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Abstract:This paper presents Single Term Walsh 
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I. INTRODUCTION 

 

The concept of fuzzy differential equations 

has been growing rapidly. Recently fuzzy differential 

equations have gained more attention in the literature. 

The fuzzy derivative was introduced by Chang and 

Zadeh [8]. Seikkala and Kaleva[15, 16, 22]have 

studied fuzzy initial value problems 

(IVPs).Abbasbandy andAllahviranloo [1 – 5]have 

proposed the numerical methods such as Taylor, 

Runge Kutta (RK) and predictor corrector methods 

for finding the solutions of fuzzy differential 

equations.Recently, Jayakumar et al. [13, 14] have 

obtained the numerical solution of fuzzy differential 

equations by RK method of order five and Adams 

fifth order Predictor-Corrector method. Kanagarajan 

et al. [17, 18] have extended the numerical solution of 

RK method and the dependency problem. 

Single Term Walsh Series (STWS) 

technique was introduced by Rao et al. [21]. 

Balachandran and Murugesan[6, 7] have applied 

STWS technique to solve first order system of IVPs. 

Murugesan and Paul Dhayabaran[19]have extended 

STWS technique for solving second order singular 

system of IVPs. Sepehrian and Razzaghi [23] have 

applied STWS technique to solve time-varying 

singular nonlinear systems. Emimal and Paul 

Dhayabaran [9, 20] have proposed the generalized 

STWS Technique to solve time-invariant and time-

varying system of IVPs of any order “n‟  with “p‟  

variables. Emimal and Paul Dhayabaran [10] have 

applied STWS Technique for solving Stiff Non-linear 

system: High Irradiance Responses (HIRES) of Photo 

Morphogenesis. Sekar and Senthilkumar [24] have 

proposed Single term Haar Wavelet Series for fuzzy 

differential equations.  

The authors have developed generalized 

Single Term Walsh Series (STWS) technique for 

solving higher order linear system of time invariant 

and time varying fuzzy differential equations [11, 12]. 

In this paper, the authors have proposed the STWS 

technique to solve non-linear fuzzy differential 

equations. In Section II, some basic definitions on 

fuzzy numbers, fuzzy derivatives and fuzzy Cauchy 

problem have been provided. In Section III, basic 

properties of Single Term Walsh serieshave been 

briefly explained. In Section IV, the STWS 

Technique for solving non-linear system of IVPs has 

been provided. In Section V, the STWS Technique 

has been developed to solve the non-linear fuzzy 

IVPs. In Section VI, numerical examples has been 

provided to illustrate the applicability of the STWS 

technique in solving fuzzy IVPs. 

 

II. PRELIMINARIES 

 

Definition 1 

  

Let us denote FR  by the class of all fuzzy subsets of 

R. 

i. e.  u: R [0,1])  satisfying the following 

properties:  

0 0

(i) , is normal,

    . . with (x ) 1.

F
u R u

i e x R u
 

 (ii) 
F

u R , u is convex fuzzy set. 

i .e . u(tx+(1-t)y) min{u(x), u(y)},

t [0,1], x, y R
 

  (iii)  
F

u R ,u is upper semi continuous on R; 

  (iv) 
0

[ ] {x R; u(x) 0}u  is compact, where u  

denotes the closure of u. 

Then FR  is called the space of fuzzy numbers. 

 

 

Definition 2 

 

We define -level set of u as follows: 

[u] { / u(x) }, 0 1.x R  

 The -level set of u is closed bounded intervals in R 

and we denote it by [u] [u , u ] . 
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Definition 3 

 

A fuzzy number in parametric form is an 

ordered pair of the form 

u [u , u ] where 0< 1
 

satisfying the following conditions: 

1. u  is a bounded left continuous 

increasing function over [0, 1], 

2. u  is a bounded right continuous 

decreasing function over [0,1], 

3. u for all (0,1]u . 

If u ,u then α is called crisp number. 

