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ABSTRACT – A dominating set D for a 

graph G is a subset of V(G) such that any vertex not 

in D has at least one neighbor in D. The domination 

number γ(G) is the size of a minimum dominating set 

in G. Vizing‟s conjecture from 1968 states that for 

the Cartesian product of graphs G and H ,γ(G)γ(H) ≤ 

γ(G□H), and Clark and Suen (2000) proved that 

γ(G)γ(H)≤2γ(G□H). In this paper, we modify the 

approach of Clark and Suen to prove a variety of 

similar bounds related to total and paired domination, 

and also extend these bounds to then n-Cartesian 

product of graphs A
1
throughA

n
. 
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1. INTRODUCTION 
 

A graph is nothing but a representation of 

any physical situation involving discrete objects and 

a relationship among them. A dominating set D for a 

graph G is a subset of V(G) such that any vertex not 

in D has at least one neighbor in D. The domination 

number γ(G) is the size of a minimum dominating set 

in G. Vizing‟s conjecture from 1968 states that for 

the Cartesian product of graphs G and H ,γ(G)γ(H) ≤ 

γ(G□H), and Clark and Suen (2000) proved that 

γ(G)γ(H)≤2γ(G□H). In this paper, we modify the 

approach of Clark and Suen to prove a variety of 

similar bounds related to total and paired domination, 

and also extend these bounds to then n-Cartesian 

product of graphs A
1 
throughA

n
. 

 

2. TOTAL AND PAIRED DOMINATION OF 

CARTESIAN PRODUCT GRAPHS 

We begin by introducing some notation 

which will be utilized throughout the proofs in this 

section. Given S⊆V(G□H), the projection of S onto 

graphs G and H is defined as                      ΦG(S) = { 

g ∈ V(G) | ∃ h ∈ V(H) with gh ∈ S },                       

ΦH(S) = { h ∈ V(H) | ∃ g ∈ V(G) with gh ∈ S}.In the 

case of the n-product graph A
1
□….□A

n
, we project 

a set of vertices in V(A
1
□….□A

n
) down to a 

particular graph . Therefore, given S ⊆ 

V(A
1
□….□A

n
), we define   ΦA

i
(S) = { a ∈ V(A

i
) | ∃ 

u
1
···u

n ∈ S with a = u
i 
}. 

For  gh ∈ V(G□H), the G-neighborhood 

and H-neighborhood of gh are defined as follows: 

                 (gh) = {g h ∈ V(G□H) | g ∈ (g)}, 

                 (gh)  = {gh′ ∈ V(G□H) | h ∈ (h)}. 

Thus,  (gh) and  (gh) are both subsets of 

V(G□H). Additionally, E(G□H) can be partitioned 

into two sets, G-edges and H-edges, where                   

G-edges = {(gh, g h) ∈ E(G□H) | h ∈ V(H) and (g, g ) 

∈ E(G)}, H-edges = {(gh, gh′) ∈ E(G□H) | g ∈ V(G) 

and (h, h ) ∈ E(H)}. 

In the case of the n-product graph 

A
1
□….□A

n
, we identify the i-neighborhood of a 

particular vertex, and partition the set of edges 

E(A
1
□….□A

n
) into n sets. Thus, we define  to be      

 = { ( … , … ) | ( , ) ∈ E( ), and  = 

, for all other indices j  i}, And for a vertex u ∈ 

V(A
1
□….□A

n
), we define (u) = { v ∈ 

V(A
1
□….□A

n
) | v and u are connected by -edge}. 

Finally, we need two elementary 

propositions about matrices that will be utilized 

throughout the proofs. 

 

PROPOSITION I.  

      Let M be a binary matrix. Then either 

(a) each column contains a 1, or 

(b) each row contains a 0. 

Prop.1 refers only to  binary matrices. 

 

PROOF: 

        Let M be the matrix containing only  entries. 

        For a proof by contradiction, Assume there 

exists a row (say i) which does not contain a 0, and a 

column (say j) which does not contain a 1. 

        Then the entry M[i,j] is neither 0 nor 1. 

        This is a contradiction. 

Prop.II is a generalization of prop.I for …

 n-ary matrices. 
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PROPOSITION II. 

