \sigma)$ is rgwairresolute, if and only if the inverse image f⁻¹(V) is rgwa-open set in X for every rgwa-open set V in Y.

Proof: Assume that f: $X \rightarrow Y$ is rgwa-irresolute. Let G be rgwa-open in Y. The G^e is rgwa-closed in Y. Since f is rgwa- irresolute, $f^{-1}(G^{\circ})$ is rgwa-closed in X. But f⁻¹(G) = $X-f^{-1}(G)$. Thus $f^{-1}(G)$ is rgwa-open in X.

Converserly, Assume that the inverse image of each open set in Y is rgwa-open in X. Let F be any rgwa-closed set in Y. By assumption $f^{-1}(F^c)$ is rgwa-open in X. But $f^{i}(F^c) = X - f^{-1}(F)$. Thus $X - f^{-1}(F)$ is rgwa-open in X and so $f^{i}(F)$ is rgwa-closed in X. Therefore f is rgwa-irresolute.

Theorem 5.6: If A map f: $(X, \tau) \rightarrow (Y, \sigma)$ is rgwairresolute, then for every subset A of X, f(rgwacl(A) \subset acl(f(A)). **Proof:** If A \subset X then consider acl(f(A)) which is rgwa-closed in Y. since f is rgwa-irresolute, f '(acl(f(A))) is rgwa-closed in X. Furthermore A \subseteq f '(f(A)) \subseteq f¹(acl(f(A))). Therefore by rgwa-closure, rgwacl(A) \subseteq f¹(acl(f(A))), consequently, f(rgwacl(A) \subseteq f(f¹(acl(f(A)))) \subseteq aclf((A)).

Theorem 5.7: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ and g: $(Y, \sigma) \rightarrow (Z, \eta)$ be any two functions. Then

(i) g o f: $(X, \tau) \rightarrow (Z, \eta)$ is rgwa-continuous if g is r-continuous and f is rgwa- irresolute.

(ii)g o f : $(X, \tau) \rightarrow (Z, \eta)$ is rgwa-irresolute if g is rgwa-irresolute and f is rgwa-irresolute.

(iii) g o f : (X, τ) \rightarrow (Z, η) is rgwa-continuous if g is continuous and f is rgwa-irresolute.

Proof: (i) Let U be a open set in (Z, η) . Since g is rcontinuous, $g^{i}(U)$ is r-open set in (Y, σ) . Since every ropen is rgwa-open then $g^{-1}(U)$ is rgwa-open in Y, since f is rgwa-irresolute $f^{-1}(g^{-1}(U))$ is an rgwa-open set in (X, τ) . Thus $(gof)^{-1}(U) = f^{-1}(g^{-1}(U))$ is an rgwa-open set in (X, τ) and hence gof is rgwa-continuous.

(ii) Let U be a rgwa-open set in (Z, η) . Since g is rgwairresolute, $g^{-1}(U)$ is rgwa-open set in (Y, σ) . Since f is rgwa-irresolute, $f^{-1}(g^{-1}(U))$ is an rgwa-open set in (X, τ) . Thus $(gof)^{-1}(U) = f^{-1}(g^{-1}(U))$ is an rgwa-open set in (X, τ) and hence gof is rgwa- irresolute.

(iii) Let U be a open set in (Z, η) . Since g is continuous, $g^{-1}(U)$ is open set in (Y, σ) . As every open set is rgwaopen, $g^{-1}(U)$ is rgwa-open set in (Y, σ) . Since f is rgwairresolute $f^{-1}(g^{-1}(U))$ is an rgwa-open set in (X, τ) . Thus $(gof)^{-1}(U) = f^{-1}(g^{-1}(U))$ is an rgwa-open set in (X, τ) and hence gof is rgwa-continuous.

Theorem 5.8: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ is strongly rgwacontinuous then it is continuous.

Proof: Assume that $f: (X, \tau) \rightarrow (Y, \sigma)$ is strongly rgwacontinuous, Let F be closed set in Y. As every closed is rgwa-closed, F is rgwa-closed in Y. since f is strongly rgwa-continuous then $f^{\iota}(F)$ is closed set in X. Therefore f is continuous.

Theorem 5.9: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ is strongly rgwacontinuous then it is strongly α -continuous but not conversely.