 

Definition 4 

 

A fuzzy interval u is said to be a triangular 

fuzzy interval if its membership has the following 

form 

 
0,

,

u( )

,

0,

if x a

x a
if a x b

b a
x

c x
if b x c

c b

if x c

 

and its α-cuts are simply  

[u] [ ( ), ( )], (0,1].a b a c c b  

 

Definition 5 

 

A mapping :F I E  is Hukuhara 

differentiable at 
0t T R  if for some 

0 0h  the 

Hukuhara difference 

0 0 0 0( ) ~ ( ), ( ) ~ ( ),h hF t t F t F t F t t  

exist in E for all
00 t h  and if there exists an 

'

0( ) EF t such that  

'0 0
0

0

(F(t ) ~ ( ))
lim ( ) 0h

t

t F t
d F t

t
  

and       

'0 0
0

0

(F(t ) ~ ( ))
lim ( ) 0,h

t

F t t
d F t

t
 

the fuzzy set is called the Hukuhara derivative of F at 

t0. 

 

 

 

 

Definition 6 

 

If :y I E is called fuzzy process. We denote 

[ ( )] [ ( ), ( )], t I, 0 1y t y t y t  

The Seikkala derivative 
' ( )y t of a fuzzy process y is 

defined by 

' ' '[ ( )] [( ) ( ), ( ) ( )], 0 1,y t y t y t  

provided by this equation defines a fuzzy number
'( ) E.y t  

 

Definition 7 

 

The fuzzy integral  

( )dt, 0 a b 1

b

a

y t  

is defined by  

( ) ( ) , ( )

b b b

a a a

y t dt y t dt y t dt  

provided the Lebesgue integrals on the proper exist. 

 

Fuzzy Initial Value Problem 

 

Consider the fuzzy IVP 

0

0 0

' ( ) ( , ( ), [ , ]

( )

y t f t y t t t T

y t y
 

where y is a fuzzy function of t, f (t, y) is a fuzzy 

operation of the crisp variable t and the fuzzy variable 

y, 'y is the fuzzy derivative of y and y(t0) = y0 is a 

fuzzy number. Thus, we have fuzzy Cauchy problem. 

The fuzzy function y is denoted as 

y [ , ]y y .  

It means that the α-level set of y(t) for 
0[ , ]t t T  is    

0 0 0[ ( )] [ ( ; ), ( ; )],y t y t y t

 
[ ( )] [ ( ; ), ( ; )], (0,1].y t y t y t  

By Zadeh extension principle, we have the 

membership function 

( , ( ))( ) sup{ ( )( ) | ( , )},f t y t s y t f t s R

 

so ( , ( ))f t y t is a fuzzy number. From this it follows 

that 

[ ( , ( ))] [ ( , ( ); ), ( , ( ); )], (0,1]f t y t f t y t f t y t

 

where 

( , ( ); ) min{ ( , ) / [ ( ; ), ( ; )]

( , ( ); ) max{ ( , ) / [ ( ; ), ( ; )]

f t y t f t u u y t y t

f t y t f t u u y t y t

 

We define 

 

( , ( ); ) [t, ( ; ), ( ; )],

( , ( ); ) [t, ( ; ), ( ; )].

f t y t F y t y t

f t y t G y t y t

 

 

 

III. SINGLE TERM WALSH SERIES 
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A function ( ),f t integrable in [0,1), may be 

approximated using Walsh Series as 

0

( ) ( ),i i

i

f t f t
   (3.1) 

where ( )i t is the ith Walsh function and fi is the 

corresponding coefficient. In practice, only the first 

‘m’ terms are considered, where m is an integral 

power of 2. 

Then from (3.1), we get  
1

0

( ) ( ) F ( ),
m

T

i i

i

f t f t t; ;
   

where  

0, 1, 1( )T

mF f f fK K
(3.2)

 

0 1 1( ) ( ( ), ( ), ( ))T

mt t t tK K
(3.3) 

The coefficientsfi are chosen to minimize the mean 

integral square error  

 
1

2

0

( ( ) ( )) ,Tf t F t dt   (3.4) 

and are given by  

  
1

0

( ) ( ) ,i if f t t dt    (3.5) 

It has been proved that  

0

( ) ( )

t

Tf t dt F E t;   (3.6) 

where E is m x m operational matrix for integration in 

terms of Walsh function. In Single Term Walsh 

Series, the matrix E in (3.6) becomes E = 1/2.          