Let M be a … , n-ary matrix 

(n-ary in this case signifies that M contains entries 

only in the range {1….n}). Then there exists a j ∈ 

{1….n} (not necessarily unique), such that each of 

the …  

submatrices of M contains an entry with value j. Such 

a matrix M is called a j-matrix.  Note that, given any 

…  matrix, there are  submatrices of 

the form … . 

We will denote such a submatrix as M[:, ,:] with1≤ 

≤ . 

 

PROOF: 

 Let M be a …  n-ary matrix, 

there exists at least one …  submatrix 

that does not contain a 1.without loss of generality, 

let M[ ,:]  with 1   be such matrix. Next, 

consider j=2. Since M is also not a 2-matrix, let M[:, 

,:]  with 1  be a …  

submatrix that does not contain a 

2.Therefore,M[ ] is a 1 …  

submatrix that contains neither a 1 nor a 2.we 

continue this pattern for 1 since M is not 

a j-matrix for 1 . Let M[ …  be 

the 1  submatrix containing no elements in 

the set {1,…,n-1}.Therefore, for all 1  

M[ … and all of the …

 submatrices of M contains an entry with 

value n. Thus, M is an n-matrix.  

THEOREM 3.9 

Given graphs G and H containing no 

isolated vertices, max{

. 

PROOF: 

Let { ...... } be a -set of G. Partition 

V(G) into  sets, …...,  such that ⊆ . 

Let { ….. } be a -set of H. Partition V(H) into 

sets ,…….  such that ∈  and  ⊆ 

[ ]. We note that { ,…. } 

×{ ,……. } is a partition of V(G H). Let D be 

a -set of G H. Then, for each gh  D, either 

∩D or  (gh)∩D is nonempty.   Based 

on this observation, we define the binary |V(G)| × 

|V(H)| matrix F such that: 

        F(g, h) =  

Since F is a |V(G)|×|V(H)| matrix, each of the 

subsets of V(G H) determines a submatrix of F.

 For  = 1, . . . Let Zi = D ∩ (Di× V 

(H)), and let = {  | the submatrix of F determined 

by  ×   satisfies Prop. Ia,                    with x ∈ {1, 

. . . , (H)}} For j = 1, . . . , , (H), let  = D ∩ (V (G) 

×   ), and let ={  | the submatrix of F 

determined by  ×  satisfies Prop. Ib,   with x ∈ 

{1, . . . , }} 

 Let  and  = . 

Since the partition of V(G□H) composed of elements 

  contains,  components, and since 

every  submatrix of F satisfies either 

conditions (a) or (b) of Prop. I (possibly 

both),   ≤ + . We will now prove two 

subclaims which will allow us to bound the size of 

our various sets. 

CLAIM – 1: 

If the submatrix of F determined by  

satisfies Prop. Ia, then  is dominated by . 

 

CLAIM – 2: 

                  If the submatrix of F determined by 

 satisfies Prop. Ib, then  is dominated by 

. Additionally, ∀g ∈  ∩   , there 

exists a vertex g′ ∈ .  Such that (g, g′) ∈ E(G). 

 

  We note that this claim does not imply that  

 is a total dominating set, but the claim is a 

slightly stronger condition on domination. When 

applying this condition, we will say that the set  is 

non-self dominated by . 

 

.CLAIM -3:  

For  = 1, . . . ,  | | ≤ | |. Similarly, 

for j = 1, . . . , , |  | ≤ |  |. 

To conclude the proof, we observe that 

  ≤    ≤   , 

  =    ≤   ≤  . 

 

Hence,  ≤ +  ≤ 2|D| ≤ 2(G□H). 

 Moreover, we can similarly prove that  ≤ 

2(G□H).  
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Therefore, max{

. 

3. PAIRED DOMINATION OF CARTESIAN 

PRODUCT GRAPHS 

Let (G) denote the paired domination number and 

G□H denote the Cartesian product of graphs G and 

H. In this paper we show that for all graphs G and H 

without isolated vertex, (G) (H) ≤ 7 (G□H).  

 

THEOREM : For any graphs G and H, 

  (G) (H)  2 (G H). 