Proof: Assume that f: $(X, \tau) \rightarrow (Y, \sigma)$ is strongly rgwacontinuous, Let F be α -closed set in Y. As every α closed is rgwa-closed, F is rgwa-closed in Y. since f is strongly rgwa-continuous then f⁻¹(F) is closed set in X. Therefore f is strongly α -continuous.

The converse of the above theorem 5.9 need not be true as seen from the following example

Example 5.10: Let $X=Y=\{a,b,c,d\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}\}$. Let map f: $X \rightarrow Y$ defined by f(a)=b, f(b)=a, f(c)=d, f(d)=c, then f is strongly α -continuous but not continuous and not strongly rgwa-continuous, as closed set $F=\{b,c,d\}$ in Y, then f '(F)= $\{a,c,d\}$ in X which is not closed set in X.

Theorem 5.11: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ is strongly rgwacontinuous if and only if $f^{i}(G)$ is open set in X for every rgwa-open set G in Y.

Proof: Assume that f: $X \rightarrow Y$ is strongly rgwacontinuous. Let G be rgwa-open in Y. The G^e is rgwaclosed in Y. Since f is strongly rgwa-continuous, f¹(G^e) is closed in X. But f¹(G^e) = $X-f^1(G)$. Thus f¹(G) is open in X. Conversely, Assume that the inverse image of each open set in Y is rgwa-open in X. Let F be any rgwa-closed set in Y. By assumption F^e is rgwa-open in X. But f¹(F^e) = $X-f^1(F)$. Thus $X-f^1(F)$ is open in X and so $f^\imath(F)$ is closed in X. Therefore f is strongly $rgw\alpha\text{-}$ continuous.

Theorem 5.12: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ is strongly continuous then it is strongly rgwa-continuous.

Proof: Assume that f: $X \rightarrow Y$ is strongly continuous. Let G be rgwa-open in Y and also it is any subset of Y since f is strongly continuous, f⁺(G) is open (and also closed) in X. f⁺(G) is open in X Therefore f is strongly rgwa-continuous.

Theorem 5.13: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ is strongly rgwacontinuous then it is rgwa-continuous.

Proof: Let G be open in Y, every open is rgwa-open, G is rgwa-open in Y, since f is strongly rgwa-continuous, $f^{i}(G)$ is open in X and therefore $f^{i}(G)$ is rgwa-open in X. Hence f is rgwa-continuous.

Theorem 5.14: In discrete space, a map $f: (X, \tau) \rightarrow (Y, \sigma)$ is strongly rgwa-continuous then it is strongly continuous. **Proof:** F any subset of Y, in discrete space, Every subset F in Y is both open and closed, then subset F is both rgwa-open or rgwa-closed, i) let F is rgwa-closed in Y, since f is strongly rgwa-continuous, then $f^{i}(F)$ is closed in X. ii) let F is rgwa-open in Y, since f is strongly rgwa-continuous, then $f^{i}(F)$ is closed in X. iii) let F is rgwa-open in X. Therefore $f^{i}(F)$ is closed and open in X. Hence f is strongly continuous.

Theorem 5.15: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ and g: $(Y, \sigma) \rightarrow (Z, \eta)$ be any two functions. Then

(i) g o f : $(X, \tau) \rightarrow (Z, \eta)$ is strongly rgwa-continuous if g is strongly rgwa-continuous and f is strongly rgwa-continuous.

(ii) g o f : $(X, \tau) \rightarrow (Z, \eta)$ is strongly rgwa-continuous if g is strongly rgwa-continuous and f is continuous.

(iii) g o f : $(X, \tau) \rightarrow (Z, \eta)$ is rgwa-irresolute if g is strongly rgwa-continuous and f is rgwa-continuous.

(iv) g o f : $(X, \tau) \rightarrow (Z, \eta)$ is continuous if g is rgwacontinuous and f is strongly rgwa-continuous

Proof:

(i) Let U be a rgwa-open set in (Z, η) . Since g is strongly rgwa-continuous, $g^{-1}(U)$ is open set in (Y, σ) . As every open set is rgwa-open, $g_{-1}(U)$ is rgwa-open set in (Y, σ) . Since f is strongly rgwa-continuous $f^{+}(g^{-1}(U))$ is an open set in (X, τ) . Thus $(gof)^{-1}(U) = f^{+1}(g^{-1}(U))$ is an open set in (X, τ) and hence gof is strongly rgwacontinuous.