 

IV. STWS TECHNIQUE TO SOLVE NON-

LINEAR SYSTEM OF IVPs 

 

Consider the non-linear system of IVPs of the form: 

0'( ) ( , ( ), ( )) (0)y t f t y t u t y y  (4.1) 

where the non-linear function 
nf R , the state

y( ) nt R , and the control  ( ) qu t R .  

The given function is expanded as STWS in 

the normalized interval [0,  1) , which 

corresponds to [0, 1 / )t m  by defining mt , 

m being any integer. Normalising (4.1) by defining

mt , we get 

'( ) ( , y( ), ( )),my f u 0y(0) y  (4.2) 

Let y'( ) and y( ) be expanded by STWS series in 

the k
th

 interval as 

y'( )  = V
(k)

0 ( ) and y( )  = Y
(k)

0 ( ) (4.3) 

Integrating equation (4.3) with the operational matrix 

for integration E = 1/2, we get 

Y
(k)

= 
1

2
V

(k)
 + y(k-1) and y(k) = V

(k)
 +y(k −1).(4.4) 

Therefore,  

( )

0

1
y( ) ( 1) ( )

2

kV y k  (4.5) 

To solve (4.2), we first substitute (4.5) in 

( , y( ), ( ))f u .  

Then we express the resulting equation by STWS as 

 

( ) ( )

0 0

1
, ( 1) ( ), ( ) ( )   

2

k kf V y k u F  

(4.6) 

Using (4.2), (4.3), (4.5), and (4.6), we get 
( ) ( ).k kmV F    (4.7) 

By solving (4.7), the components of V
(k)

can be 

obtained. Then by substituting V
(k)

 in equation (4.4), 

discrete approximations of the state variable can be 

obtained.  

 

V. STWS TECHNIQUE TO SOLVE NON-

LINEAR FUZZY IVPs 

 

Consider the non-linear fuzzy differential equations 

of the following form: 

0 0y'( ) f(t, y(t),u(t)), ( )t y t y  (5.1) 

where the non-linear function f R
n
, the fuzzy 

function y(t) R
n
, and the fuzzy crisp control

][ ( ; )   [ ( ; , ; ]) .qu t u t u t R  

Here 'y is the fuzzy derivative of y, 
0y is fuzzy 

numbers and y is fuzzy variable. 

The given function is expanded as STWS in the 

normalized interval [0, 1), which corresponds to 

t [0, 1/m) by defining  = mt, m being a crisp 

number. Normalising the above equation by defining 

 = mt, we get 

'( ) ( , y( ), ( )),my f u 0 0y(t ) y  (5.2) 

Let [y'( )] [y'( ), y'( )] and

[y( )] [y( ),y( )] be expanded by STWS series 

in the k
th

 interval as 

( )

1 0y'( ) ( )kV , 
( )

0y( ) ( )
k

y      and 

( )

2 0'( ) ( )ky V
( )

0( ) ( ) (5.3)
k

y y  
Integrating equation (5.3) with the operational matrix 

for integration E = 
1

2
, we get 

( )( ) ( ) ( )

1 2

( ) ( )

1 2

1 1
( 1),       ( 1)

2 2

( ) ( 1),        ( )  ( 1)

kk k k

k k

y V y k y V y k

y k V y k y k V y k

     (5.4) 
Therefore,  
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( )

1 0

( )

2 0

1
y( ) ( 1) ( )

2

1
( ) ( 1) ( )

2

k

k

V y k

y V y k

 (5.5) 

To solve (5.2), we first substitute (5.5) in

( , y( ), ( ))f u . The resulting equation of STWS 

is 

 

( ) ( )

1 0 0

1
, ( 1) ( ), ( ) ( )   

2

k kf V y k u F and  

( ) ( )

2 0 0

1
, ( 1) ( ), ( ) ( )   

2

k kf V y k u G   (5.6)

 
Using (5.2), (5.3), (5.5), and (5.6), we get 

( ) ( ) ( ) ( )

1 2,       k k k kmV F mV G  (5.7) 

By substituting ( ) ( )

1 2  and  k kV V in equation (5.4), 

discrete approximations of the state variable can be 

obtained.  

