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1. INTRODUCTION 

Initially Urabe [23] did study on iteration 

procedures while the formal definition of stability 

of iteration procedures was given by Harder and 

Hicks. The study of stability of iteration procedures 

in metric space was first studied by Ostrowski [26]. 

 Many authors (see [2], [3], [4], [6], [7],  

[9],  [10], [14], [15], [18], [20], [21], [22], [30], etc) 

worked on convergence and stability results for 

various mappings in different spaces .Harder and 

Hicks [2,3] worked on theoretical as well as 

numerical aspect of stability. Several researchers 

([1], [8], [10], [11], [12], [13], [14], [16], [17], [18], 

[19], [20], [24], [25]) have done work on integral 

type inequalities.Harder and Hicks done a lot of 

work on stability of Picard iteration using various 

contraction conditions. Rhoades [7] established 

stability results for Mann, Kirk or Massa iteration 

procedures while Bosede and Rhoades [5] obtained 

stability results for both Picard and Mann iterations 

using general class of functions. Also Rezapour et 

al [28] obtained stability results for Picard iteration 

procedure for integral type contractive conditions. 

 

                             Recently Branciari [1] worked on 

the following contraction integral condition:  

for some  such that 

   

             

         

   for all  where  is a Lebesgue    

integrable mapping which is summable, nonnegative 

with . 

While Rhoades [8] worked on the integral condition:   

 

      

                                                           

 

where 

   

                            

And  

         

                                                                       
 
 where 

    

                         

with  

to establish stability results. 

 

 2. PRELIMINARIES 

 

               There are several iterative processes in the literature 

for which the fixed points of operators  have been 

approximated over the years  by various authors. 

Some of them are as follows: 

 

 For , the sequence   given by  

 = T ,     

 (1)                                                         

is called the picard iteration.  

Definition  2.1 [32] Let  be a Banach 

space and  a mapping from to  is a self 

map of .  

For , the sequence   given by 

 = (1 - )  + T …           

(2)  

               where  is a real sequence in [0,1) such that 

=∞ is called the Mann iteration. 

 If we put  in equation (2) we get the picard 

iteration. 

Definition 2.2 [27] For , the sequence  

defined by 

          = (1 − )  + T  
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            = (1 − )  + T  

 

where  and  are sequences in [0, 1) 

and satisfy   is called  the Ishikawa 

iteration. If we put  = 0 then the ishikawa iteration 

becomes the Mann iteration. 

 

Definition 2.3 [26] Let   be a metric 

space and  be an arbitrary nonempty set. 

 is a non empty closed subset of  

   is a non-empty subset of  

  For  and  is defined as 

  

 

 

  is called a generalized Hausdorff on 

. 

 

 Definition 2.4 [29] Let  be a metric space and 

. Let  and or  is a 

complete subspace of . Let  and  have a common 

fixed point . For any   there exists a sequence 

generated by  converges 

to . Let  and set 

 then this iterative procedure is  stable if 

 implies that . 

 

Lemma 2.1 [30, 31] Let us consider  to be a 

real number and  be a sequence of positive 

numbers such that  If  a sequence 

of positive real    numbers such that   

  

                                                         

Then,  

 

Lemma 2.2 Let  be a complete metric space and 

 ,  and   are 

sequences such that  

         

With  Then, 

 

 

 

 

Where  a Lebesgue-Stieltjes integrable 

mapping which is summable, non-negative  such that 

for each  

 

3. MAIN RESULTS 

 

 Theorem 3.1: Let  and  be a 

mapping satisfying 

                               

                                                       

 on a complete metric space  and  

such that  is a complete subspace of 

.Let   is a fixed point of  and for there 

exists a sequence 

             ,    

 Let be monotone increasing function 

such that  and  is  a Lebesgue-

stieltjes integrable mapping which is summable, non-

negative and such that for each  

 then  Picard iteration is T-

Stable. 

Proof:  Let us consider   

where  such that  

. 

 Let us consider  

Then by using lemma 2.2 and triangular inequality, 

we get 

  

 

        

 

 

 

 

   

                                 

 

 

   

  

 

 By lemma 2.1, we have, 
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 With 

  

    

So that by Lemma 2.1 and  

 for each  

We have, 

                  

Thus, 

                 

                          

 Conversely, let    then by lemma 2.2, 

                                      

 

                            

                       

      

 

                                                              

 

  

        

                     

 

 

   

Hence, 

                                    . 

Corollary 3.1: Let  be a single valued 

mapping satisfying                      

 

 on a complete metric space . Let   is a fixed 

point of  and for there  

exists a sequence 

                                 ,   

 

 Let be monotone increasing function 

such that  and  is  a Lebesgue-

stieltjes integrable mapping which is summable, non-

negative and such that for each  

 then  Picard iteration is T-

Stable. 

 

Proof: We will prove similarly as in 

theorem 3.1. 

 

Theorem 3.2: Let  and  be a 

mapping satisfying 

    

   

 

for all   on a 

complete metric space  and   such 

that  is a complete subspace of . Let  

 is a fixed point  of  and for there exists 

a sequence 

                               , 

 

 Let be monotone increasing function 

such that  and a Lebesgue-

stieltjes integrable mapping which is summable, non-

negative and such that for each 
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 then  the  Picard iteration 

is T-Stable. 

 

Proof:  Let us consider   where  

 such that  .  

Let us consider  

Then by using lemma 2.2 and triangular inequality, 

we get, 

    

 

        

  

  

                                                                                     

  

                                                   

 

  

  

                           

 

   

 

 

 

  

                        

                                                       

By lemma 2.1, we have, 

                                  

                          

 

                                

 

                                    

 With, 

                                   

    

So that by Lemma 2.1 and  

 for each  , We have, 

                

 Thus, 

                 

                 

 Conversely,  

                Let     

then by lemma 2.2, 
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   Thus, 

                  . 

Corollary 3.2: Let  be a single-

valued mapping satisfying 

  

  

 

for all   on a 

complete metric space . Let   is a fixed point 

of  

 and for there exists a sequence 

                           ,  

 Let be monotone increasing function 

such that  and a Lebesgue-

stieltjes integrable mapping which is summable, non-

negative and such that for each 

 then the  Picard iteration is 

T-Stable. 

 

Proof: We will prove similarly as in 

theorem 3.2. 
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