(ii) Let U be a rgwa-open set in (Z, η) . Since g is strongly rgwa-continuous, $g^{-1}(U)$ is open set in (Y, σ) . Since f is continuous $f^{-1}(g^{-1}(U))$ is an open set in (X, τ) . Thus (gof) $^{-1}(U) = f^{-1}(g^{-1}(U))$ is an open set in (X, τ) and hence gof is strongly rgwa-continuous.

(iii) Let U be a rgwa-open set in (Z, η) . Since g is strongly rgwa-continuous, $g^{-1}(U)$ is open set in (Y, σ) . Since f is rgwa-continuous $f^{-1}(g^{-1}(U))$ is an rgwa-open

set in (X, τ) . Thus $(gof)^{-1}(U) = f^{-1}(g^{-1}(U))$ is an rgwaopen set in (X, τ) and hence gof is rgwa-irresolute

(iv) Let U be open set in (Z, η) . Since g is rgwacontinuous, $g^{i}(U)$ is rgwa-open set in (Y, σ) . Since f is strongly rgwa-continuous $f^{i}(g^{i}(U))$ is an open set in (X, τ) . Thus $(gof)^{i}(U) = f^{i}(g^{i}(U))$ is an open set in (X, τ) and hence gof is continuous.

Theorem 5.16: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ and g: $(Y, \sigma) \rightarrow (Z, \eta)$ be any two functions. Then

1. g o f : $(X, \tau) \rightarrow (Z, \eta)$ is strongly rgwa-continuous if g is perfectly rgwa-continuous and f is continuous.

2. g o f : $(X, \tau) \rightarrow (Z, \eta)$ is perfectly rgwa-continuous if g is strongly rgwa-continuous and f is perfectly rgwa-continuous.

Proof:

1. Let U be a rgwa-open set in (Z, η) . Since g is perfectly rgwa-continuous, $g^{-1}(U)$ is clopen set in (Y, σ) . $g^{-1}(U)$ is open set in (Y, σ) . Since f is continuous $f^{-1}(g^{-1}(U))$ is an open set in (X, τ) . Thus $(gof)^{-1}(U) = f^{-1}(g^{-1}(U))$ is an open set in (X, τ) and hence gof is strongly rgwacontinuous.

2. Let U be a rgwa-open set in (Z, η). Since g is strongly rgwa-continuous, $g^{i}(U)$ is open set in (Y, σ). $g^{i}(U)$ is open set in (Y, σ). Since f is perfectly rgwa-continuous, $f^{i}(g^{i}(U))$ is an clopen set in (X, τ). Thus (gof) $i^{i}(U) = f^{i}(g^{i}(U))$ is an clopen set in (X, τ) and hence gof is perfectly rgwa-continuous.

Theorem 5.17: If A map f: $(X, \tau) \rightarrow (Y, \sigma)$ is strongly rgwa-continuous and A is open subset of X then the restriction f/A: A \rightarrow Y is strongly rgwa-continuous.

Proof: Let V be any rgwa-open set of Y, since f is strongly rgwa-continuous, then $f^{-1}(V)$ is open in X. since A is open in X, $(f/A)^{-1}(V)=A \cap f^{-1}(V)$ is open in A. hence f/A is strongly rgwa-continuous.

Theorem: 5.18 Let (X, τ) be any topological space and (Y, σ) be a T_{rgwa} -space and f: $(X, \tau) \rightarrow (Y, \sigma)$ be a map. Then the following are equivalent: (i) f is strongly rgwa-continuous. (ii) f is continuous.

Proof: (i) =>(ii) Let U be any open set in (Y, σ) . Since every open set is rgwa-open, U is rgwa-open in (Y, σ) . Then f⁴(U) is open in (X, τ) . Hence f is continuous. (ii) =>(i) Let U be any rgwa-open set in (Y, σ) . Since (Y, σ) is a T_{rgwa} -space, U is open in (Y, σ) . Since f is continuous. Then f⁻¹(U) is open in (X, τ) . Hence f is strongly rgwa-continuous.