 

VI. NUMERICAL EXAMPLES 

 

Example 1 

  

Consider the following first order fuzzy linear 

differential equation 

'( ) ( ), [0,1]

(0) [ 0.5( 1), 0.5( 1)]

y t ty t t

y e e

 

with the exact fuzzy solution  
2 2

2 2( ; ) ( 0.5( 1)) , ( 0.5( 1)) .
t t

y t e e e e

The results at t = 1 are shown in the Tables 1- 2 and 

Fig. 1. 

 

Example 2 

 

Consider the fuzzy initial value problem    
2

1 2'( ) ( ) , (0) 0y t k y t k y  

where  ki> 0,  for i =1, 2 are triangular fuzzy numbers. 

The exact solution is given by  

1

1

( ; ) ( ) tan( ( ) ) ,

( ; ) ( ) tan( ( ) ),

y t l t

y t l t
 

 

1 2,1 1,1

2 2,2 1,2

1 1,1 2,1

2 1,2 2,2

with ( ) ( ) / ( ),

( ) ( ) / ( ),

( ) ( ) ( ),

( ) ( ) ( ),

l k k

l k k

k k

k k

 

where  

 

1,1 1,2

2,1 2,2

( ) 0.5 0.5 , 1.5 0.5 and

( ) 0.75 0.25 , 1.25 0.25 .

k k

k k  

 

The results at t = 1are shown in the Tables 3- 4 and 

Fig. 2. 

Table 1 (Example 1) 

 

 

STWS Solution Exact Solution 

( ; )y t  ( ; )y t  ( ; )Y t  ( ; )Y t  

0.0  1.893925   3.542650   1.893921   3.542642  

0.2  2.058798   3.377777   2.058793   3.377770  

0.4  2.223670   3.212905   2.223665   3.212898  

0.6  2.388543   3.048032   2.388538   3.048026  

0.8  2.553415   2.883160   2.553410   2.883154  

1.0  2.718287   2.718287   2.718282   2.718282  

 

Table 2 (Example 1) 

 

 

Absolute Error 

( ; )y t  ( ; )y t  

0.0 3.946e-006 7.380e-006 

0.2 4.289e-006 7.037e-006 

0.4 4.632e-006 6.693e-006 

0.6 4.976e-006 6.350e-006 

0.8 5.319e-006 6.006e-006 

1.0 5.663e-006 5.663e-006 

 

Fig. 1 Solution Graph of Example 1 

 
 

Table 3 (Example 2) 

 

 

STWS Solution Exact Solution 

( ; )y t  ( ; )y t  ( ; )Y t  ( ; )Y t  

0.0 0.8603295 4.4691579 0.8603295 4.4691251 

0.2 0.9585038 3.2857531 0.9585038 3.2857435 

1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Numerical values

A
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h
a
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a
lu

e
s

Comparision of STWS solution and Exact solution at t=1

 

 

STWS

Exact
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0.4 1.0714393 2.5919473 1.0714393 2.5919439 

0.6 1.2038061 2.1331447 1.2038061 2.1331433 

0.8 1.3623815 1.8051551 1.3623814 1.8051545 

1.0 1.557408 1.557408 1.557408 1.557408 

 

Table 4 (Example 2)
  

 

Absolute Error 

( ; )y t  ( ; )y t  

0.0 1.956e-008 3.280e-005 

0.2 2.192e-008 9.626e-006 

0.4 1.791e-008 3.400e-006 

0.6 1.568e-009 1.312e-006 

0.8 5.643e-008 5.164e-007 

1.0 1.919e-007 1.919e-007 

 

Fig. 2 Solution Graph of Example 2 

 
 

VII. CONCLUSION 

 

In this paper, STWS method has been 

proposed to solve the non- linear fuzzy IVPs. The 

effectiveness of this method has been illustrated 

through two examples. From the tables, it is observed 

that the absolute error is very small. The recursive 

algorithm is easy to implement and suitable in finding 

solution for any length of time. This suggests that 

STWS technique is suitable for solving non-linear 

fuzzy IVPs. 
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