PROOF: 

 Let D be a dominating set of G H. It is 

sufficient to show that, 

  (G) (H)  2 .      ……...

 (1) 

 Let { , ,…. } be a dominating set of 

G. Form a partition { , ,…. } of  V(G) so 

that for all : 

( )   , and      ( ) u   implies u =   or u 

is adjacent to . This partition of V(G) induces a 

partition { , ,…. } of D where  = (   

V(H))  D. 

 

Let  be the projection of  onto H. That is,            

 = {v  (u,v)   for some u }. Observe that 

for any ,   ( V(H) - [ ] ) is a dominating set of 

H, and hence the number of vertices in V(H) not 

dominated by  satisfies the inequality  

   (H) - .           ……... (2) 

For v  V(H), let  = D  (V(G)  {v}) = {(u,v)  

D | u  V(G)}. And C be the subset of {1,2,… (G)} 

 V(H) given by C =  |   {v}  [ ]}. 

Let N = . By counting in two different ways we 

shall find upper and lower bounds for N. 

 

Let 

   = {(i,v)  C | v  V(H)}, and 

   = {(i,v)  C | 1 ≤  ≤ (G)}. 

 

Clearly 

  N =  = . 

Note that if v  V(H) - , then the vertices in 

  {v} must be dominated by vertices in  and 

therefore (i,v)   . This implies that    

. Hence, 

  N   

And it follows from (2) that 

  N  (G) (H) -   

                             (G) (H) -  . 

So we obtain the following lower bound for N. 

N  (G) (H) -  .             ……... (3) 

 

For each v  V(H),   . If not, 

                     {u | (u,v) }  {  | (j,v)  } 

is a dominating set of G with cardinality  + ( (G) 

- ) = (G) – ( -  )  (G), And we have 

a contradiction. This observation shows that  

N =      = . ….. (4)  

It follows from (3) and (4) that 

    (G) (H) -    N  , 

   (G) (H)  2 (G H). 

           Hence the theorem is proved. 

 

4. APPLICATIONS OF DOMINATION IN 

GRAPHS 

Domination in graphs has applications to 

several fields. Domination arises in facility location 

problems, where the number of facilities (e.g., hospitals, 

fire stations) is fixed and one attempts to minimize the 

distance that a person needs to travel to get to the closest 

facility. A similar problem occurs when the maximum 

distance to a facility is fixed and one attempts to 

minimize the number of facilities necessary so that 

everyone is serviced. Concepts from domination also 

appear in problems involving finding sets of 

representatives, in monitoring communication or 

electrical networks, and in land surveying (e.g., 

minimizing the number of places a surveyor must stand 

in order to take height measurements for an entire 

region). 

(i) School Bus Routing  

Most school in the country provide school 

buses for transporting children to and from school Most 

also operate under certain rules, one of which usually 

states that no child shall have to walk farther than, say 

one quarter km to a bus pickup point. Thus, they must 

construct a route for each bus that gets within one quarter 

km of every child in its assigned area. No bus ride can 

take more than some specified number of minutes, and 

Limits on the number of children that a bus can carry at 

any one time. Let us say that the following figure 

represents a street map of part of a city, where each edge 

represents one pick up block. The school is located at the 

large vertex. Let us assume that the school has decided 
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that no child shall have to walk more than two blocks in 

order to be picked up by a school bus. Construct a route 

for a school bus that leaves the school, gets within two 

blocks of every child and returns to the school. 

 

.  

Figure-1: School Bus Routing 

 

(ii) Computer Communication Networks 

Consider a computer network modeled by a 

graph G = (V, E), for which vertices represents 

computers and edges represent direct links between pairs 

of computers. Let the vertices in following figure 

represent an array, or network, of 16 computers, or 

processors. Each processor to which  it is directly 

connected. Assume that from time to time we need to 

collect information from all processors. We do this by 

having each processor route its information to one of a 

small set of collecting processors (a dominating set). 

Since this must be done relatively fast, we cannot route 

this information over too long a path. Thus we identify a 

small set of processors which are close to all other 

processors. Let us say that we will tolerate at most a two 

unit delay between the time a processor sends its 

information and the time it arrives at a nearby collector. 