Theorem 5.19: Let (X, τ) be a discrete topological space and (Y, σ) be any topological space. Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a map. Then the following statements are equivalent: (i) f is strongly rgwa-continuous. (ii) f is perfectly rgwa-continuous.

Proof: (i)=>(ii) Let U be any rgwa-open set in (Y, σ).By hypothesis f¹(U) is open in (X, τ). Since(X, τ) is a discrete space, f¹(U) is also closed in (X, τ). f¹(U) is

both open and closed in (X, τ) . Hence f is perfectly rgwa-continuous. (ii)=> (i) Let U be any rgwa-open set in (Y, σ) . Then f¹(U) is both open and closed in (X, τ) . Hence f is strongly rgwa-continuous.

Theorem 5.20: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a map. Both (X, τ) and (Y, σ) are τ_{rgwa} -spaces. Then the following are equivalent:

(i) f is rgwa-irresolute.

(ii) f is strongly rgwα-continuous

(iii) f is continuous.

(iv) f is rgwa-continuous.

Proof: Straight forward.

Theorem 5.21: Let X and Y be ${}_{\alpha}\tau_{rgw\alpha}$ -spaces, then for a function f: (X, τ) \rightarrow (Y, σ), the following are equivalent: (i) f is α -irresolute. (ii) f is rgw α -irresolute.

Proof: (i)=> (ii): Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a α -irresolute. Let V be a rgw α -closed set in Y. As Y $\alpha \tau_{rgw\alpha}$ -space, then V be a α -closed set in Y. Since f is α -irresolute, f¹ (V) is α -closed in X. But every α -closed set is rgw α -closed in X and hence f¹ (V) is a rgw α -closed in X. Therefore, f is rgw α -irresolute.

(ii)=> (i): Let f: $(X, \tau) \rightarrow (Y, \sigma)$ is a rgwa-irresolute. Let V be a α -closed set in Y. But every α -closed set is rgwa-closed set and hence V is rgwa-closed set in Y and f is rgwa-irresolute implies f⁻¹(V) is rgwa-closed in X. But X is $\alpha \tau_{rgwa}$ -space and hence f⁻¹(V) is α -closed set in X. Thus, f is α -irresolute.

6. Conclusion.

In this paper we have introduced and studied the properties of $rgw\alpha$ -continuous and $rgw\alpha$ -irresolute maps. Our future extension is $rgw\alpha$ - continuous and $rgw\alpha$ -irresolute in Fuzzy Topological Spaces.

7. Acknowledgement.

The Authors would like to thank the referees for useful comments and suggestions.

References.

- A. S. Mashhour, M.E.Abd El-Monsef and S.N.El-Deeb, On precontinuous and weak pre continuous mappings, *Proc. Math. Phys. Soc. Egypt*, 53(1982), 47-53.
- [2] A.Vadivel & K.vairamamanickam, rgα-Closed sets& rgα-open sets in Topological Spaces, Int J of math ,Analysis Vol 3, (2009)37,1803-1819.
- [3] Al-Omari A and M.S.M.Naorami, On generalized b-closed sets, Bull. Malays. Math. Sci.Soc(2), 32(2009), 19-30.
- [4] Arockiarani. I, Balachandran.K and Dontchev J, Some Characterization of gp-irresolute and gp-continuous maps between topological spaces, *Mem.Fac.Sci.Kochi Univ.Ser.A Math.*,20(1999),93-104.
- [5] Balachandran.K, Sundaram.P and Maki.H, On generalized Continuous maps in topological spaces, *Mem Fac.Sci.Kochi* Univ.Ser.A.Math., 12(1991),5-13.

- [6] Crossley S. G and Hildebrand S.K, Semi Topological properties, Fund.Math., 74(1972),233-254.
- [7] D. Andrijevic, Semi-preopen sets, Mat. Vesnik., 38(1)(1986), 24-32.
- [8] D. E. Cameron, Properties of s-closed spaces, prac Amer Math, soc 72(1978),581-586.
- [9] Devi R, Balachandran.K and Maki H, On generalized αcontinuous maps and α- generalized continuous maps, Far

East J. Math. Sci., Special volume (1997), Part I, 1-15.