In this case we seek a distance-2 dominating set among 

the set of all processors. The two shaded vertices form a 

distance- dominating set in the hypercube network in 

following figure 

                        
Figure -2 : Computer Communication Networks 

(iii) Radio Stations 

Suppose that we have a collection of small 

villages in a remote part of the world. We would like to 

locate radio stations in some of these villages so that 

messages can be broadcast to all of the villages in the 

region. Since each radio station has a limited 

broadcasting range, we must use several stations to reach 

all villages. But since radio stations are costly, we want 

to locate as few as possible which can reach all other 

villages.  

Let each village be represented by a vertex. 

An edge between two villages is labeled with the 

distance, say in kilometers, between the two villages  

 

 
Figure-3: Radio Station 

Let us assume that a radio station  has a 

broadcast range of fifty kilometers. What is the least 

number of stations in a set which dominates (within 

distance 50) all other vertices in this graph? A set (B, 

F, H,J} of cardinality four is indicated in the following 

figure(b). 

             

           
Figure-4: Radio Station 

  Here we have assumed that a radio station 

has a broadcast range of only fifty kilometers, we can 

essentially remove all edges in the graph, which 

represent a distance of more than fifty kilometers. We 

need only to find a dominating set in this graph. Notice 
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that if we could afford radio stations which have a 

broadcast range of seventy kilometers, three radio 

stations would sufficient. 

(iv) Locating Radar Stations Problem  

The problem was discussed by Berge. A 

number of strategic locations are to be kept under 

surveillance. The goal is to locate a radar for the 

surveillance at as few of these locations as possible. How 

a set of locations in which the radar stations are to be 

placed can be determined. 

 

(v) Nuclear Power Plants Problem 

 A similar known problem is a nuclear 

power plants problem. There are various locations and 

an arc can be drawn from location x to location y if it is 

possible for a watchman stationed at x to observe a 

warning light located at y. How many guards are 

needed to observe all of the warning lights, and where 

should they be located? At present, domination is 

considered to be one of the fundamental concepts in 

graph theory and its various applications to ad hoc 

networks, biological networks, distributed computing, 

social networks and web graphs partly explain the 

increased interest. Such applications usually aim to 

select a subset of nodes that will provide some definite 

service such that every node in the network is „close‟ to 

some node in the subset. The following examples show 

when the concept of domination can be applied in 

modeling real-life problems. 

 

(vi) Modeling Biological Networks  

 Using graph theory as a modeling tool in 

biological networks allows the utilization of the most 

graphical invariants in such a way that it is possible to 

identify secondary RNA (Ribonucleic acid) motifs 

numerically. Those graphical invariants are variations 

of the domination number of a graph. The results of the 

research carried out in show that the variations of the 

domination number can be used for correctly 

distinguishing among the trees that represent native 

structures and those that are not likely candidates to 

represent RNA. 

 

(vii) Modeling Social Networks  

Dominating sets can be used in modeling 

social networks and studying the dynamics of relations 

among numerous individuals in different domains. A 

social network is a social structure made of individuals 

(or groups of individuals), which are connected by one or 

more specific types of interdependency. The choice of 

initial sets of target individuals is an important problem 

in the theory of social networks. In the work of Kelleher 

and Cozzens, social networks are modeled in terms of 

graph theory and it was shown that some of these sets 

can be found by using the properties of dominating sets 

in graphs. 

 

(viii) Facility Location Problems  

The dominating sets in graphs are natural 

models for facility location problems in operational 

research. Facility location problems are concerned with 

the location of one or more facilities in a way that 

optimizes a certain objective such as minimizing 

transportation cost, providing equitable service to 

customers and capturing the largest market share. 

 

5. CONCLUSION 

This paper “TOTAL AND PAIRED 

DOMINATION OF CARTESIAN PRODUCT 

GRAPHS”, can make an in-depth study in Total 

domination and Paired domination using Cartesian 

product graphs.  We discussed the various applications of 

graph theory and dealt with the total and paired 

domination of Cartesian product graphs. We also dealt 

with the paired domination of Cartesian product graphs 

and the real life applications of domination in graphs. 
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