- [10] Devi R, Balachandran.K and Maki H, Semi generalized homeomorphisms and generalized Semi homeomorphisms on topological spaces, *Indian J. Pure Appl. Math.*, 26(1995), 271-284.
- [11] Gnanambal.Y, Balachandran.K, On gpr-continuous functions in topological spaces, *Indian J.Pure Appl.Math* 1999, 30(6):581-93.
- [12] H. Maki, J. Umehara and T. Noiri, Every Topological space is pre T¹/₂ mem Fac sci, Kochi univ, Math , 17 1996, 33-42.
- [13] H. Maki, R. Devi and K.Balachandran, Associated topologies of generalized α- closed sets and α-generalized closed sets, *Mem. Fac. Sci. Kochi Univ. Ser.A. Math.*, 15(1994), 51-63.
- [14] J Dontchev, Contra continuous functions and strongly S-closed spaces, Int.J.Math.Sci,19(1996), 15-31.
- [15] M. Stone, Application of the theory of Boolean rings to general topology, *Trans.Amer. Math.Soc.41*(1937),374-481.
- [16] Mashhour.A.S., Abd El-Monsef .M.E. and El-Deeb.S.N.On pre continuous mappings and week pre-continuous mappings, *Proc Math*,
- Phys.Soc.Egypt 53(1982),47-53.
- [17] Munshi B.M. and Bassan D S, g-continuous mappings, Vidya J.Gujarat Univ. B.Sci., 24(1981), 63-68.
- [18] N. Levine, Generalized closed sets in topology, Rend. Circ Mat. Palermo, 19(2) (1970), 89-96.
- [19] N. Levine, Semi-open sets and semi-continuity in topological spaces, 70(1963), 36-41.
- [20] N. Nagaveni, Studies on Generalizations of Homeomorphisms in Topological Spaces, *Ph.D. Thesis, Bharathiar University*, *Coimbatore*, 1999.
- [21] O. N. Jastad, On some classes of nearly open sets, Pacific J. Math., 15(1965),961-970.
- [22] P. Sundaram and M. Sheik John, On w-closed sets in topology, Acta Ciencia Indica 4 (2000), 389–39.
- [23] R.S. Wali and Vijayalaxmi R.Patil, On rgwα-closed sets in topological spaces. Int.J. comp. and Math.Sci. Vol 8,(3). 62-70 (2017).
- [24] S. Bhattacharya, on generalized regular closed sets, Int J.Contemp .Math science Vol.6, 201,145-152.
- [25] S. Mishra, et, all, On regular generalized weakly (rgw)closed sets in topological spaces, Int. J. of Math Analysis Vol 6, 2012 no.(30), 1939-1952.
- [26]S.P.Arya and R. Gupta, on stongly continuous functions, Kyungpook Math.j.14:131:143, 1974.
- [27] S. P.Arya and T.M. Nour, Chatcherizationsof s-normal spaces, Indian J. Pure Appl, Math 21(1990), 717-719.
- [28] S.S. Benchelli, P.G,Patil and Pallavi S. Mirajakar g star wαclosed sets in topological spaces. Jl. New results in sciences, Vol. 9, (2015), 37-45.
- [29] S.S. Benchelli, P.G.Patil and P.M.Nalwad, gwα-closed sets in topological spaces. *Journal of New results in Sci.vol.7*, (2014), 7-19.
- [30] S. S. Benchalli, P. G. Patil and T. D. Rayanagaudar, ωα-Closed sets in Topological Spaces, *The Global. J. Appl. Math. and Math. Sci.*, 2, 2009, 53-63.
- [31] S. S. Benchalli and R.S Wali on rω- Closed sets is Topological Spaces, Bull, Malays, Math, sci, soc30 (2007), 99-110.
- [32] Veerakumar M.K.R.S., Semi-pregeneralized closed sets, Mem.Fac.Sci.Kochi Univ. Ser. A Math., 19(1999),33-46.

- [33] Y. Gnanambal, On generalized pre regular closed sets in topological spaces, *Indian J. Pure. Appl. Math.*, 28(3)(1997), 351-360.
- [34] Yasuf Becerem, On strongly α-continuous functions far east J.Math.Sci. 1:5 0 2000.